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Abstract
Indicator kriging provides a flexible interpolation approach that is well suited for datasets where: 1)
many observations are below the detection limit, 2) the histogram is strongly skewed, or 3) specific
classes of attribute values are better connected in space than others (e.g. low pollutant concentrations).
To apply indicator kriging at its full potential requires, however, the tedious inference and modeling
of multiple indicator semivariograms, as well as the post-processing of the results to retrieve attribute
estimates and associated measures of uncertainty. This paper presents a computer code that performs
automatically the following tasks: selection of thresholds for binary coding of continuous data,
computation and modeling of indicator semivariograms, modeling of probability distributions at
unmonitored locations (regular or irregular grids), and estimation of the mean and variance of these
distributions. The program also offers tools for quantifying the goodness of the model of uncertainty
within a cross-validation and jack-knife frameworks. The different functionalities are illustrated
using heavy metal concentrations from the well-known soil Jura dataset. A sensitivity analysis
demonstrates the benefit of using more thresholds when indicator kriging is implemented with a
linear interpolation model, in particular for variables with positively skewed histograms.
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1. Introduction
Two common features of environmental datasets are the occurrence of a few very large
concentrations (hot-spots) and the presence of data below the detection limit (censored
observations). Extreme values can strongly affect the characterization of spatial patterns, and
subsequently the prediction. Several approaches exist to handle strongly positively skewed
histograms (Saito and Goovaerts, 2000). One common approach is to first transform the data
(e.g. normal score, Box Cox or lognormal transform), perform the analysis in the transformed
space, and back-transform the resulting estimates. Such transform, however, does not solve
problems created by the presence of numerous censored data since either it yields a spike of
similar transformed values or, in the case of the normal-score transform, it requires a necessarily
subjective ordering of all equally-valued observations. Moreover, except for the normal score
transform (Deutsch and Journel, 1998), it does not guarantee the normality of the transformed
histogram, which is required to compute confidence intervals for the estimates. Last, the back-
transform of estimated moments is not straightforward and can introduce bias if not done
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properly (Saito and Goovaerts, 2000); for example, lognormal kriging estimates cannot simply
be exponentiated. Another way to attenuate the impact of extreme values is to use more robust
statistics and estimators. The non-parametric approach of indicator kriging (IK) falls within
that category (Journel, 1983; Goovaerts, 2001). The basic idea is to discretize the range of
variation of the environmental attribute by a set of thresholds (e.g. deciles of sample histogram,
detection limit, regulatory threshold) and to transform each observation into a vector of
indicators of non-exceedence of each threshold. Kriging is then applied to the set of indicators
and estimated values are assembled to form a conditional cumulative distribution function
(ccdf). The mean or median of the probability distribution can be used as an estimate of the
pollutant concentration (e.g. Barabas et al., 2001; Cattle et al., 2002; Goovaerts et al., 2005).

A frequent criticism of the indicator approach is that the binary coding amounts to discarding
some of the information in the data. In theory, this loss of information can be compensated by
accounting for indicator values defined at different thresholds, that is using indicator cokriging
instead of kriging. Practice has shown, however, that indicator cokriging improves little over
indicator kriging (Goovaerts, 1994; Pardo-Igúzquiza and Dowd, 2005) because cumulative
indicator data carry substantial information from one threshold to the next one, and all indicator
values are available at each sampled location (isotopic or equally-sampled case). Another way
to increase the resolution of the discrete ccdf is to conduct a fine discretization of the continuous
sample distribution using a large number of thresholds. For example, 15 indicator cutoffs were
used by Lark and Fergusson (2004) to map the risk of soil nutrient deficiency in a field of
Nebraska. Goovaerts et al. (2005) used indicator kriging with 22 thresholds to model
probabilistically the spatial distribution of arsenic concentrations in groundwater of Southeast
Michigan. Cattle et al. (2002) used 100 threshold values to characterize the spatial distribution
of urban soil lead contamination. The extreme situation is to identify the set of thresholds with
the sample dataset, that is to use as many thresholds as observations. In this case, typically only
the observations the closest to the interpolated location (e.g. located within the search window)
are used as thresholds. Such tailoring of thresholds to the local information available leads to
a better resolution of the discrete ccdf by selecting low thresholds in the low-valued parts of
the study area and high thresholds in the high-valued parts (Saito and Goovaerts, 2000; Lloyd
and Atkinson, 2001; Cattle et al., 2002).

