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Genetically correlated traits do not evolve independently, and the covariances between traits affect the rate

at which a population adapts to a specified selection regime. To measure the impact of genetic covariances

on the rate of adaptation, we compare the rate fitness increases given the observed G matrix to the expected

rate if all the covariances in the G matrix are set to zero. Using data from the literature, we estimate the

effect of genetic covariances in real populations. We find no net tendency for covariances to constrain the

rate of adaptation, though the quality and heterogeneity of the data limit the certainty of this result. There

are some examples in which covariances strongly constrain the rate of adaptation but these are balanced by

counter examples in which covariances facilitate the rate of adaptation; in many cases, covariances have

little or no effect. We also discuss how our metric can be used to identify traits or suites of traits whose

genetic covariances to other traits have a particularly large impact on the rate of adaptation.
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1. INTRODUCTION
It is well-known that traits do not evolve independently of

one another. In evolutionary quantitative genetics, the

genetic covariance serves as a measurable summary statistic

that captures the effects of pleiotropy and linkage

disequilibrium, and quantifies the extent to which the

evolutionary response of one trait will be influenced by

selection of another (Falconer & Mackay 1996; Lynch &

Walsh 1998). Specifically, the change in the mean multi-

variate phenotype across a single generation is given by

DzZGb; ð1:1Þ

where DzZ fD �z1;D �z2;.;D �zng
T is a column vector of

changes in the means of n traits (the T denotes transpose);

G is the additive genetic (co)-variance matrix with diagonal

elements representing genetic variances and off-diagonal

elements representing genetic covariances (e.g. elementGii

is the genetic variance of trait i and elementGij is the genetic

covariance between traits i and j ), and bZ fb1;b2;.; bng
T

is a column vector of directional selection gradients (Lande

1979; Lande & Arnold 1983). Despite the availability of a

robust theoretical framework describing the evolution of

multiple quantitative traits, the extent to which—if at all—

the covariance structure among traits constrains or

facilitates multivariate evolution is unknown. Here, we

suggest a simple and intuitively meaningful way to quantify

the effects of genetic covariances on the rate of adaptation,

and apply this metric to datasets from the literature.

The effects of covariances between traits on the

response to artificial selection has long been appreciated

by plant and animal breeders. For example, in index

selection, multiple traits are combined via a weighting

scheme into a single univariate trait (the index) which is
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itself selected upon (Falconer & Mackay 1996). The

creation of a trait index specifically incorporates the

covariances between the component traits, and weighting

schemes can be designed to take advantage of these

covariances and increase the response to selection of a

preferred trait or set of traits (see Lin 1978; Falconer &

Mackay 1996; B. Walsh & M. Lynch 2007, unpublished

data, for overviews).

Using the Lande–Arnold framework (Lande 1979;

Lande & Arnold 1983), the importance of genetic

covariances in determining the response to natural

selection can be illustrated by considering a simple two

trait example, such that (1.1) can be written as

D �z1 ZG11b1 CG12b2; ð1:2aÞ

D �z2 ZG22b2 CG12b1: ð1:2bÞ

If z1 and z2 are under equally strong positive directional

selection (b1Zb2Zb), and the two traits have equal

amounts of genetic variance G11ZG22ZG, equation

(1.2a) and (1.2b) simplifies to

D �z1 ZD �z2 ZGbð1Cr12Þ; ð1:3Þ

where r12ZG12/O(G11G22) is the genetic correlation

between z1 and z2. If there is a maximally strong negative

genetic correlation between these traits, r12ZK1, then

neither trait evolves ðD �z1ZD �z2Z0Þ despite there

being genetic variance for both the traits. Examples

such as this illustrate the potential of genetic correlations

to constrain evolution. However, the example above is

misleading in several respects. First, this example

suggests that extremely strong genetic correlations

(jrjz1) are required to substantially constrain evolution.

Given that empirically estimated genetic correlations are

typically much less than G1, one might be tempted to

assume that genetic correlations do not pose a strong

constraint on adaptation. However, correlations that are

much smaller in magnitude than unity can prevent

adaptation when there are more than two traits under
This journal is q 2008 The Royal Society
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selection (Dickerson 1955; Blows & Hoffmann 2005).

Ultimately, the important quantity is not the genetic

correlations per se but rather the amount of genetic

variation in multivariate space in the direction of

selection. Even if there is genetic variation in all n traits,

this variation may be structured (as described by the

co-variances) such that there is no variation in certain

directions in multivariate space (i.e. the rank of G is less

than n; Hine & Blows 2006). A complete lack of genetic

variance in one or more directions can occur even when

all genetic correlations are less than unity in magnitude

when nO2. If one of these directions with no genetic

variation matches the direction of selection (b), then

there will be no evolution. In such a case, we can say

that genetic correlations provide an absolute constraint

to adaptation.

A second way in which our toy example is misleading is

that it focuses on a case where no evolution occurs at all.

