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Abstract
With the advent of powerful computers, simulation studies are becoming an important tool in
statistical methodology research. However, computer simulations of a specific process are only as
good as our understanding of the underlying mechanisms. An attractive supplement to simulations
is the use of plasmode datasets. Plasmodes are data sets that are generated by natural biologic
processes, under experimental conditions that allow some aspect of the truth to be known. The benefit
of the plasmode approach is that the data are generated through completely natural processes, thus
circumventing the common concern of the realism and accuracy of computer simulated data. The
estimation of admixture, or the proportion of an individual’s genome that originates from different
founding populations, is a particularly difficult research endeavor that is well suited to the use of
plasmodes. Current methods have been tested with simulations of complex populations where the
underlying mechanisms such as the rate and distribution of recombination are not well understood.
To demonstrate the utility of this method data derived from mouse crosses is used to evaluate the
effectiveness of several admixture estimation methodologies. Each cross shares a common founding
population so that the ancestry proportion for each individual is known, allowing for the comparison
of true and estimated individual admixture values. Analysis shows that the different estimation
methodologies (Structure, AdmixMap and FRAPPE) examined all perform well with simple datasets.
However, the performance of the estimation methodologies varied greatly when applied to a
plasmode consisting of three founding populations. The results of these examples illustrate the utility
of plasmodes in the evaluation of statistical genetics methodologies.
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1. INTRODUCTION
Admixture refers to the process in which individuals from populations with different allele
frequencies begin to mate and form a new, mixed or ‘hybrid’ population. In subsequent
generations disequilibrium among linked loci (points in the genome that tend to be inherited
together) in this admixed population may span a greater genetic distance than generally found
in populations that have been randomly mating for many generations. This extended linkage
disequilibrium (LD, non-random association of loci) has the potential to facilitate the detection
of regions of the genome that contain phenotype-influencing loci by reducing the required
number of marker loci needed for mapping when compared to disequilibrium mapping in
randomly mating populations [1–6]. However, not only can the admixture process produce
LD, it can also produce disequilibrium between pairs of unlinked loci. This admixture induced
disequilibrium between unlinked loci can create confounding, or spurious associations, in
genetic association studies and therefore needs to be accommodated in association studies [3,
6,7].

There are several methods that have been proposed to deal with confounding due to admixture-
induced disequilibrium and variations in individual ancestry [8]. These methods can be grouped
into two fundamentally different categories: Genomic Control (GC) and Structured
Association Testing (SAT). GC corrects for stratification in association studies by adjusting
for a uniform overall inflation statistic estimated from random null markers [9]. Structured
Association Testing methods can be divided into two subcategories: those based on individual
ancestry estimates and those based on a measure of genetic background obtained through
principal component analysis (PCA). In the first category of SAT methods, individual ancestry
estimates are used to cluster individuals into subpopulations and control for population
structure during association testing. [10–15]. The second SAT subgroup employs PCA to
estimate a genetic background score for each individual and in an attempt to control for
stratification by accounting for variation in the data associated with the differences in allele
frequencies [16–18]. Methods based on individual admixture estimations are commonly used
for controlling for population stratification and will be used for the example presented here.

Several computational methods have been developed that estimate individual admixture from
genetic data [3,8]. Within this paper, we utilize plasmodes to evaluate three often cited
approaches to admixture estimation; Structure, AdmixMap, and FRAPPE [12,14,15,19,20].
Subsequent to testing via simulations, illustration of most of these methods, with the exception
of Structure, has been limited to data from human populations such as African-Americans and
Hispanic-Americans [13,14,21]. Such validation is also problematic (we use the word
validation here loosely, in actuality “field-test” or “illustrate” would be more accurate).
Limiting the testing to these populations for method evaluation implicitly assumes that they
are representative of all admixed populations, and that the answers, in this case the individual
admixture values, are known a priori.

Despite recent interest in applying admixture methods to diverse populations ranging from rice
to tiger salamanders and buffalo to humans [22–26], most methods were developed and tested
via simulation of genotypes for individuals in an admixed human population. There are two
major issues with using simulated datasets in this manner. First, simulations may not accurately
capture the complexity of biological data [27]. Biologists are sometimes suspicious of
computer generated simulated biological data, doubting that current simulation methods can
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effectively emulate the complex processes involved in such things as non-random mating,
recombination, hot spots, and interference. Second, population genetic models used to simulate
the test populations are often limited to the island or continuous gene flow models, neither of
which are likely to accurately represent the complexity of the process by which the majority
of admixed human, or non-human, populations are formed [28–30].

