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Abstract
Methylation occurs frequently at 5′-cytosine of the CpG dinucleotides in vertebrate genomes;
however, this epigenetic feature is rarely observed in CpG islands (CGIs) or CpG clusters in the
promoter regions of genes. Aberrant methylation of the promoter-associated CGIs might influence
gene expression and cause carcinogenesis. Because of the functional importance, multiple algorithms
have been available for identifying CGIs in a genome or a sequence. They can be categorized into
the traditional algorithms (e.g., Gardiner-Garden and Frommer (1987), Takai and Jones (2002), and
CpGPRoD (2002)) or statistical property based algorithms (CpGcluster (2006) and CG cluster
(2007)). We reviewed the features of these algorithms and evaluated their performance on identifying
functional CGIs using genome-wide methylation data. Moreover, identification of CGIs is an initial
step in many recent studies for predicting methylation status as well as in the design of methylation
detection platforms. We reviewed the benchmarks and features used in these studies.
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CpG dinucleotides have been commonly observed to be only ∼20-25% as what expected in
most sequenced mammalian genomes [1,2]. Such a great deficit is attributed to the
hypermutability of methylated CpGs to TpGs/CpAs [3]. It has been estimated ∼80% of CpGs
are methylated in mammalian genomes [4]. In contrast, CpGs in GC-rich regions such as CpG
clusters and CGIs are usually unmethylated, which is an important feature in the promoter
regions of genes and for the regulation of gene expression [4]. For example, hypermethylation
of promoter-associated CGIs in tumor suppressor genes were found to cause carcinogenesis
[5]. Although most promoter-associated CGIs remain unmethylated [6], recent studies revealed
a sizable fraction of CGIs might be fully methylated in normal cells [6-9].
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Multiple algorithms for identifying CGIs
Multiple algorithms [10-14] have been developed for CGI identification and have been applied
in numerous studies. They could be categorized into two groups: the traditional algorithms that
are based on three sequence parameters (length, GC content, and ratio of the observed over the
expected CpGs (ObsCpG/ExpCpG)) and the algorithms based on statistical property in a
sequence without imposing the three criteria in the traditional algorithms.

Among the traditional algorithms, the first was proposed by Gardiner-Garden and Frommer in
1987 [10] and its criteria are: length > 200 bp, GC content > 50%, and ObsCpG/ExpCpG > 0.60.
Many repeat elements such as Alu repeats that are abundant in the genomes also satisfy these
criteria. To avoid such problem, only the non-repeat portion of the genome sequences has been
applied for searching CGIs in a genome [15]. This algorithm was later revised by Takai and
Jones, who used more stringent criteria: length ≥ 500 bp, GC content ≥ 55%, and ObsCpG/
ExpCpG ≥ 0.65 [11], and by Ponger and Mouchiroud [12], who used length > 500 bp, GC
content > 50%, and ObsCpG/ExpCpG > 0.60. The stringent criteria in Takai and Jones' algorithm
largely solved the repeat problem [16]. A summary of the features is shown in Table 1.

Recently, two algorithms, CpGcluster and CG clusters, were developed based on statistical
property of a sequence without imposing a base compositional a priori assumption. CpGcluster
detects clusters of CpGs by statistical significance based on the physical distance between
neighboring CpGs on a chromosome assuming that the distance distributions between
neighboring CpGs differ in CGIs from bulk DNA sequences [13]. CG clusters are defined as
CG-dense fragments detected based on empirical species-specific benchmarks, for example, a
minimum of 27 CpG dinucleotides in a DNA sequence fragment of no more than 531 bp in
length in the human genome [14]. The details of these benchmarks are shown in Table 1.

Our extensive comparison of Takai and Jones' algorithm with CpGcluster revealed a high false
positive rate in CpGcluster, which largely limits its utility in searching promoter-associated
CpG clusters in vertebrate genomes [17]. Here, we further compared Takai and Jones' algorithm
with CG clusters developed by Glass et al. [14]. We found that their species-specific
benchmark, for example, a minimum of 27 CpG dinucleotides in a DNA fragment ≤ 531 bp
for the human, was approximate to the three sequence parameters in Takai and Jones' algorithm.
For example, when we examined their length distribution in the human genome, only 431
(1.0%) out of 41,487 human CG clusters were shorter than 500 bp, the minimum length in
Takai and Jones' algorithm. Compared to CG clusters, Takai and Jones' algorithm had a slightly
higher proportion of promoter-associated CGIs (35.0% versus 32.3%, detailed data not shown).
Moreover, identification of CG clusters is not as straightforward as that of CGIs in Takai and
Jones' algorithm.