The genetic correlation must be at its maximum negative

value, r12ZK1, to completely constrain evolution, as this

is the only case in which there would be no genetic

variation in the direction of selection. While a strict

definition of the term ‘constraint’ might only apply to

situations in which genetic correlations lead to no

evolutionary response, this seems an overly stringent

definition (Houle 1991). Any other value for the genetic

correlation (e.g. r12ZK0.5) will still allow for some

adaptation—a fact noted by several investigators who

have applied artificial selection to genetically correlated

traits and still obtained a response to selection. These

results come from agricultural systems (poultry: Nordskog

1977), model systems (mice: Cockrem 1959; Rutledge

et al. 1973) and evolutionary and ecological systems (flour

and dung beetles, butterflies, and short-lived plants:

Bell & Burris 1973; Stanton & Young 1994; Emlen

1996; Beldade et al. 2002; Conner 2003; Frankino et al.

2005). As such, the relevant comparison is not whether

any adaptation can occur, but how much occurs relative to

a scenario with a different covariance structure. For

example, when the genetic correlation between two traits

is moderate (e.g. r12ZK0.5), there is only half as much

genetic variance in the direction of selection as there

would be if there was no genetic correlation. Conse-

quently, both traits evolve only half as much as with

r12ZK0.5 as they would if r12Z0. Clearly, the genetic

correlation constrains the rate of adaptation relative to

what would be expected if the traits did not genetically

covary. This idea forms the premise for our metric of

constraint described below.

A third way in which the toy example is misleading is

that it focuses on a particular genetic correlation in

combination with a particular pattern of selection.

Specifically, when r12ZK1, there is no variation in the

direction of selection given by bZ{b, b} and evolution is

completely prevented. However, this same genetic corre-

lation would have a very different effect if selection was in a

different direction. For example, if bZ{b, Kb}, both traits

not only evolve but do so twice as fast with r12ZK1 as

they would if there was no genetic correlation. With this

alternative pattern of selection, the genetic correlation

increases, rather than reduces, the rate of adaptation. In

much of the literature, there has been a focus on the role of

genetic correlations as a source of constraint (Clark 1987;

Arnold 1992) but this emphasis can be deceptive without
Proc. R. Soc. B (2009)
the appropriate caveats. Any given pattern of genetic

correlations among a set of traits can either constrain or

facilitate adaptation depending on the pattern of selection

(Lande 1979).

Moreover, the toy example focuses too much attention

on the genetic correlation, given that genetic correlations

alone do not dictate the pattern of genetic variance in

phenotypic space; genetic variances are also important.

For example, in the toy example with equal variances

(G11ZG22), a genetic correlation of r12ZK1 causes all

the genetic variance to lie in a dimension orthogonal to the

chosen direction of selection, bZ{b, b}. However, if trait

variances were unequal and r12ZK1, then all the

variation would still lie only in one dimension (i.e. G has

a single non-zero eigenvector), but this dimension would

not be orthogonal to selection. Accordingly, a correlation

of r12ZK1 would not completely constrain evolution. As

shown in equations (1.2a) and (1.2b), it is the genetic

covariance that affects the response to selection. The effect

of the genetic correlations on evolution is always dependent

on trait variances because correlations only enter the

equation through covariances (e.g. G12Zr12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G11G22

p
).

One can consider the effect of non-independence between

traits on evolution by focusing directly on genetic

covariances rather than the correlations.

While the concepts above are well-known to those

familiar with quantitative genetics theory, the extent to

which genetic covariances affect the evolution of real

populations is unknown, in part because of the lack of a

useful metric for quantifying these effects. Here, we

present a simple metric for quantifying the extent to

which genetic covariances affect the rate of adaptation.

The impact of genetic covariances is measured by

comparing the rate of adaptation with the observed G

matrix to the rate of adaptation if all traits were genetically

independent (i.e. all covariances set to zero). This simple

approach measures the effect of genetic correlations while

automatically accounting for all of the issues listed above

(e.g. direction of selection relative to patterns of

correlation, differences among traits in the amount of

genetic variance).

Our metric is not intended to be a summary statistic of

constraint in general. Obviously, a crucial aspect of

constraint is the amount of genetic variation; adaptation

will be constrained if traits have little or no genetic

variation. Our metric does not address whether individual

traits have particularly high or low levels of genetic variation

(Mousseau & Roff 1987; Houle 1992; Hansen &

Houle 2008). Rather, our metric addresses a specific

question that focuses on genetic covariances: given the

observed levels of genetic variance, how much does the

covariance structure among these traits affect the rate of

adaptation? We apply this metric to the data from the

literature on real populations. We find some examples in

which covariances strongly constrain adaptation and others

where correlations facilitate adaptation. However, in many

cases, the effect of covariances is small and the average

effect is close to zero.
2. MATERIAL AND METHODS
(a) Quantifying constraint

If there are no genetic correlations (or if selection acts only on

one trait), then evolutionary change in trait i is simply the
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product of the genetic variance in that trait (Gii) and the

selection gradient (bi)

D �zi ZGiibi : ð2:1Þ

Genetic covariances alter the response to selection from the

simple univariate prediction shown in equation (2.1) to that

given by equation (1.1). Genetic correlations are of interest

because of their ability to change evolutionary trajectories

relative to the patterns expected by considering each trait

individually (as in equation (2.1)). Consequently, we suggest

that the simplest way to quantify the effect of genetic

correlations is to calculate the rate of adaptation (given the

observed pattern of genetic covariances) relative to the rate of

adaptation expected if there were no correlations.