The trade-off costs for the finer resolution of the ccdf are the tedious inference and modeling
of multiple indicator semivariograms, as well as the increasing likelihood that the estimated
probabilities won’t honor the axioms of a cumulative distribution function: all probabilities
must be valued between 0 and 1 and form a non-decreasing function of the threshold value.
Failure to honor such constraints, referred to as order relation deviations, requires the a
posteriori correction of the set of estimated probabilities (Deutsch and Journel, 1998). To keep
these deviations within reasonable limits, Deutsch and Lewis (1992) recommend using no more
than 9–15 thresholds. Several authors have proposed alternate implementations of the indicator
approach that reduce the proportion and magnitude of order relation deviations, while
maintaining a reasonable resolution for the ccdf. For example, Pardo-Igúzquiza and Dowd
(2005) developed a procedure that requires solving a single indicator cokriging system at each
location, leading to far fewer order relation problems than the traditional indicator (co)kriging.
Two other implementation tips (Goovaerts, 1997) are to avoid sudden changes in indicator
semivariogram parameters from one threshold to the next, and to select thresholds zk so that
within each search neighborhood there is at least one datum from each class (zk-1, zk]. This is
ensured by using locally adaptive thresholds (i.e. thresholds identified with observations within
the search window) and the same semivariogram model (i.e. semivariogram for the median
threshold) for all thresholds (Saito and Goovaerts, 2000; Lloyd and Atkinson, 2001). For large
datasets Cattle et al. (2002) developed a program where indicator semivariograms are
computed and modeled locally whereas the same 100 global thresholds are used across the
entire study area.
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A critical, yet often overlooked, step in the non-parametric approach is the interpolation or
extrapolation of the corrected probabilities to derive a continuous ccdf model. Statistics of the
local probability distribution, such as the mean or variance, may overly depend on the modeling
of the upper and lower tails of the distribution (Goovaerts, 1997). Popular software, such as
Gslib (Deutsch and Journel, 1998) or SGEMS (Remy et al, 2008), offer a piecewise
interpolation/extrapolation of the ccdf model: a linear model is usually adopted for
interpolation within each class, whereas power or hyperbolic models are used for extrapolation
beyond the two extreme threshold values. The choice of these models is however completely
arbitrary and usually poorly documented. An alternative, which is implemented in the computer
code described in this paper, is to capitalize on the higher level of discretization of the cdf (i.e.
the cumulative histogram) to improve the within-class resolution of the ccdf. It is noteworthy
that a few authors proposed to accomplish the correction and interpolation/extrapolation of
ccdf estimates in one step using logistic regression (Pardo-Igúzquiza and Dowd, 2005) or
through the fitting of a continuous function (Cattle et al., 2002). In all cases, the impact of
extrapolation models can be reduced by selecting more threshold values within the two tails
of the distribution (Deutsch and Lewis, 1992; Chu, 1996).

This paper presents an automated implementation of non-parametric geostatistics that
integrates Gslib routines for semivariogram computation and indicator kriging with a Fortran
code for semivariogram modelling (Pardo-Igúzquiza, 1999). Topsoil heavy metal
concentrations from the Jura dataset (Atteia et al., 1994) are used to illustrate the impact of the
number of thresholds and type of interpolation model on results, such as the magnitude of
prediction errors, the accuracy and precision of uncertainty models, and the frequency and
magnitude of order relation deviations.