To overcome some of the limitations of testing via simulations and human populations, we
propose the use of plasmode datasets to evaluate individual admixture estimation
methodologies. A plasmode is defined as a collection of data that: 1) is the result of a real
biological process; 2) is not merely the result of a computer simulation and; 3) has been
constructed so that at least some aspect of the ‘truth’ of the data generating process is known
[31]. A commonly used type of plasmode is a ‘spike in’ experiment in microarray expression
analysis, where a known amount of transcript is added to serve as a positive control. One of
the primary advantages is that, unlike what is generally observed with computer simulations,
distributions and correlations are realistic because they are taken directly from real data [27,
31,32].

The plasmodes used here are formed from a collection of two experimental mouse crosses.
The three founding populations are M16i, L6 and CAST/Ei. The first cross is the result of a
mating between M16i and L6 mice, to obtain an F1 (first generation). These F1 mice were then
mated together to obtain a F2 (second generation) population [33,34]. Hence, all mice within
the first plasmode will have ancestry of 0.5 from M16i and L6 (Figure 1). The second is a
backcross (BC) resulting from the mating of M16i mice with CAST/Ei to obtain F1 individuals
which were then mated with M16i mice to obtain the BC ((CAST/EixM16i)xM16i) [35,36].
By this design, all mice within the second cross will have ancestry of 0.75 from M16i and 0.25
from the CAST/Ei. All mice were genotyped with 100% ancestry informative microsatellite
markers and phenotype data was gathered for a number of traits. Since both crosses share M16i
as a common ancestor, we will use the fraction of markers inherited from the M16i strain as
the reference to evaluate the different admixture estimation methodologies. Because individual
admixture estimates provided by the different estimation techniques are a function of true
ancestry, random variation due to recombination, and measurement error, the individual
admixture estimates provided by the estimation approaches should vary around the true
ancestry values. [37,38]. Although the use of this plasmode does not allow for complex models
such as non-random mating or extended time since the admixture event to be tested, it does
intrinsically incorporate processes such as recombination, hotspots and interference not
accounted for in current simulation studies, and provides a simple example to illustrate the
utility of the concept.

In this manuscript we provide an example of the application of plasmode datasets as a
supplement to simulation in the evaluation of individual admixture estimation software. In
particular, we will use three popular methods: Structure, AdmixMap and FRAPPE [12,14,15,
19,20]. We then present a comparison of these three methods using a mouse plasmode with
known ancestry to evaluate each algorithm’s performance.

2. APPLICATION OF A PLASMODE, AN ILLUSTRATIVE EXAMPLE
Current methods for estimating individual admixture can be divided into two classes: Bayesian
and maximum likelihood (ML). Programs such as AdmixMap, AncestryMap and Structure are
software that utilize data from the founding populations, in the form of individuals for
Structure or allele frequencies for AdmixMap, to provide an informative prior to calculate the
posterior distribution of admixture estimates using Markov Chain Monte Carlo (MCMC) in
the Bayesian based framework [11–15]. ML estimation methods, such as IBGA, PSMIX and
FRAPPE, fall under the frequentist framework [20,21,39]. Individual admixture estimates are
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obtained by maximizing the likelihood of the individual ancestry proportion of each individual
given the available data. Although the program AncestryMap has been successfully used for
admixture based mapping of disease genes [40–42], we do not include it here since it is
restricted to two founding populations and diallelic markers.

Several authors reported correlations of the admixture estimates obtained with their methods
with Structure estimates, but they do not report the correlation of their estimates with true
admixture, as determined by simulation. Tang et al. provide the only direct evaluation of
individual admixture estimates [20]. They show via simulation that with informative markers
and well represented parental populations, both Structure and FRAPPE estimation work well.
With less informative markers, or only a few members of the parental populations, the
FRAPPE estimation is unbiased while Structure estimates can be highly biased. Here, to
demonstrate the feasibility and utility of plasmodes to evaluate methods and software, we
present a systematic evaluation of three individual admixture estimation methods, Structure,
AdmixMap, and FRAPPE through the use of the mouse plasmodes. The use of plasmodes
allows us to compare the individual admixture estimates from each algorithm with known
individual ancestry.

