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The gross structure of a streptomycete derived bisanthraquinone designated as BE-43472B
was first claimed in a Japanese patent in 1996 as an antitumor agent.[1] Ten years later,
Rowley and co-workers reported the isolation of a bisanthraquinone antibiotic to which they
assigned the relative configuration of structure (−)-1 (Figure 1) from streptomyces strain
#N1-78-1, isolated from cultured cells of an unidentified unicellular green alga (URI strain
#N36-11-10), which, in turn, was isolated from the ascidian Ecteinascidia turbinata,
collected from La Parguera, Puerto Rico.[2a] Although the structure (−)-1 was depicted in
that[2a] and a subsequent publication,[2b] these studies left the absolute stereo-chemistry of
this natural product unassigned. It was speculated[2a] on the basis of spectroscopic data
comparisons that this antibiotic was most likely the same as the one previously discovered
by the Japanese group.[1] In addition to antitumor properties, this bisanthraquinone
antibiotic exhibited potent inhibitory activity against clinically derived isolates of
methicillin-susceptible, methicillin-resistant, and tetracyclin-resistant Staphylococcus aureus
(MSSA, MRSA, and TRSA, respectively), and vancomycin-resistant Enterococcus faecium
(VRE).[2] Most impressively, this compound also demonstrated, in a time-kill study,
significant bactericidal activity (>99.9 % kill) against MSSA, MRSA, and VRE.[2b] Given
the urgency for new antibiotics to combat drug-resistant bacteria,[3] the novelty of the
molecular structure of (−)-1 and the uncertainty about its absolute stereo-chemistry, this
molecule became an attractive target for synthesis in our group.[4] In this communication,
we report the first total synthesis of both enantiomers of this novel antibiotic and the
assignment of its absolute configuration as that depicted by structure (+)-1 (Figure 1).

The unprecedented and unique structure of bisanthraquinone natural product BE-43472B
[(+)-1] is a composition of two different anthraquinone-type molecules joined together by a
sterically hindered carbon-carbon bond and an oxygen bridge in an assembly containing no
less than eight rings. Its five stereogenic centers are clustered on and around the DE ring
system that contains an oxygen atom in each of its rings, forming an internal ketal. Its
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overall shape is that of a T, with its two sides more or less flat and with its junction where
the stereocenters reside slightly distorted (see calculated structures, Figure 1).

Scheme 1 presents, in retrosynthetic format, the blueprint of the devised synthesis of
bisanthraquinone antibiotic BE-43472B [(+)-1] (and its enantiomer [(−)-1]). Thus,
disconnection of the ether bridge between the two anthraquinone moieties of the molecule
by rupture of the aryl-oxygen bond (opening of ring E) and appropriate modifications of ring
C led to the potential precursor 2. Dismantling the hemiketal ring of 2 then generated
cyclohexene derivative 3, opening the way for the Diels–Alder reaction as the key step of
the strategy.[5] That disconnection defined diene 4 and dienophile 5 as the required building
blocks for our projected synthesis. The precise structures of these Diels–Alder partners were
crucial for the desired regio- and stereochemical outcome of the [4+2] cycloaddition, as will
be discussed below.

Scheme 2 summarizes the synthesis of the required diene 4 containing the first stereocenter
of the molecule that would control the remaining four. Our starting material for this
construction was an aldehyde derived from lactic acid methyl ester. Since the absolute
configuration of our target was not known at the time, we chose the less expensive of the
two enantiomers of this aldehyde [(S)-(−)-7] derived from natural, (S)-(−)-lactic acid ethyl
ester which also happens to correspond to the structure of the natural product as depicted in
the original structural elucidation report.[2] As events transpired, this choice led to (−)-1, the
enantiomer of BE-43472B. Starting with (R)-(+)-7 (derived from unnatural (R)-(+)-lactic
acid methyl ester)[6] we then synthesized (+)-1, the naturally occurring enantiomeric form
of antibiotic BE-43472B; it is this synthesis we describe herein. Wittig reaction[7] of
aldehyde (+)-7 with phosphorane 6 gave α,β-unsaturated ester 8 (95 % yield, E/Z >95:5),
which was converted to ketone 10 (57 % yield over two steps) via addition of MeLi to the
intermediate Weinreb amide 9.[8] Desilylation of 10 (TBAF, quantitative yield) led to allyl
alcohol 11, which was converted to diene 4 by treatment with 2.3 equiv of LDA followed by
trapping the resulting dianion with one equiv of TBSOTf (33 % yield, 93 % ee as
determined by HPLC).