2. Methodology
Consider the problem of estimating the value of an attribute z at an unsampled location u. The
information available consists of a set of n observations z(uα) that display some degree of
spatial correlation. In geostatistics, the unmonitored value z(u) is interpreted as a realization
of a random variable Z(u) which is fully characterized by the probability distribution F(u;z) =
Prob{Z(u)≤z}. Indicator kriging does not provide a direct estimate of the unknown attribute
value; rather it yields a set of K probability estimates:

(1)

where zk are K thresholds discretizing the range of variation of the attribute z (e.g. 9 deciles).

2.1 Indicator kriging
Ccdf values are estimated by applying kriging to indicator transforms of the data. Although
both simple and ordinary kriging are implemented in the computer code, the following
presentation is restricted to the most commonly used ordinary kriging estimator:

(2)

which is based on a preliminary coding of each observation z(uα) into a vector of indicators of
non-exceedence of the threshold values:
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(3)

The weights in equation (2) are the solution of the following system of (n(u)+1) linear
equations, known as ordinary indicator kriging system:

(4)

where μk is a Lagrange multiplier accounting for the constraint on the weights. The weights
λαk account for the data configuration (i.e. clustering of observations), the proximity of data
to the unsampled location u, as well as the spatial pattern of indicator data modelled from the
experimental semivariogram:

(5)

The indicator variogram 2γ ̂I (h; zk) measures how often two z-values a vector h apart are on
the opposite side of the threshold value zk. Therefore, it quantifies the lack of spatial
connectivity of the values exceeding zk. In most situations, the spatial connectivity of low and
high values will differ, hence the need to model a semivariogram and solve a kriging system
for each threshold.

2.2 Post-processing the discrete probability distributions
Because the K probabilities are estimated individually (i.e. K indicator kriging systems are
solved at each location) the following constraints, which are implicit to any probability
distribution, might not be satisfied by all sets of K estimates:

(6)

(7)

All probabilities that are not between 0 and 1 are first reset to the closest bound, 0 or 1. Then,
condition (7) is ensured by averaging the results of an upward and downward correction of
ccdf values (Deutsch and Journel, 1998).

Common estimators of the unknown z-value are the mean or the median of the ccdf, whereas
the uncertainty is measured by the spread of the ccdf. Here the mean (E-type estimate) and
variance of the ccdf were selected as predictor and associated measure of uncertainty. In the
program, these two quantities are estimated as follows:
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(8)

(9)

The computation of the 100 percentiles of each ccdf, zp(u), requires the interpolation of the set
of K probabilities within each class (zk,zk+1] and extrapolation beyond the smallest and the
largest thresholds to build a continuous model for the conditional cdf. One popular choice is
the linear interpolation within each class (zk,zk+1], which amounts to assuming that all values
between zk and zk+1 are equally likely to be observed. On the other hand, power and hyperbolic
models are typically applied to the tails of the distribution, which requires the subjective choice
of a power parameter. Instead of adopting an analytical function for ccdf interpolation and
extrapolation, it seems less arbitrary to borrow information from the sample histogram
whenever the number of observations exceeds the number of thresholds. Therefore, the
resolution of the discrete ccdf in the computer code AUTO-IK is increased by performing a
linear interpolation between tabulated bounds provided by the sample histogram (Deutsch and
Journel, 1998).

2.3 Validation of the prediction models
One might want to assess the sensitivity of results to implementation variants, such as the
number of thresholds or the use of anisotropic versus isotropic semivariogram models. Such
questions can be answered by comparing the interpolation results with observations that have
been either temporarily removed one at a time (cross-validation or leave-one-out approach) or
set aside for the whole analysis (jack-knife). Note that these definitions are swapped in the
statistical literature. The first two performance criteria are the mean error (ME) and mean
absolute error (MAE) of prediction computed as:

(10)

(11)

The ability of the prediction variance to capture the actual magnitude of the prediction error is
quantified using the following mean square standardized residual (MSSR):

(12)