2.1 Evaluation of Ancestry Estimates in the BC and F2 plasmodes
We gauge the performance of Structure, AdmixMap and FRAPPE with the simple and
straightforward individual BC and F2 datasets. Results with all markers are presented in Table
1. Root mean square error (RMSE) was used to measure the variation from estimated individual
admixture from true ancestry [20].

Results from two models for Structure are presented in order to provide a direct comparison
with both AdmixMap and FRAPPE. Structure results obtained under the “Linkage model” are
most directly comparable to AdmixMap, whereas Structure results derived under the “PopAdx
model” are most directly comparable to the FRAPPE results [11,12,14,20,43,44]. The linkage
model incorporates genetic distance information for each marker into the calculation of the
admixture estimates. The PopAdx model, on the other hand, does not utilize linkage
information, but instead uses prior information on the population of origin of the founders. The
linkage model allows for admixture in all individuals, while the PopAdx model only allows
for admixture in the offspring. Examples for the Structure output for the BC and F2 plasmodes
are provided in Figures 2 & 3. Although FRAPPE is not designed to utilize linkage information,
the estimates did not seem to be affected when linked markers are used, in accordance to Tang
et al.’s observations [20].

All the programs performed equally well when founders were included in the analysis, and all
identified the correct the number of founding populations (K). However, when no founders
were included in the analysis of the two plasmodes, the Structure and FRAPPE estimates no
longer accurately reflect the true structure of the data with M16i estimates of approximately
50% for both methods in both populations (e.g. Figures 2 & 3). For both estimation approaches,
RMSE greatly increases in the absence of founders. AdmixMap does provide accurate estimates
without founders included in the analysis (0.4948 and 0.7460 M16i for the F2 and BC
respectively). This difference is to be expected since, as noted in the software documentation,
these programs utilize founders included in the analysis to estimate the founding allele
frequencies, whereas AdmixMap utilizes pre-supplied founding allele frequencies.

2.2 Evaluation of Ancestry Estimates in the combined plasmode
For the relatively simple BC or F2 analysis using the recommended conditions, including
founders in Structure and FRAPPE analysis, all the methods perform well. However, it is
unrealistic to expect that in typical association studies all subjects will have uniform ancestry.
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For a more complex analysis we pooled the data from the BC and F2 plasmodes to create a
combined plasmode. The combined plasmode has 3 founding populations, M16i, which is the
common founder for both the BC and F2 plasmodes, L6 from the BC, and CAST/Ei from the
F2. The original F2 and BC datasets had only 11 markers in common, which is a potential
limitation. However, the markers we have are 100% ancestry informative and our purpose here
is to estimate individual admixture, for which a lesser number of markers is required than for
association studies [45–48]. Results from the combined plasmode are presented in Table 2 and
illustrated in Figure 4.

Despite having completely ancestry informative markers, neither Structure nor FRAPPE
returned accurate estimate of the population structure or individual admixture values in the
combined plasmode (Table 2, Figure 4). Structure did not provide accurate results under the
PopAdx model. This model is comparable to the model used in FRAPPE that produced better
estimates and lower RMSE than the Structure PopAdx model. For both 10 and 30 founders,
Structure clearly identified the three founding populations, but indicated that the individual
mice in the F2 sample were of pure L6 ancestry and that the BC sample was an equal mix of
CAST/Ei and M16i (Figure 4). This is particularly surprising since the PopAdx model allows
for the user to specify which individuals belong to which population, and that information is
used in the assignment of individuals to clusters. As with FRAPPE, there was not a difference
in the estimates or RMSE when 10 or 30 founders were included.

When Structure was run with the Linkage model, which is comparable to AdmixMap, the
RMSE did decrease with the inclusion of additional founders (Table 2, Figure 4). However,
Structure did not provide accurate results with 10 founders and could not differentiate between
M16i and CAST/Ei mice in the founder or the BC samples. When 30 founders are included,
Structure does provide the correct population structure, but only provided accurate individual
admixture estimates for the BC sample and not the F2 portion.

Structure Linkage model results also provide an example of a non-identifiability issue that can
occur with Structure. Structure’s MCMC sampler can become ‘stuck’ in a mode, or fail to
converge to the same answer over multiple iterations (Figure 4D & E), which often occurs
when Structure is unsure of the true structure present in the data [20]. When founders are not
included in the analysis, it becomes impossible to identify founding populations in multiple
runs of algorithm. This emphasizes the need to run multiple replications with the same number
of populations (K).