The synthesis of the dienophile 5 commenced with known tricyclic system 12 and proceeded
as shown in Scheme 3.[9] Dibromination of 12 (LHMDS, NBS) yielded dibromoketone 13
(96 % yield), which upon sequential exposure to DBU and CsCO3-Me2SO4 resulted in the
formation of anthracene derivative 15, through phenol 14, in 85 % overall yield for the two
steps. Subsequent CAN oxidation furnished anthraquinone 16, in 77 % yield. Stannylation
of 16 with Me3SnSnMe3 in the presence of Pd(PPh3)4 cat. led to stannane 17 (81 % yield),
whose Pd(PPh3)4-catalyzed Stille coupling with bromoquinone 18 furnished pentacycle 19
in 65 % yield. Finally, removal of the MOM protecting group from 19 under acidic
conditions (1 % HCl in MeOH) led to the desired dienophile bisquinone 5, in 86 % yield.

With the two components 4 and 5 in hand, the stage was now set for their much anticipated
union through a Diels–Alder reaction.[5] As seen in Scheme 4, heating 4 and 5 in CH2Cl2 at
85 °C in a sealed tube for 48 h, followed by addition of toluene and refluxing with a Dean-
Stark apparatus for another 48 h, led to a remarkable series of transformations to afford
octacyclic product 22 and its C-9a epimer epi-22 (epi-22:22 ca. 2:1) in 98 % overall yield.
The only structural element not controlled in this fascinating cascade sequence was the
easily epimerizable stereogenic center at C-9a, an element of little consequence, if any, since
this stereocenter had to be subsequently erased. The success of this cascade depended
crucially on special features encoded in the two reacting partners, diene 4 and dienophile 5.
To explain the control of the high diastereoselectivity in forming the challenging quaternary
stereocenter at C-4a, it is assumed that in the endo transition state TS-20 (Scheme 4) the free
hydroxy group within 4 hydrogen bonds with the more Lewis basic carbonyl oxygen of the
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quinone moiety of dienophile 5 (the other carbonyl group is already engaged in H-bonding),
orienting the reactive species in the indicated facial arrangement due to 1,3-allylic strain[10]
and steric reasons.[11,12] The exquisite regiocontrol leading to the exclusive formation of
Diels–Alder adduct 3 can also be explained by intuitive analysis of the molecular orbital
coefficients of the reactants, if the bisanthraquinone substituent on the quinone dienophile is
construed to be an electron withdrawing group and thereby enhancing the MO coefficient at
C-9a (for the diene a larger coefficient is expected at C-1). The regioselective H–bonding
may amplify the required orbital interactions.[13] Adduct 3 was observed by NMR
spectroscopic analysis to exist in equilibrium with its hemiketal form 2 (2:3 ca. 4:1,
benzene-d6). Manual molecular modelling indicated that 2 finds itself in a favourable
conformation to undergo an intramolecular nucleophilic ipso substitution (2 → 22),[14]
expelling a molecule of MeOH to afford the desired octacycle 22. This novel cyclization is
apparently facilitated by the presence of the adjacent phenolic quinone moiety, which, being
self-activated through H–bonding, invites the attack by the initiating hemiketal hydroxyl
group as shown in structures 2 and 21.[15] The product 22 of this cascade reaction
apparently epimerizes partially at C-9a under the toluene refluxing conditions, which also
ensures the removal of the departing MeOH, as well as on silica gel to furnish epi-22. In
refluxing benzene we also observed partial epimerization of hemiketal 2 yielding an
equilibrating mixture of 2 and epi-2. With compounds epi-22 and 22 in hand, the stage was
now set for the final drive to the target molecule (+)-1.

Scheme 5 depicts the final sequence that led to the completion of the total synthesis of
antibiotic BE-43472B [(+)-1]. Thus, mCPBA epoxidation of epi-22/22 (2:1)[16] furnished
epoxides 23 (major epimers, ca. 4:1 mixture with its α-epimers, not shown), which were
desilylated (HF•py) and then oxidized with SeO2 in AcOH to afford enone 25 (49 % yield
over the three steps) through hydroxy ketone intermediates 24, together with its
chromatographically separable 3-epi-stereoisomer (epi-25, not shown, 39 % yield).

An X-ray crystallographic analysis (see ORTEP drawing, Figure 2)[17,18] of single crystals
of 25 (m. p. >250 °C, CH2Cl2) proved its relative configuration and confirmed the outcome
of both the Diels–Alder and the epoxidation reactions. With this pleasing advance, the
removal of the superfluous oxygen atom at C-2 and the introduction of the hydroxy group at
C-1 became the next tasks. In a notably regioselective manner, tetracarbonyl compound 25
was reacted with ethane-1,2-dithiol (as solvent) in the presence of excess BF3•OEt2 to afford
the desired dithioketal 26 (63 % yield), a substrate that underwent reductive desulfurization
with Raney-Ni to generate enone 27 (45 % yield). All that was now left to reach the target
molecule was the insertion of the missing oxygen atom in the C-H bond of the enone moiety
of the latter compound. This was achieved through a remarkably smooth procedure
involving, first, epoxidation of 27 to give epoxide 28 (tBuOOH, 84 % yield, plus the β-
epimer of 28, 7% yield, separable by preparative TLC, silica), and then, reorganization of
the epoxide structural motif to the required enol moiety through photolysis[19] of 28 to
afford bisanthraquinone antibiotic BE-43472B [(+)-1] in 77 % yield (83 % yield brsm, 92 %
conversion).[20] Synthetic (+)-1 exhibited essentially identical physical properties to those
reported for the natural product,[1,2a] and so did (−)-1, except for its optical rotation which
was of the opposite sign.[21]