For our purposes, we define the rate of adaptation as the

rate of increase of fitness of the mean phenotype. Assuming

fitness can be approximated by a quadratic function, the

fitness of an individual with phenotype zZ{z1, z2, ., zn}
T is

W ðzÞZ z
TbC

1

2
z

TgzCk; ð2:2Þ

where g is the matrix of quadratic selection gradients (Lande &

Arnold 1983). The change in the fitness of the mean phenotype

is given by

DW ðz ÞZW ðzCDz ÞKW ðz Þ: ð2:3aÞ

Making the usual assumption that phenotypes are measured

as deviations from the mean (i.e. zZ f0; 0;.; 0gT), then

equation (2.3a) becomes

DW ðz ÞZDzTbC
1

2
DzTgDz: ð2:3bÞ

To quantify the effect of covariances on rate of adaptation, we

measure the ratio

RZ
DWCðz Þ

DWI ðzÞ
: ð2:4Þ

DWCðz Þ is calculated from equations (2.3a) and (2.3b) using

the value ofDz given by equation (1.1) and therefore represents

the rate of adaptation with the observed pattern of genetic

covariance. DWI ðz Þ is also calculated from equations (2.3a)

and (2.3b) but using the value of Dz given by equation (2.1) or

equivalently by equation (1.1) but setting all off-diagonal

elements in G to zero—this is the predicted rate of adaptation

with the observed level of genetic variance in each trait but

assuming all traits were genetically independent (rijZ0). In

other words,Rmeasures the rate of adaptation with covariances

relative to the expected rate without them. Importantly, this

metric R accurately quantifies evolutionary constraints

in situations in which one or more of the traits are under weak

or no selection but other traits are under strong selection. In

principle, bootstrapping the underlying datasets for G and

phenotypic selection parameter estimates (b and g) could be

used to generate confidence intervals on R.

The metric R is intuitively simple and biologically

meaningful. If RZ0, then adaptation is completely stalled

by genetic correlations—there is an absolute constraint. If

RZ0.5, then the covariance structure causes the fitness of the

mean phenotype to increase only 50 per cent as quickly as

expected if the traits were genetically independent. If RZ2,

then genetic covariances accelerate evolution such that

adaptation occurs twice as fast as expected under genetic

independence. In some contexts, we use

LZ logðRÞZ logðDWCðz ÞÞKlogðDWI ðz ÞÞ:

L!0 implies that covariances constrain the rate of adap-

tation, whereas LO0 implies the opposite. L is helpful
Proc. R. Soc. B (2009)
because it is easier to compare cases where covariances

constrain versus facilitate the rate of adaptation. Consider

two cases, the first in which covariances reduce the rate of

adaptation by a factor of two (RZ1/2) and the second in

which covariances increase the rate of adaptation by a factor

of two (RZ2). It is easier to see that these situations are equal

but opposite by comparing their L-values, which are K0.0301

and C0.0301, respectively.

Our metric focuses on the change in fitness of the mean

phenotype DW ðz Þ. In principle, a better alternative would be

to measure the change in mean fitness D �W ðzÞ. However,

calculation of the change in the mean fitness requires a

prediction of not only the change in the mean phenotype

(equation (2.1)) but also a prediction of how G will change.

There is no consensus on how G changes and theory indicates

that its evolution is quite sensitive to the underlying genetic

architecture (Turelli 1988; Arnold 1992). To avoid these

practical difficulties, we focus on DW ðz Þ rather than D �W ðzÞ.

The two approaches will be very similar provided that the

curvature in the fitness surface is weak.

(b) Assessing constraint from empirical datasets

As mentioned above, basic quantitative genetics theory makes

no prediction about whether genetic covariances should tend

to facilitate or constrain the rate of adaptation. However,

there are several secondary ideas that are relevant. If there is

constant directional selection, then genetic variation might

eventually be exhausted in the selected direction (Lande

1982; Charnov 1989; Charlesworth 1990). The remaining

variation will primarily reside in subspaces orthogonal to

selection. In other words, there may be variation in all of the

traits but the genetic correlations constrain further adap-

tation, i.e. R!1.

Alternatively, consistent long-term selection, particularly

if there is stabilizing selection in dimensions orthogonal to the

vector of directional selection, may drive the evolution of the

covariance structure itself to match the selection surface

(Cheverud 1982, 1984; Wagner 1989), such that correlations

should tend to facilitate the rate of adaptation, i.e. RO1.

A third alternative is based on condition-dependence. If

most traits experiencing directional selection are condition-

dependent, then they will all be correlated with an underlying

latent variable, ‘condition’. As others have argued (Houle 1991;

Rowe & Houle 1996), the mutational target size for condition is

very large, allowing considerable variation for condition despite

it experiencing persistent directional selection. Because the key

traits are condition-dependent, the correlations among them

will align with the direction of selection. Again, RO1 is

predicted (though little or no adaptation actually occurs

because deleterious mutation counteracts the response to

selection each generation).