The program AdmixMap is the only one that gave accurate estimates for the combined plasmode
(Table 2). In agreement with Tang’s [20] observation, inclusion of founders in the analysis
slightly improved the individual admixture estimates, although the algorithm is designed to
run without founders in the dataset. The improved performance of AdmixMap when compared
to Structure is not entirely unexpected since AdmixMap utilizes pre-supplied founding allele
frequencies, and Structure must estimate the frequencies from the data. When AdmixMap is
run on the combined plasmode without the pre-supplied allele frequencies (with the number
of populations set to K=3 and no founders) the estimates are more similar to those obtained
via Structure or FRAPPE (Table 2).

3. DISCUSSION
In this work we introduce the concept of plasmode datasets as a supplement to simulation. We
then use a mouse plasmode to provide an illustration of the application with the comparison
of three individual admixture estimation methodologies, Structure, AdmixMap, and
FRAPPE.
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Plasmodes offer a unique and important addition to the tool box of methodologists. Because
they are created through a natural process, the complexities of a biological dataset are
intrinsically incorporated. Simulations are a staple of statistical methodologic research since
they allow the investigator to specify and control every aspect of the study. However, biological
data sets are by nature very intricate. While simulation methods are continually improving,
they are limited by the researchers knowledge and understanding of a complex system.
Recombination location and rates provides a telling example. In simulating admixed
populations recombination rates are typically assumed to be constant across the genome. It is
further assumed that recombination events occur independently, and have a Poisson
distribution. It is well know that recombination occurs more frequently in certain regions of
the genome (hotspots) and that a phenomenon known as interference prevents recombination
from occurring near each other in the same generation. It has recently been shown that
recombination rates are in fact variable across the genome and for different populations [49–
51]. Because the plasmodes used here were created from breeding populations, the distribution
and rate of recombination are inherently incorporated, without requiring prior specific
knowledge.

Concerns have been raised in the past about the properties of the methods when few markers
are used. The use of plasmodes allows for the examination of these issues in a dataset generated
by biological process. The poor performance of Structure and FRAPPE may in fact be the
result of the low number of markers. However, all the markers are 100% ancestry informative
and visual inspection of the data clearly differentiates between the BC, F2 and founding
populations. Although we purposely avoided including in this manuscript computer matings,
or simulations, simulations were conducted that mimic the combined plasmode. These
simulations did show that both Structure and FRAPPE required both more markers and
additional founders to provide accurate estimates.

The importance of including founders in the analysis has also been a matter of contention. It
is not surprising that Structure performs better with an increased number of founders, since it
is recommended in the user’s guide that at least half of the sample should consist of individuals
from the founder populations. Tsai et al. [8] report that Structure requires a minimal ratio of
founders to admixed samples in the analysis. Tang et al. [20] also report the need for founders,
or pseudo-founders, in the analysis for FRAPPE, Structure, and AdmixMap. This is in direct
opposition of the literature describing AdmixMap which claims that founders should not be
included in the data. McKeigue claims that with the assumption of a unimodal distribution of
individual admixture proportions in AdmixMap’s model, inclusion of founders in the analysis
will cause the distribution to shift, which results in the model having a poor fit [44,52].
Regardless of potential poor model fit, it is apparent that based on the analysis of these
plasmodes all the methods return more accurate estimations when founders are included in the
analysis.

This manuscript is not meant to serve as comparison of results from simulation studies and
plasmode analysis, but as a proof of principle for the utility of plasmodes in the evaluation of
statistical genetic methodologies. As we have illustrated here, plasmodes offer an attractive
addition to the use of simulations and real populations for the testing of such methodologies.
It is important to note that we do not support the use of plasmodes at the complete abandonment
of simulation studies. Instead we believe that by using both methods, the limitations of each
will be overcome. The lack of appropriate data sets for the creation of plasmodes is one of the
largest hurdles in its application. The plasmodes here are limited by the number of markers in
common between the two crosses. As use of plasmodes gains acceptance, we hope that
plasmode datasets which more appropriately represent complex human data will also become
widely available. Future research will include the examination of more complex plasmodes.
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4. PLASMODE CONSTRUCTION, ADMIXTURE ESTIMATION & STATISTICAL
ANALYSIS
4.1 Plasmode Construction