If the actual estimation error is equal, on average, to the error predicted by the model, the MSSR
statistic should be about one (Wackernagel, 1998 p. 91).
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The prediction variance is just a summary statistic that does not fully capture the uncertainty
attached to the unknown z-value. From the ccdf one can compute a series of symmetric p-
probability intervals (PI) bounded by the (1−p)/2 and (1+p)/2 quantiles of that distribution. For
example, the 0.5-PI is bounded by the lower and upper quartiles (i.e. inter-quartile range).
According to this model of local uncertainty, there is then a 0.5-probability that the actual
attribute value falls into the 0.5-PI or, equivalently, that over the study area 50% of the 0.5-PI
include the true z-value. Cross-validation or jack-knife yields a set of z-measurements and
independently derived ccdfs at the N locations uα, allowing the fraction of true values falling
into the symmetric p-PI to be computed. Following Deutsch (1997), the agreement between
observed, , and expected fractions, pk, is quantified using the following “goodness” statistic:

(13)

where wk =1 if , and 2 otherwise. K′ represents the discretization level of the computation.
Twice more importance is given to deviations when  (inaccurate case). The weights
penalize less the accurate case, which is the case where the fraction of true values falling into
the p-probability interval is larger than expected. The goodness statistic is completed by the
so-called “accuracy plot” that allows one to visualize departures between observed and
expected fractions as a function of the probability p; see Figure 1A.

Not only should the true attribute value fall into the PI according to the expected probability
p, but this interval should be as narrow as possible to reduce the uncertainty about that value.
The average width of these local PIs should also be smaller than the global PI inferred from
the sample histogram. Following Goovaerts et al. (2008) the average width of the PIs that
include the true value are computed for a series of probabilities p and plotted versus the
corresponding p-PI inferred from the global histogram; see Figure 1B. The ratio of local PI
width versus global PI width, named standardized width, is averaged over a series of probability
p and should be as small as possible.

3. Program description
The different steps of indicator kriging were implemented in a single ANSI Fortran-77 code,
named AUTO-IK, which proceeds as follows:

1. Data are imported, and the K thresholds are either specified by the user or computed
as equally spaced p-quantiles of the sample histogram.

2. Each observation is coded as a vector of K indicators, and the corresponding K
indicator semivariograms are estimated and modeled using weighted least-square
regression; model parameters are outputted by the program and figures of the
experimental semivariograms with the model fitted are automatically created.

3. Indicator kriging is performed for each threshold using four types of destination
geography: 1) grid of points specified by the user, 2) rectangular grid, 3) sampled
locations (cross-validation option), and 4) set of test locations (jack-knife option).

4. The set of probabilities is corrected for order relation deviations, and the resulting
discrete ccdf is completed by interpolation/extrapolation.

5. The ccdf mean (E-type estimate) and variance are computed at each location.

6. For both cross-validation and jack-knife options, the true values are used to assess the
goodness and precision of the model of uncertainty.
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The source code was built around the Gslib programs GAMV, KB2D, IK3D, POSTIK,
VARGPLT, VMODEL and the semivariogram modelling program VARFIT (Pardo-
Igúzquiza, 1999). When running the executable the user needs to specify the name of a
parameter file that includes all the parameters and names of input/output files required by the
program. A typical parameter file, which was used to analyze cobalt concentrations in the Jura
dataset (Atteia et al., 1994), is illustrated in Figure 2. The text file, called AUTO-IK.par,
includes the following information:

① Name of the text file including the data. This dataset must be in Geo-EAS format
(Englund and Sparks, 1988). An example for the file Jura_sample.dat is given in
Figure 3. The first line is the name of the data file. The second line should be a
numerical value specifying the number of variables (i.e. nvar columns) in the data
file. The next nvar lines contain the name of each variable. The following lines, until
the end of the file, are considered as observations and must have nvar numerical values
per line. For example, the cobalt concentration recorded for the 1st soil sample, with
spatial coordinates X= 2.386 km and Y= 3.077 km, is 9.320 ppm.

② The column numbers for the X and Y coordinates, and the variable to be kriged.

③ Code for missing value. All observations equal to that value are ignored in the analysis.