To assess whether covariances tend to constrain or

facilitate the rate of adaptation, we surveyed the literature

for systems in which we could calculate R (see the electronic

supplementary material for details). Ideally, a system would

have both a good measure of the genetic (co)variance matrix,

G, as well as good estimates of the selection parameters, b and

g. Unfortunately, good estimates of either genetics or

selection are extremely difficult to obtain and we found few

systems with both. To increase the number of systems we

could use, we accepted the phenotypic matrix of (co)variance,

P, as a substitute for G. Of course, the relative size of elements

of P can differ from the corresponding elements of G (Willis

et al. 1991). However, in many cases, the shape of P will be
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Figure 1. Frequency histogram of L-values for surveyed
studies where LZlog(R). R measures the rate of adaptation
relative to the rate expected if all traits were genetically
independent. Negative and positive values for log(R) indicate
cases where genetic covariances constrain and facilitate the
rate of adaptation, respectively. (a) Distribution based on best
available data (nZ45). The mean of this distribution is
�LZK0:05 (i.e. �RZ0:89) but this is not significantly different
from �LZ0. (b) Distribution based on data using the lowest
common denominator (LCD) (see text for details; nZ34). For
this, distribution is �LZK0:04 (i.e. �RZ0:91). See the
electronic supplementary material for a list of surveyed studies.
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a reasonable reflection of the shape of G (Cheverud 1988;

Roff 1995; Waitt & Levin 1998).

In some cases, estimates of heritabilities (but not genetic

correlations) were available in addition to P. In these cases, we

adjusted the matrix for different levels of genetic variability

among the traits by multiplying the element in row i and

column j of P by
ffiffiffiffiffiffiffip
h2
i

ffiffiffiffiffiffiffip
h2
j
. When no heritabilities were

available, we assumed a heritability of h2Z0.5 (Roff 1997).

When all traits are assigned the same heritability, the actual

value of the heritability assumed will have little effect on the

measure of R unless nonlinear selection gradients are strong.

We used studies reporting variance standardized selection

gradients (Lande & Arnold 1983), or variance standardized

selection gradients estimated with breeding values or family

means, which are unbiased by environmental covariances

between traits and fitness (Rausher 1992; Stinchcombe et al.

2002). (Because we were using variance standardized

selection gradients, we ensured that our covariance matrices

were also for variance standardized traits.) Many studies of

selection either do not attempt to estimate nonlinear selection

gradients, g, or only estimate the diagonal elements of this

matrix. We typically used what was available and assumed

other elements to be zero. Some studies reported different

measures of fitness for analysing fitness and we chose the one

we thought best. A number of studies measured selection at

multiple sites or in multiple years. In such cases, we

calculated R for each selection estimate separately and used

the geometric average value of R. Throughout the process of

collating the data, we were required to make a number of

judgement calls in regard to specific papers. In the electronic

supplementary material, we provide additional notes on how

each individual study used here was handled.

We were able to compile 45 datasets for which we could

calculate R (see the electronic supplementary material). This

included a wide range of plant and animal species. Most of

these studies estimated selection in the field, although a few

involved studies of selection in a laboratory or greenhouse

setting intended to mimic some aspect of nature. A variety of

fitness measures were used across these studies including

viability, fecundity and mating success. A wide variety of traits

were considered. Most were morphological, though there

were some life-history traits too.

As explained above, we used the best available data for

each study. This led to a fair degree of heterogeneity in the

type of data used. In some cases G was available but in other

cases P was used as proxy for G; in some cases nonlinear

selection gradients were available but in other cases they were

partially or completely absent. In order to have a more

homogeneous dataset, we repeated our analysis using a

‘lowest common denominator’ (LCD) approach in which we

used P as proxy for G for all datasets and only considered

linear selection gradients. There were 11 studies that were

excluded from this analysis because no P matrix data were

available. The results using the best-available data and the

LCD data were similar.
3. RESULTS
(a) Do observed covariances affect the rate

of adaptation?

The distribution of observed L-values is shown in figure 1.

There is a clear mode corresponding to the values close to

LZ0 (i.e. RZ1). In many of datasets we examined, the

covariances did not alter the rate of adaptation by more
Proc. R. Soc. B (2009)
than 10 per cent in either direction. However, there were

some examples with much larger effects. In 12/45 (27%)

of studies, the patterns of covariance reduced the rate

of adaptation by more than 30 per cent. In 7/45 (16%) of

studies, the patterns of covariance increased the rate of

adaptation by more than 30 per cent. The geometric mean

value ofR over all of the studies is �RZ0:89 (i.e. �LZK0:05),

indicating that covariance patterns, on average, reduce the

rate of adaptation by 11 per cent. Using the LCD data

(figure 1b), �RZ0:91 ( �LZK0:04).

R provides some insight to the relationship between G

and b with respect to the rate of adaptation. As discussed

above, basic quantitative genetics makes no prediction

with respect to this relationship but subsequent evolution-

ary perspectives predict particular types of relationships

between G and b to evolve such that R will tend to be

negative or positive.