In addition to assigning the absolute configuration of bisanthraquinone antibiotic
BE-43472B [(+)-1], the described total synthesis demonstrates the increasing power of
cascade reactions in chemical synthesis[22] and opens the way for the construction of
designed analogues of this intriguing antitumor antibiotic for biological investigations.
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Figure 1.
Enantiomers of the bisanthraquinone antibiotic BE-43472B [(−)-1 and (+)-1] and their
computer-generated models (fully optimized on B3LYB/6-31G* level) (carbon: gray,
hydrogen: white, oxygen: red, H-bonds: dotted gray).
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Figure 2.
X-ray derived ORTEP drawing of 25 (Thermal ellipsoids are shown at 30 % probability).
[17]
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Scheme 1.
Retrosynthetic analysis of BE-43472B [(+)-1].
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Scheme 2.
Synthesis of diene 4. Reagents and conditions: a) 7 (1.0 equiv), 6 (1.1 equiv), CH2Cl2, 25
°C, 6 h, 95 %; b) HNMe(OMe)•HCl (5.0 equiv), Me2AlCl (5.0 equiv), CH2Cl2, 0 → 25 °C,
16 h; c) MeLi, (2.0 equiv), Et2O, −78 °C, 1 h, 57 % over the two steps; d) TBAF (1.1 equiv),
THF, 25 °C, 2.5 h, 100 %; e) LDA (2.3 equiv), THF, −78 °C; then TBSOTf (1.0 equiv), −78
°C, 1.5 h, −78 → 25 °C, 30 min, 33 % (93% ee, 70% yield brsm). brsm = based on
recovered starting material; LDA = lithium diisopropylamide; TBAF = tetra-n-butyl-
ammonium fluoride; TBSOTf = tert-butyldimethylsilyl triflate.
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Scheme 3.
Synthesis of dienophile 5. Reagents and conditions: a) LHMDS (2.2 equiv), NBS (2.2
equiv), THF, 0 → 25 °C, 1 h, 98 %; b) DBU (1.0 equiv), CH2Cl2, 25 °C, 12 h; c) Me2SO4
(1.2 equiv), Cs2CO3 (1.2 equiv), acetone, reflux, 5 h, 74 % over the two steps; d) CAN (2.0
equiv), CH2Cl2, MeCN, H2O, 0 °C, 30 min, 77 %; e) Pd(PPh3)4 (0.1 equiv), Me3SnSnMe3
(1.5 equiv), toluene, 110 °C, 2 h, 95 %; f) 17 (1.0 equiv), 18 (1.5 equiv), Pd(PPh3)4 (0.1
equiv), CuI (0.2 equiv), THF, 70 °C, 22 h, 65 %; g) 1 % HCl in MeOH, CH2Cl2, 25 °C, 16
h, 85 %. CAN = cerium(IV) ammonium nitrate; DBU = 1,8-diazabicyclo-[5.4.0]undec-7-
ene; LHMDS = lithium hexamethyldisilazide; MOM = methoxymethyl; NBS = N-
bromosuccinimide.
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Scheme 4.
Diels–Alder reaction / hemiketal formation / nucleophilic aromatic substitution cascade
sequence to form octacyclic structure 22. Reagents and conditions: 5 (1.0 equiv), 4 (2.0
equiv), CH2Cl2, 85 °C, sealed tube, 2 d; then toluene, 135°C, dean stark, 1 d, epi-22:22 (ca.
2:1 mixture of epimers) 98 % overall yield based on 5.
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Scheme 5.
Completion of the total synthesis of BE-43472B [(+)-1]. Reagents and conditions: a)
mCPBA (1.2 equiv), CH2Cl2, −20 °C, 2 h; b) HF•pyr (10.0 equiv), THF, 25 °C, 20 min,
then TMSOMe; c) SeO2 (5.0 equiv), AcOH, 120 °C, 15 h, 25, 49 % and epi-25, 39 % over
the three steps; d) HSCH2CH2SH, as solvent, BF3•OEt2 (10.0 equiv), 25 °C, 30 min, 63 %;
e) Raney-Nickel 2400, MeOH, air, 25 °C, 1.5 h, then aq. HCl, 27, 45 % (56 % brsm); f)
tBuOOH (5.0 equiv), DBU (3.0 equiv), CH2Cl2, −25 °C, 28, 84 % and β-28, 7 % ; g) hν
(mercury lamp), benzene, 25 °C, 7 h, 77 % (83 % yield brsm). mCPBA = meta-
chloroperbenzoic acid; py = pyridine.
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