④ Four options available for indicator kriging:

1. Estimation at the nodes of a grid that has been created by the user.

2. Estimation at the nodes of a rectangular grid specified by the user later in
the parameter file.

3. Estimation at each sampled location after removal of that particular
observation (cross-validation approach).

4. Estimation at test locations where observations, which have not been used
in the analysis, are available (jack-knife approach).

⑤ Name of the file (Geo-EAS format) with the interpolation grid (option 1) or the data
used for jack-knifing (option 4).

⑥ The column numbers for the X and Y coordinates of the interpolation grid or data
used for jack-knifing. The column number for the test data is used for option 4.

⑦ Definition of the rectangular grid (x axis): number of nodes, starting coordinate, and
grid spacing.

⑧ Definition of the rectangular grid (y axis): number of nodes, starting coordinate, and
grid spacing.

⑨ The number of thresholds used for the indicator coding of observations.

⑩ Two options available for defining threshold values: 0 = automatic computation of
thresholds as equally spaced p-quantiles of the sample histogram, 1= threshold values
are specified by the user.

⑪ Threshold values specified by the user for the indicator coding.

⑫ Options available for indicator kriging: full IK where threshold-specific
semivariograms are used for the estimation, and median IK where the median
semivariogram model is used for all thresholds.

⑬ Type of kriging algorithm: simple IK where the indicator means are automatically
identified with the arithmetical averages of indicator transforms, and ordinary IK
where the indicator means are implicitly estimated within each search window.
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⑭ Number and width of classes of distance used for the computation of the
semivariogram; 20 classes of 0.1 km are used in this example.

⑮ Number of directions for the computation of the semivariogram. Options are ndir=1
(omnidirectional) and ndir=4. In the later case, the semivariogram is computed in four
directions (angular tolerance = ±22.5°), starting with the azimuth direction specified
by the user. Using Gslib convention, angles are measured in degrees clockwise from
the NS direction.

⑯ Weighting scheme used in the least-square fitting of a semivariogram model to
experimental values. The program will try all possible combinations of 1 or 2 basic
models among the spherical and exponential functions. The selected model is the one
that minimizes the weighted sum of squares of differences between the experimental
and model curves:

where L is the number of classes of distance. The user can choose among the five
following types of weighting schemes: w(hl)=1, , w(hl)=1/γ
(h1)2, w(hl)=N(hl), w(hl)=N(hl)/log|hl|. Except for the first option, each alternative
set of weights aims to assign more importance to: semivariogram values computed
from many data pairs (hence more reliable), and/or smaller semivariogram values that
are typically observed for short distances since the behavior of the semivariogram at
the origin has the largest impact on kriging results.

⑰ Minimum and maximum number of neighboring observation to be used in the
estimation, and the radius of the circular search window. Missing estimated ccdf
values (coded -9) and corresponding statistics (coded -999) are reported when the
minimum number of observations is not reached.

⑱ Name of output text file reporting the experimental semivariogram values and the
parameters (i.e. type of basic model, nugget effect, sill, range, anisotropy angle) of
the model fitted, plus information on order relation deviations. For jack-knife and
cross-validation options, this file also includes statistics on the prediction errors and
results used to create the accuracy and PI-width plots. An example for cobalt data,
file Co-variog.txt, is given in Figure 4.

⑲ Name of output text file (Geo-EAS format) that includes the X and Y coordinates of
each estimated location, and the estimated ccdf values for all thresholds. An example
for cobalt data, file Co-IK.out, is given in Figure 5.

⑳ Name of output text file (Geo-EAS format) that includes the X and Y coordinates of
each estimated location, and the mean and variance of the local ccdf. For jack-knife
and cross-validation options, this file also includes the test observations that were not
used in the analysis, and the prediction error. An example for cobalt data, file Co-
stat.out, is given in Figure 6.