Mouse data for the creation of the plasmode have been described in detail elsewhere [33,36,
53]. Briefly, the data consist of 420 ((CAST/Ei × M16i) × M16i) backcrossed mice (BC)
genotyped with 88 microsatellite markers and 552 (M16i × L6 F2) intercross mice (F2)
genotyped with 61 microsatellite markers. Because crosses are derived from three independent
lines, each locus is completely ancestry informative (i.e. M16i individuals have only the A
allele, L6 only the B allele, and CAST/Ei only the C allele). Although marker information was
not provided for individual founders, because of the completely ancestry informative markers
genotypes could be unambiguously assigned to founders. Thus, the genotype data for founders
can be derived from the cross genotypes. Thirty, ten, or zero founders were included in the
analysis as indicated. The two datasets were compiled to form the combined plasmode based
on 11 common microsatellite markers: D2MIT133 (60), D2MIT224 (64), D2MIT22 (73),
D2MIT49 (84), D4MIT27 (36), D7MIT55 (15), D9MIT2 (17), D12MIT5 (41), D13MIT53
(50), D18MIT19 (2), and D18MIT51 (27). Marker names indicate the chromosome on which
the marker is located, (e.g. D2 markers are on chromosome 2) with the chromosomal location
from the MGD database in Haldane (cM) units indicated in parenthesis. In this dataset we know
the true M16i ancestry for each individual, 75% for each BC mouse and 50% for the F2
individuals. As discussed in the introduction, true admixture is true ancestry plus biological
‘error’ from recombination and measurement error (for a more detailed discussion refer to
Redden et al. 2006 [37]). Therefore, we expect that the individual admixture estimates provided
by the different programs will vary around true ancestry.

4.2 Structure version 2.1
The Structure software takes a Bayesian approach developed by Pritchard and colleagues
[12,15] available at http://pritch.bsd.uchicago.edu/structure.html. It employs a model-based
clustering approach to infer population structure, to estimate the proportion of the genome
derived from each founding population for each individual, and to estimate population allele
frequencies via a Markov chain Monte Carlo (MCMC) procedure. Genotype data for founders
and admixed individuals, from linked or unlinked markers are used to probabilistically assign
individuals to populations, or mixtures of populations. Hardy-Weinberg Equilibrium and
Linkage Equilibrium are assumed within populations, and no particular mutation process or
model for the formation of the admixed population are specified. Several models are allowed
such as no admixture, admixture, or linkage are described in detail in [12].

Structure analysis was conducted via the windows front end interface using the following
models: 1) Linkage - where the admixture model is used, but admixture estimates are calculated
while taking into account linkage information; and 2) PopAdx - Prior information with
admixture. The two models which correspond to the models employed by AdmixMap and
FRAPPE were run with correlated and independent allele frequencies for the founding
populations, and three iterations for each number of populations (three iterations of each K at
K=1–3 for the BC and F2 and K=1–4 for the combined). The ‘correct’ number of populations,
or K, was selected based on prior knowledge or estimated from the data [12,15,28,43]. Analyses
were conducted with 20,000 burn-in and 50,000 iterations.

4.3 AdmixMap version 3.1
AdmixMap was developed by Hoggart et al. [11,14] building on McKeigue 1998 and 2000
papers [1,52] and available at http://www.ucd.ie/genepi/software.html. It is a hybrid of
Bayesian and classical approaches that utilizes MCMC methods to jointly estimate the
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admixture proportions for individuals and control for admixture induced confounding in
association studies. Briefly, a Bayesian model is used to calculate the admixture values for
individuals, based on the supplied prior distribution of allele frequencies in the founding
populations. The posterior distribution of admixture and the ancestry specific allele frequencies
at each locus, given the observed genotype and trait data, is generated by MCMC simulation.
The program was specifically developed for application to admixed human populations, such
as African-American and Hispanic-American populations [44].

Founding allele frequencies were estimated based on allele counts for each founding
population. Estimated allele counts were then used as the prior allele frequencies for each
plasmode analysis. Linkage was assumed and analyses were conducted using prior allele
frequencies of the founding populations or with a set number of populations (K=2 for F2 and
BC, K=3 for combined). AdmixMap allows for the specification of random or assortative
mating populations, and all models were run with assortative mating assumed (default setting).
Because AdmixMap utilizes pre-supplied allele frequencies, less iteration are required. A burn-
in of 350 and 3500 iterations were used. Unlike Structure, AdmixMap does not automatically
produce results for multiple replications with unique starting random number seeds, therefore
three replications with unique random seeds, or starting values for the MCMC, were manually
conducted.