We tested whether properties of the observed distri-

bution of R values (mean and variance) differ from that

expected when there is no relationship between G and b

using the following approach. We paired each of our

observed G-matrices (or P-based approximations of G)

with randomly generated b vectors and calculated a

pseudo- �R value. Each random b was scaled to be the

same length as the corresponding observed b. We repeated
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this process 5000 times to generate a distribution of

pseudo- �R values. (For simplicity, we always used the

observed g values in creating these pseudo- �R values

because g values were missing or incomplete in most

studies and g will tend to be much less important than b

with respect to R unless nonlinear selection is quite strong.

We also performed all of these analyses assuming no

nonlinear selection and results were similar.) Our

observed �R was not significantly different from that

distribution of pseudo- �R values; pZ0.83. We observed a

qualitatively similar result using the LCD data; pZ0.88.

The small mean effect of covariances ( �RZ0:89 or
�LZK0:05) occurs because large positive values of L are

balanced by large negative values rather than because all

values are close to zero. We tested whether the observed

variance in L was different from what would be expected

by chance. Our observed variance in L was not

significantly different from expected when our observed

G matrices were paired with randomly generated b vectors

rather than our observed b vectors ( p!0.24; p!0.35 for

LCD data). In summary, neither the mean nor the

variance of our observed distribution was different from

expected by chance.
evenness of eigenvalues of G, El

0 0.2 0.4 0.6 0.8 1.0
m

Figure 2. Assessing the potential for covariances to affect the
rate of adaptation. (a) The evenness of selection, Eb, is plotted
against AZjlog(R)j. The correlation between Eb and A is
positive (rZ0.24), indicating that when selection is more
evenly distributed across traits, covariances are more likely to
affect the rate of adaptation. (b) The evenness of the
eigenvalues of the G matrix, El, is plotted A. The negative
correlation (rZK0.71) confirms that the rate of adaptation is
more likely to be altered in cases where correlations cause
genetic variation to be more abundant in some directions than
others (El/1). See text for details.
(b) The potential for covariances to affect the rate

of adaptation

While there is little evidence that the observed covariances

affect the rate of adaptation, they do not address whether

the observed covariances or selection gradients have the

potential to affect the rate of adaptation (i.e. Rs1). Two

necessary (but not sufficient) conditions for correlational

structure to affect adaptation are that: (i) traits must be

correlated and (ii) selection must act upon multiple traits.

Below, we describe and verify the usefulness of an

approach for quantitatively assessing these conditions,

and then apply this approach to the data gathered from our

literature survey.

It is possible for either selection or the covariances

between traits to be structured in a way that there is little

potential for covariances to affect the rate of adaptation.

For example, if selection is primarily on a single trait (or on

a low proportion of traits), then all (or most) covariances

will be of little importance (i.e. most possible sets of

correlations would have little effect on R with such

selection). Conversely, when the strength of selection is

more evenly distributed across traits then there should be

high potential for covariances to affect the rate of

adaptation. Thus, we would expect that the potential for

a specified pattern of directional selection to be affected by

the pattern of covariances to depend on the evenness in

selection across traits. Evenness of b can be calculated

analogously to the Shannon–Wiener index for species

diversity and evenness

Eb ZK
Xn

iZ1

~bi lnð ~biÞ

lnðnÞ
; ð3:1Þ

where ~biZ j bi j =
P

j j bj j is the magnitude of directional

selection on trait i relative to the total amount of

directional selection on all traits. For the calculations

involving Eb (and El described below), selection estimates

and G were scaled such that the traits were measured on

scale where the genetic variances of all traits were unity.
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The evenness of b, Eb, should be positively correlated

to A where AZjLjZjlog(R)j. (Recall that if covariances

have a strong effect on the rate of adaptation, Rs1 and

Ls0, and jLj will be larger for cases in which correlations

have a strong effect on the rate of adaptation, regardless of

the direction of that effect.) As expected, there is a positive

correlation between Eb and A, rZ0.24 (figure 2a).

The second necessary condition for covariance

structure to affect the rate of adaptation is that traits

must covary. If traits are very weakly correlated, then there

would be little potential for these correlations to affect the

rate of adaptation, regardless of the nature of selection. We

can get some sense of the overall strength of correlational

structure by examining the eigenvalues of the genetic

correlation matrix (i.e. G with all traits scaled to have unit

variances). When traits are scaled such that the genetic

variance in each trait is unity, the n eigenvalues (l) for an

n-dimensional G matrix will all be equal if there are no

genetic correlations. (The vector of eigenvalues is

represented by l.) If traits are correlated, then there will

be more variation in some multivariate directions than in

others, and the eigenvalues will differ. As we have done

with b, we can measure the evenness of eigenvalues as

El ZK
Xn

iZ1

~li lnð ~liÞ

lnðnÞ
; ð3:2Þ
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where ~liZ j li j =
P

j j lj j . Low values of El occur when

correlations exist such that there is more variance in some

directions of multivariate space than others, while high

values of El suggest that genetic variance is evenly

distributed among the measured traits. As expected,

there is a negative correlation between El and A,

rZK0.71 (figure 2b).