In addition to text files with indicator kriging results, the program AUTO-IK generates graphs
that display: 1) all the experimental indicator semivariogram values and the model fitted
(individual plot + combined plot of up to 12 semivariograms), and 2) the accuracy and PI-width
plots for jack-knife and cross-validation options. These figures are in PostScript format and
can be viewed using the public-domain program GSview
(http://www.cs.wisc.edu/~ghost/gsview). These graphs should help detecting any poor choice
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of the number and width of classes of distance, as well as poor fits of semivariogram models.
In the later case, the user should select other options for the weighting scheme. Figures 7 and
8 show the 19 indicator semivariogram plots created for cobalt using the parameter file of
Figure 2. These semivariograms were rescaled by the variance of the indicator variable to
facilitate comparison across thresholds. The corresponding accuracy and PI-width plots are
displayed in Figure 1.

4. Case-study
The functionalities of the program are illustrated using the 259 cobalt concentrations displayed
in Figure 9A. Omnidirectional indicator semivariograms were computed for 19 thresholds
identified with equally-spaced p-quantiles of the sample histogram (e.g. p=0.05, 0.10, 0.15).
Isotropic models were automatically fitted by AUTO-IK (Figures 7–8). Anisotropic modeling
was also undertaken but the azimuth appeared to have only a minor impact on the spatial
connectivity of cobalt indicators (Figure 10). For the first couple of thresholds the indicator
semivariograms display a very large nugget effect and a short-range structure (less than 200
meters), whereas larger ranges and smaller nugget effects occur for the majority of other
thresholds. This pattern reflects the existence of small clusters of low concentrations (i.e. 10%
smallest values), which are mainly located on Argovian rocks (Figure 9B).

Ordinary indicator kriging with 19 thresholds is used to model the ccdf and derive the associated
statistics at the nodes of a 50 m non-rectangular grid constrained to the boundaries of the study
area (kriging option 1), as well as at 100 test locations (jack-knife, kriging option 4). The map
of E-type estimates (Figure 9C) shows lower cobalt concentration on Argovian rocks.
According to the variance map (Figure 9E), the uncertainty is smaller on Argovian rocks where
concentrations are consistently small, which reflects the impact of both the proportional effect
(i.e. lower variances are associated with lower means) and spatial homogeneity. Larger ccdf
variances are observed in sparsely sampled areas (e.g. Western edge of the study area), as well
as where high and low concentrations are intermingled, like in the central part of the study
area. These zones of spatial heterogeneity can also be detected by mapping the variance of
observations within moving windows (Figure 9F). The ccdfs modeled at 100 test locations
(Figure 9D) were used to assess the quality of the model of uncertainty through the creation
of the accuracy and PI-width plots displayed in Figure 11. Relatively to the results obtained
using cross-validation (Figure 1), IK-based models appear to less precise (standardized PI-
width is 50% larger) and slightly less accurate according to the goodness statistic.

A sensitivity analysis was conducted to assess the impact of the following factors on the
prediction performances:

• number of thresholds. The cross-validation was conducted by increasing gradually
the number of thresholds from 5 to 100.

• type of ccdf interpolation model: 1) crude linear interpolation between thresholds
which is the option used in most published studies and implemented in SGEMS, and
2) linear interpolation between tabulated bounds provided by the sample histogram
as available in Gslib and AUTO-IK.

• Semivariogram model. Full indicator kriging, which requires the fitting of a separate
model for each threshold, is compared to median indicator kriging where the same
model is used across all thresholds.

