Skip to main content
. 2009 May 15;4(5):e5522. doi: 10.1371/journal.pone.0005522

Figure 3. Mutations of XDpr1a or XDsh that block their mutual interaction also block CKIδ-mediated XDpr1 phosphorylation.

Figure 3

A. Deletion or mutation of XDpr1a's PDZ-B domain blocks CKIδ-mediated XDpr1a phosphorylation. Deletion of the leucine zipper domain of XDpr1a (ΔLZ), which does not affect its ability to bind XDsh, does not affect the ability of XDpr1a to be phosphorylated by CKIδ, as exhibited by a mobility shift. XDpr1a containing a deletion (ΔMTTV) or a point mutation (MNTV) of its PDZ-B domain is not phosphorylated by CKIδ. The braces in lanes 2 and 4 bracket phosphorylated XDpr1a and ΔLZ, respectively. B. An Asn317Thr Mutation in XDsh's PDZ domain abrogates its promotion of XDpr1a phosphorylation. ***β-βXDsh, which contains Gln272Ala, Ser273Ala, and Glu275Ala mutations in a PDZ domain loop outside of the PDZ-B binding domain, promotes XDpr1a phosphorylation by CKIδ at a level similar to that of wild-type XDsh, while *αXDsh, which contains an Asn317Thr mutation in the PDZ-B binding domain within its PDZ domain, does not.