The results above confirm that the evenness of b and G

(Eb and El) are useful measures of the potential for a given

b or a given G to affect R. We assessed whether our

datasets had less potential to show values of R different

from unity than expected by chance by evaluating the

mean evenness of bs. The mean evenness of bs in our

datasets was �EbZ0:83. This value was not significantly

different from the mean evenness value obtained from

randomly generated bs ( p!0.74, i.e. pseudo �Eb values

were calculated from 5000 sets of randomly generated bs

of equal dimensionality to the original datasets; the

frequency of these pseudo-values that were larger than

our observed value of �EbZ0:83 was 1850/5000). In

principle, one could perform an analogous test on �El but it

is unclear what biological model could be used for

generating the random G matrices required to create the

null distribution.

It should be noted that estimated values of El will be

downwardly biased because sampling error causes esti-

mated eigenvalues to be overdispersed. This bias will be

small for phenotypic correlation matrices estimated from

moderate sample sizes but could be quite large for genetic

correlation because of the high sampling variance. In

general, evenness values should be used only as a heuristic

for thinking about the potential of a G matrix to cause

constraint and should be regarded with caution given the

bias in their estimation.

Alternatively, the potential for a specified G matrix to

affect the rate of adaptation can be assessed in a different

way that does not rely on the evenness of eigenvalues.

Matrix theory shows that the ratio x
T
Ax/xT

Bx must lie

between the minimum and maximum eigenvalues of

BK1A, where x is a vector and A and B are matrices

(Gantmakher 1960, p. 318). If selection is linear, we can

write our ratio of interest as RZbTGb/bTG�b, where G� is

G with the covariances set to zero. Thus, R must lie

between the minimum and maximum eigenvalues of M,

where MZ(G�)K1G. (Note that we can also express this

matrix as MZsK1Cs where s is a diagonal matrix

containing the square roots of the genetic variances (i.e.

genetic standard deviations) and C is the genetic

correlation matrix. Thus, the elements of this matrix are

MijZrij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gjj =Gii

p
, where rij is the genetic correlation

between traits i and j.) The bounds for R given by the

range of eigenvalues of M give the minimum and

maximum potential effect of covariances on the rate of

adaptation for any possible pattern of linear selection on a

G matrix of interest.
4. DISCUSSION
Evolutionary biologists have been interested in genetic

covariances because they can alter the response to

selection from the simple univariate prediction. A genetic

correlation provides a pathway that allows the evolution of

one trait to be influenced by selection acting on another

trait. Such correlations can either facilitate or restrain the
Proc. R. Soc. B (2009)
rate of adaptation. Our primary goal was to provide a

metric for quantifying the net effect of all the correlations

among a set of traits, holding the trait variances constant.

For any pair of traits, zi and zj, it is simple to determine

whether the correlation between them will have a positive

or negative effect on the rate of adaptation. If the

correlation is of the same (opposite) sign as the product

of the directional selection gradients, bi!bj, the effect of

the correlation will be positive (negative). Using this

approach, one can consider the qualitative effect of each

correlation individually (Etterson & Shaw 2001).

However, this approach does not provide a quantitative

measure of the importance of the correlation. Nor does it

allow the joint effects of all correlations among a set of

traits to be assessed simultaneously.

When n traits are under consideration, there will be

n(nK1)/2 genetic correlations. Some of these may

facilitate the rate of adaptation and while others may

constrain it not all of them will affect the rate of adaptation

equally. Correlations that are large in magnitude or involve

traits that are under strong selection, or both, will be more

important than correlations that are weak in magnitude

and/or involve traits that are only weakly selected. The

metric R provides the net effect of all correlations,

appropriately weighting important ones more so than

unimportant ones. R measures effect of the correlations in

terms of fitness, allowing for comparisons to be made

between different populations or different species.

Although R quantifies the net effect of all correlations,

it is also possible to slightly modify this approach to

identify individual traits whose correlations to other traits

are particularly important in affecting the rate of

adaptation. For example, suppose we are interested in

assessing the extent to which trait j alters the rate of

adaptation through its genetic correlations with other

traits. This can be accomplished by calculating

RjZDWCðzÞ=DWC n jðzÞ, where DWC n jðzÞ is the change

in the fitness of the mean phenotype assuming that all

genetic covariances involving trait j are zero. Specifically,

DWC n jðz Þ is calculated from equations (2.3a) and (2.3b)

with DzZGb but with all elements Gij set to zero for isj.

Rj is the ratio of the rate of adaptation with the observed

correlations relative to the predicted rate of adaptation if

trait j was genetically independent from all other traits.

For example, Caruso (2004) measured selection and G

on seven floral traits in Lobelia siphilitica. Using the data

from the CERA population in 2000, we find that RZ0.41,

i.e. the predicted rate of adaptation is only 41 per cent of

what it would be in the absence of any genetic correlations.

Using the method above to calculate Rj, we can ask how

each trait individually affects the rate of adaptation

through its correlations with other traits. For the traits:

(i) lobe length, (ii) lobe width, (iii) corolla length,

(iv) corolla width, (v) stigma–nectary distance, (vi) stigma

exsertion, and (vii) flower number, the corresponding

values are R1Z1.00, R2Z1.01, R3Z0.59, R4Z0.96,

R5Z0.34, R6Z1.35, R7Z0.68. These results reveal that

correlations involving lobe length, lobe width or corolla

width have little effect on the rate of adaptation under this

selection regime. However, the predicted rate of adapta-

tion is reduced relative to what it would be if corolla

length, stigma–nectary distance or flower number were

genetically independent of other traits (i.e. correlations

involving any of these three traits tend to constrain the rate
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of adaptation). By contrast, correlations involving stigma

exsertion tend to facilitate the rate of adaptation.