The generality of the findings was investigated by repeating the analysis for three heavy metals
in the Jura dataset: cobalt and two heavy metals (Cd, Zn) with asymmetric histograms and
reasonable spatial autocorrelation (Figure 12).
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As expected, increasing the number of thresholds attenuates the impact of the type of ccdf
interpolation model on the prediction performances. For the two heavy metals with positively
skewed distributions, the largest prediction errors are observed when performing a simple
linear interpolation between fewer than 20 thresholds (Figures 13A–B). There is no substantial
benefit in using more thresholds for cobalt that displays smaller relative prediction errors (16%)
than cadmium (40%) or zinc (20%). Full and median indicator kriging yield very similar results,
which suggests that the benefit of using threshold-specific semivariogram models is canceled
out by the impact of more and greater order relation deviations, in particular as the number of
thresholds increases (Figure 14). Regardless the type of indicator kriging, the largest proportion
of order relation deviations is observed for cobalt, the metal with the strongest spatial structure
(i.e. longest semivariogram range), leading to a higher likelihood of negative kriging weights
caused by screening effect (Goovaerts, 1997). For example, median indicator kriging with the
semivariogram models of Figure 12 (right column) generates 35% of negative kriging weights
for cobalt, whereas this percentage is 0.02% for cadmium and 7.9% for zinc.

As for the prediction errors, best results for the MSSR statistic (i.e. values closer to 1) are
recorded when the number of thresholds exceeds 20, especially for Zn and Co using the crude
linear interpolation model (Figures 13C–D). According to this criterion, median indicator
kriging outperforms full indicator kriging for cobalt.

Unlike previous criteria, the goodness statistic does not improve as more thresholds are used
(Figures 13E–F), although the decline is small in absolute terms. The slight increase in the
width of the probability intervals (Figures 13G–H) is driven mainly by wider intervals for low
probabilities (i.e. p < 0.2); see examples in Figures 1B and 11B. Overall the best results (i.e.
more accurate and precise uncertainty models) are recorded for cobalt, which is expected since
this metal displays the strongest spatial correlation.

5. Conclusions
This study demonstrated that nowadays indicator kriging with multiple thresholds is accessible
and computationally tractable thanks to the development of automatic procedures for
semivariogram fitting and the growing processing speed. In particular, the user should no
longer feel restricted in using a maximum of nine thresholds for indicator coding, as typically
done in many analyses. Using more thresholds attenuates the loss of information caused by the
coding of continuous attributes into a set of binary indicators, which is a common criticism of
the technique. Indicator kriging seems a better alternative to data transforms, since: (1) the
transform procedure might be hard to automate (except for normal score transform, there is no
guaranty that the transformed distribution will meet the requirements of the analysis) and (2)
one-to-one transforms, such as normal score transform, require an arbitrary untie of censored
data. This code should foster the application of indicator kriging in earth sciences and facilitates
its optimal implementation by accounting for class-specific anisotropic patterns of spatial
correlation, while allowing a quick assessment of the accuracy and precision of the non-
parametric model of local uncertainty. This software should, however, not be used as a black-
box and the reader is advised to analyze the semivariogram plots and cross-validation statistics
to diagnose any potential problem in the application of the method.