Evaluation on methylation status in the promoter-associated CGIs
Performance of a CGI identification algorithm relies on whether its identified CGIs tend to be
associated with promoter regions and to be unmethylated or hypomethylated. Recently, we
[17] evaluated the performance of Takai and Jones' algorithm and CpGcluster using genome-
wide methylation data generated in Weber et al. [6]. The evaluation based on sensitivity (SN,
the chance of identifying CGIs in hypomethylated promoter regions), specificity (SP, the
chance of not identifying CGIs in hypermethylated promoter regions), and correlation
coefficient (CC, the extent of agreement between the SN and SP) suggested that Takai and
Jones' algorithm had overall better performance. Here, we extended this evaluation to the five
major algorithms in Table 1. All the algorithms had high sensitivity but moderate specificity
(Table 1). When we compared the overall performance, Takai and Jones' algorithm had the
highest correlation coefficient (CC = 0.48), suggesting its best performance on methylation
status. CpGProD and CG clusters had similar CC values with Takai and Jones', as both
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algorithms utilize similar sequence information (see Table 1 and the above section). More DNA
methylation status data at single base resolution, which is now available only in a small genome
[18] or some specific regions in mammalian genomes [8,19], will provide further evaluation
on the performance of these algorithms.

Application of CGIs in predicting and detecting methylation profiling
DNA methylation studies in genomic regions, chromosomes and genomes have accelerated
recently thanks to the rapid advancement of high throughput technologies [20]. Using
experimentally verified DNA methylation data, investigators predicted methylation status
based on sequence attributes around CGIs such as DNA sequence patterns, repeats,
transcription factor binding sites (TFBSs) and predicted DNA structure [21-24]. These studies
greatly improved our understanding of the inherent relationship between CGIs, DNA
composition (sequence, repeats and structure) and methylation status. Table 2 summarizes the
algorithms for identifying CGIs in predicting DNA methylation status with some other genomic
factors. For example, Feltus et al. (2003) used both Gardiner-Garden and Frommer's and Takai
and Jones' algorithms to identify CGIs [21]. Das et al. (2006) used Takai and Jones' algorithm
[22], while Fang et al. (2006) and Bock et al. (2006) applied less stringent criteria than Takai
and Jones' algorithm: length > 400 bp, GC content > 50%, and ObsCpG/ExpCpG > 0.60 [23,
24]. Because sensitivity in identifying hypomethylated CGIs is likely high (Table 1),
combining other information such as sequence attributes could increase specificity, as shown
in these studies.

CGIs are regions of interest for detecting methylation profiling in large-scale experiments using
different platforms. Interestingly, most studies used the annotation of CGIs available in the
popular UCSC Genome Browser (http://genome.ucsc.edu/), which is based on Gardiner-
Garden and Frommer's algorithm [25-30]. Takai and Jones' algorithm was used in other study
[31]. Furthermore, investigators often modified these three sequence parameters in the
traditional algorithms for their specific designs (Table 2) [6,8,32,33]. Although definition of
CGIs varied in these studies, all of them focused on CpG-rich regions. While a single-base
resolution provides the most useful information, Bock et al. (2008) suggested that, considering
the currently available array-based platforms, it might be sufficient to measure average
methylation level in the CpG-rich regions [34]. Importantly, no statistical property based
algorithms has been applied in such methylation studies yet.

In summary, DNA methylation studies have greatly accelerated during the past three years and
are expected to grow even faster due to the rapid advancement of high throughput technologies
such as microarray and next-generation sequencing [35]. This review provides useful
information and guidance on CGI identification algorithms for gene and methylation
prediction, gene feature analysis, and epigenetic and epigenomics studies.
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