One could extend this approach to examine the effect of

correlations between sets of traits by calculating DzZGb

after setting all covariances between traits from different trait

suites to zero. For example, consider a hypothetical study

involving four traits. The first trait suite (e.g. floral traits)

comprise traits 1 and 2, whereas traits 3 and 4 belong to a

separate trait suite (e.g. vegetative traits). To examine the

effect of correlations between floral and vegetative trait suites

one would set G13ZG14ZG23ZG24Z0 to do the calcu-

lation. Analysis of data in this way may serve as a useful

approach to study the phenotypic integration and

modularity (Cheverud 1982; Arnold 1992).

In different contexts, other authors have used other

measures to consider how correlations affect evolution.

Schluter (1996) measured the angle between the major

axis of genetic variation gmax (the leading eigenvector of

the G) and major axis of divergence among species within

lineages having undergone adaptive radiations. He found

that this angle was smaller than expected by chance,

leading him to infer that patterns of correlations bias

patterns of long-term evolution (ca 4 Myr). McGuigan

et al. (2005) applied a related but more advanced

approach with a set of fish populations that had repeatedly

adapted to lake and stream environments. They found that

the divergence of traits that were likely to be under strong

selection showed less evidence of being affected by

correlations than traits that were less likely to be targets

of strong selection.

Blows et al. (2004) examined the relationship between

G and selection by measuring the angle between b and the

projection of the ‘major’ subspace of G onto b, and by

comparing the angles between the axes of major subspaces

of G and g. As with our metric, this approach is intended

to give a sense of the extent to which patterns of genetic

variation constrain or facilitate evolution. This approach

can be useful when applied to systems where the biology is

well understood and the results are carefully interpreted.

However, it has several limitations. First, the resulting

metrics are not simple to understand or interpret. Second,

the choice of principal component axes used to define the

subspaces is somewhat arbitrary, and not all of the

principal component axes can be used (Blows et al.

2004). Third, it is possible for this approach to give

misleading results when only one or a few of the correlated

traits are under selection unless results are interpreted

with great caution. For example, if arm and leg length are

strongly genetically correlated but only arm length is

under selection, there will be a large angle between b and

the gmax (the one-dimensional subspace of G). A large

angle is interpreted as a mismatch between selection and G.

However, in this example, the correlation between the traits

is meaningless with respect to the rate of adaptation because

only arm length is under selection.

Our metric R is intuitively meaningful and can be easily

calculated and interpreted. This is because R measures the

effects of correlations in terms of fitness. However, this

property also limits the usefulness of R in some respects.

In the arm/leg length example above, we would find that

RZ1 (or LZ0), correctly indicating that the correlation

between arm and leg length has no effect on the rate of

increase in fitness. However, this correlation is clearly of

great importance with respect to understanding the
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evolution of leg length. In this example, leg length, a

neutral character evolves because it is genetically corre-

lated to a selected trait (arm length). Because R measures

effects with respect to fitness, it does not describe how

correlations affect the phenotypic evolution of individual

traits. For this reason, we advocate that R be used in

addition to, rather than instead of, other ways of

understanding how correlations affect evolution.

Some particularly interesting approaches have been

recently described by Hansen & Houle (2008). Building

from earlier work (Houle 1992; Schluter 1996; Hansen

et al. 2003), these authors have suggested several measures

for quantifying constraint and evolutionary potential in

multidimensional space. Evolvability is a standardized

measure of the amount of genetic variation in the direction

of selection, b. Conditional evolvability gives the amount

of genetic variation in this direction assuming that

movement in any other direction is strongly prohibited

by stabilizing selection, i.e. it is the amount of variation

along b that is independent of variation in other directions.

These measures quantify the combined effects of trait

variances as well as the correlations, and in this sense

provide a more complete picture of genetic constraint. By

contrast, our goal was to isolate the effect of genetic

covariances. The simple logic of our metric could be

applied to their elegant measures to determine how

correlations affect conditional evolvability. This can be

easily accomplished by calculating the ratio of the

evolvability (or conditional evolvability) when the genetic

correlations are set to zero to the actual evolvability (or

conditional evolvability) using the observed G. In fact,

calculating this ratio for evolvability will be equivalent to the

ratio R discussed here if there is no nonlinear selection.

One important limitation of our approach is that the

value of R depends on how traits are defined. This

dependency on trait definitions is an inherent part of our

question: how do the genetic correlations among a

specified set of traits affect the rate of adaptation? If traits

are redefined along an alternative set of axes in the same

multidimensional space (i.e. an orthogonal transformation

to a new coordinate system), then there will be a new set of

genetic correlations among these newly defined traits. The

value of R can be re-calculated to measure how these

correlations affect the rate of adaptation, but the new value

of R will be different from the original since the new

R refers to a different set of correlations. While we can

measure R with respect to any defined set of traits, is it

meaningful to do so?