According to the sensitivity analysis, for the dataset analyzed in this paper there appears to be
little benefit in considering more than nine thresholds if the interpolation/extrapolation of
discrete ccdf values is conducted using linear interpolation between tabulated bounds provided
by the sample histogram. The pattern of spatial variability (i.e. range of indicator
semivariogram model) seems to matter more than the use of threshold-specific semivariograms
or the tenfold increase in the number of thresholds. The generalization of these preliminary
conclusions will require repeating the analysis for other datasets with potentially larger
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differences in the spatial connectivity of small and large values. The benefit of using locally
adaptive thresholds should also be explored.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Example of accuracy plot (A) and standardized PI-width plot (B) created automatically by the
program AUTO-IK.exe when selecting the cross-validation option. The accuracy plot shows
the good correspondence between expected and empirical proportions of Co data falling within
probability intervals (PI) of increasing size, as measured by the goodness statistic (best if 1).
The width of these local PIs are consistently smaller (average ratio=0.649) than the global PIs
derived from the sample histogram (B).
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Figure 2.
Example of parameter file required by AUTO-IK.exe. This parameter file is used to conduct
a geostatistical analysis of soil cobalt concentrations (cross-validation option). Indicator
semivariograms for thresholds corresponding to 19 equally spaced p-quantiles of the sample
histogram, are computed using 20 classes of 0.1 km. The models are fitted automatically and
used to perform full ordinary indicator kriging using up to the 32 closest observations located
within a radius of 2 km.
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Figure 3.
Example of dataset for AUTO-IK.exe. Data must be in Geo-EAS format. The first line is the
name of the data file. The second line should be a numerical value specifying the number of
variables (i.e. nvar columns) in the data file. The next nvar lines contain the name of each
variable. The following lines, until the end of the file, are considered as observations and must
have nvar numerical values per line.
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Figure 4.
Output file created by AUTO-IK.exe following the cross-validation analysis of cobalt
concentrations. The text file reports for each threshold the experimental semivariogram values
and the parameters (i.e. type of basic model, nugget effect, sill, range, anisotropy angle) of the
model fitted, plus information on order relation deviations. For jack-knife and cross-validation
options, this file also includes statistics on the prediction errors and results used to create the
accuracy and PI-width plots. This file was obtained when running the code with the parameter
file of Figure 2.
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Figure 5.
Output file created by AUTO-IK.exe following the cross-validation analysis of cobalt
concentrations. The text file (Geo-EAS format) includes the X and Y coordinates of each
sampled location, and the estimated ccdf values for all 19 thresholds. This output file was
obtained when running the code with the parameter file of Figure 2.
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Figure 6.
Output file created by AUTO-IK.exe following the cross-validation analysis of cobalt
concentrations. The text file (Geo-EAS format) includes the X and Y coordinates of each
sampled location, the cobalt concentration that was discarded for the analysis, the mean and
variance of the local ccdf, and the prediction error. This output file was obtained when running
the code with the parameter file of Figure 2.
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Figure 7.
Omnidirectional semivariograms computed for thresholds 1 through 12, with the model fitted
using weighted-least square regression. These semivariograms were rescaled by the variance
of the indicator variable. This graph is created automatically by AUTO-IK.
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Figure 8.
Omnidirectional semivariograms computed for thresholds 13 through 19, with the model fitted
using weighted-least square regression. These semivariograms were rescaled by the variance
of the indicator variable. This graph is created automatically by AUTO-IK.
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Figure 9.
(A) 259 observations available for estimating soil cobalt concentration at the nodes of a 50-m
grid (C) or at 100 test locations (D) using ordinary indicator kriging. The map of the ccdf mean
(C) shows lower cobalt concentrations on Argovian rocks (B). (E) The map of the ccdf variance
indicates larger uncertainty where data, depicted by black dots, are scarce and/or where the
local variance of the data (F) is large.
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Figure 10.
Directional semivariograms computed for thresholds 1 through 12, with the anisotropic model
fitted using weighted-least square regression. These semivariograms were rescaled by the
variance of the indicator variable. This graph is created automatically by AUTO-IK.
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Figure 11.
Accuracy plot (A) and standardized PI-width plot (B) obtained by jack-knife using the 100 test
locations displayed in Figure 9D. The accuracy plot shows the good correspondence between
expected and empirical proportions of Co data falling within probability intervals (PI) of
increasing size, as measured by the goodness statistic (best if 1). The width of these local PIs
are on average smaller (average ratio=0.96) than the global PIs derived from the sample
histogram (B).
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Figure 12.
Histograms and median indicator semivariograms for the three heavy metals used in the
sensitivity analysis.
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Figure 13.
Impact of the number of thresholds on the prediction accuracy and the goodness of the model
of uncertainty obtained using indicator kriging and two types of ccdf interpolation models:
crude linear interpolation between thresholds (left) and linear interpolation between tabulated
bounds provided by the sample histogram (right). Solid lines correspond to results obtained
for median indicator kriging where the same semivariogram model is used across all thresholds.
Graphs (A) and (B) were rescaled by the average concentration (values for Cd were halved for
graph clarity) so that they are comparable across metals and interpolation models.
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Figure 14.
Impact of the number of thresholds on the frequency (A) and magnitude (B) of order relation
deviations for three different heavy metals. Solid lines correspond to results obtained for
median indicator kriging where the same semivariogram model is used across all thresholds.
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