4.4 MLE/FRAPPE
The frequentist method used in this study was developed by Tang et al. [20] as an extension
of the approach first proposed by Hanis et al. [54,55] to allow for estimation of founding allele
frequencies and individual admixture using maximum likelihood estimates. Code for the
program is freely available from the website http://www.fhcrc.org/science/labs/tang/ under the
section FRAPPE: Frequentist Estimation of Individual Ancestry Proportion. Details on the
method are provided in Tang et al. [20]. Briefly, individual admixture proportions are
represented by a vector Qi = (qi1, qi2, ….qiK) where qij represents the probability that an allele
sampled at random for ith individual originates from the jth founding population K, where the
number of founding populations is assumed to be known. Genotype data, from the same set of
independent markers, for both admixed and representatives of the founding populations are
required. Hardy-Weinberg equilibrium conditioned on the admixture proportion is assumed,
as well as no genetic drift and well separated founding populations [20].

4.5 Statistical analysis
RMSE was chosen as the metric of the accuracy of the individual admixture estimates [20]. It

can be written as:  where q̄i and qi represent respectively the
estimated and true individual admixture. For each program the RMSE for each individual was
calculated for 3 different iterations and the average RMSE for the individual and combined
plasmodes (BC and F2 separately for the combined) was then calculated for each algorithm.
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Figure 1. Design of mouse plasmodes
Illustration of the breeding scheme and proportion of ancestry for the mouse plasmodes.
Corresponding with Figures 2–4 M16i, the shared founder is indicated in red, CAST/Ei in blue
and L6 in red.
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Figure 2.
Structure results for the BC plasmode. In A & B M16i (red) and CAST/Ei (green) founders
are represented by number 1 and 2, respectively, on the x notations of the graph. Admixed
individuals are identified as 3 in A, B, C, and D. Individuals are represented by bars on the x
axis and population proportion on the y. The proportion of M16i and CAST/Ei for each
individual are illustrated by the amount of red and green for each individual. A) Linkage
analysis with all markers and 10 founders, B) PopAdx analysis with all markers and 10
founders, C) PopAdx with all markers and no founders D) Linkage with all markers and no
founders.
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Figure 3.
Structure results for the F2 plasmode M16i proportions are indicated in red. A) Linkage
analysis with all markers and 10 founders, B) PopAdx analysis with all markers and 10
founders, C) PopAdx with all markers and no founders D) Linkage with all markers and no
founders.
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Figure 4.
Graphical output for Structure analysis of combined plasmode with the first 3 bars (groups)
representing the founders 1) M16i - red 2) CAST/Ei - green 3) L6 - blue with the BC ((CAST/
Ei × M16i) × M16i) sample in the middle and the F2 (M16i × L6) on the far right: A) PopAdx
11 markers 10 founders, B) PopAdx 11 markers 30 founders C) Linkage 11 markers 10
founders- note that Structure does not differentiate between the M16i and CAST/Ei founders,
D) Linkage 11 markers 30 founders, E) Linkage 11 markers 30 founders illustrating lack of
convergence between two successive runs.
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Table 1

Average individual admixture proportions estimated with Structure, AdmixMap, and FRAPPE for the individual
BC and F2 plasmodes.

A Structure FRAPPE

F2 Expected M16i proportion 0.5000

Average M16i 0.4970 0.4953

STDEV 0.0534 0.0625

RMSE 0.0423 0.0047a

BC Expected M16i proportion 0.7500

Average M16i 0.7410 0.7498

STDEV 0.0552 0.0572

RMSE 0.0453 0.0020a

B Structure AdmixMap

F2 Expected M16i proportion 0.5000

Average M16i 0.4959 0.4948

STDEV 0.0543 0.0529

RMSE 0.0435 0.0429

BC Expected M16i proportion 0.7500

Average M16i 0.7304 0.7417

STDEV 0.0472 0.0388

RMSE 0.0416 0.0325

Admixture estimates, standard deviation, and RMSE estimates for Structure, FRAPPE, and AdmixMap. A. Structure Linkage model compared to
FRAPPE. B. Structure PopAdx model compared to AdmixMap.

a
FRAPPE gives identical estimates on repeated runs.
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