A reasonable argument can be made that the way in

which traits are defined is somewhat arbitrary and that

natural selection may view traits in a very different way

than humans do (see the target review by Blows (2007)

and ensuing commentaries for further discussion of trait

identification in studies of multivariate evolution). Even

though selection may perceive them differently, the traits

chosen for study usually are significant to those biologists

measuring them. Often, something is known about the

function of a trait or a trait is meaningful to how the

observer perceives the study organism, e.g. arm and leg

length have more meaning than two alternate traits

defined by orthogonal linear combinations of these traits.

Moreover, some aspects of organisms need to be measured

or chosen for measurement by biologists in the first place

before any coordinate or orthogonal transformations can
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take place, suggesting that escaping human perceptual

biases is likely to be quite difficult or impossible. Biologists

identify measurable traits and are often interested in how

the relationships between these measurable traits affect

evolution. Our metric helps to understand this relation-

ship better. Our metric is not designed to show selection

views on an organism in multivariate space. (It should

be noted that the evolutionary hypotheses discussed

previously for the average value of R should be reasonably

robust to how traits are defined. For example, if genetic

variation is exhausted in the direction of selection, genetic

correlations should be constraining regardless of the

coordinate system used.)

In addition to the metric R that requires information on

both selection and G, we have proposed alternative

perspectives from which the potential for correlations to

affect the rate of adaptation can be assessed. First, we can

ask whether the rate of adaptation under a specified

pattern of selection is likely to be sensitive to correlations

by measuring the evenness of selection. If the evenness of

selection is high across a set of traits, then there will be

high potential for a random set of correlations among

these traits to affect the rate of adaptation. This metric

depends only on selection and thus can be measured even

in the absence of any information on G.

We can also ask whether the covariance structure is

such that covariances are likely to affect the rate of

adaptation. This can be assessed by the evenness of the

eigenvalues of the G. When the evenness of eigenvalues is

low, it means that correlations cause genetic variation to be

reduced in some directions. Consequently, there is

potential for covariances to affect the rate of adaptation

if selection occurs in these directions. Measuring potential

from only this perspective requires an estimate of G.

However, estimates of the evenness of eigenvalues should

be regarded with caution because of the downward bias in

their estimation. Alternatively, we can avoid relying on the

estimates of the evenness of the eigenvalues of G and

instead determine the minimum and maximum possible

values of R for a given G from the range of eigenvalues of

MZsK1Cs.

Our survey of the literature revealed a distribution of

L-values centred close to zero. Most datasets were only

weakly affected by correlations. There were examples of

datasets where correlations were fairly strongly constrain-

ing the rate of adaptation but these were balanced by

datasets where correlations were facilitating the rate of

adaptation. Neither the mean nor variance of L was

significantly different from that expected by chance.

As stated above, basic quantitative genetics theory

makes no prediction about whether correlations should

tend to constrain or facilitate the rate of adaptation.

However, there are several secondary sets of ideas that do

make predictions in this regard (e.g. exhaustion of

variation in the direction of selection, long-term shaping

of mutational/developmental pathways to facilitate the

generation of variation along selected directions, con-

dition-dependence of strongly-selected traits). In light of

these hypotheses, there are at least three different ways to

view our result that correlations seem to have little or no

effect on average. First, it is possible that none of the three

hypotheses are important. Second, all three hypotheses

may be important in individual cases but none of them are

sufficiently common or strong to generate a clear signal
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across all the datasets. The different hypotheses were

suggested in the context of different types of traits (e.g.

morphological traits versus life-history traits and/or

sexually selected traits) but our dataset is not large enough

to meaningfully partition these studies into different trait

types for separate analyses. Third, our data may be too

noisy to perform a reasonable test. As described above and

in the electronic supplementary material, our data are far

from perfect. Both estimates of selection and G are

notorious for their large confidence intervals. Moreover,

we had to make a number of ‘approximations’ (e.g. using

P as an approximation to G) to obtain a reasonable

number of studies for examination. Even with all these

levels of uncertainty, the estimates we used for selection

and G should be closer to the true values than randomly

chosen estimates would be. If there was a strong tendency

for R to differ from unity, we should have been able to

detect it through the noise. However, we have no way to

assess the power of our test; it is possible that there is a

fairly strong effect of correlations on average but our data

are too noisy to detect it. Regardless, we could not know

whether a sufficiently strong effect existed without

attempting to look for it.

Genetic correlations have intrigued evolutionary

biologists since it became well-understood that corre-

lations affect how traits respond to multivariate selection.

Genetic correlations became the perspective by which

evolutionary quantitative geneticists considered const-

raint. While some have focused on the idea of absolute

constraint, it is more useful to view constraint quantit-

atively rather than qualitatively. The metric R does so with

respect to fitness. Our literature survey reveals examples

with strong and weak constraint (R!1) as well as cases of

negative constraint, i.e. patterns of correlations that

facilitate the rate of adaptation (RO1). Though the

average effect of correlations was not significantly different

from expected by chance, the available data are noisy and

we urge caution in interpreting our results. Nonetheless,

we can say that our results provide no support for the

emphasis on constraint that seems to permeate the

literature on genetic correlations.
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