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Abstract
Mitochondria are the powerhouse of the cell. Their primary physiological function is to generate
adenosine triphosphate through oxidative phosphorylation via the electron transport chain. Reactive
oxygen species generated from mitochondria have been implicated in acute brain injuries such as
stroke and neurodegeneration. Recent studies have shown that mitochondrially-formed oxidants are
mediators of molecular signaling, which is implicated in the mitochondria-dependent apoptotic
pathway that involves pro- and antiapoptotic protein binding, the release of cytochrome c, and
transcription-independent p53 signaling, leading to neuronal death. Oxidative stress and the redox
state of ischemic neurons are also implicated in the signaling pathway that involves
phosphatidylinositol 3-kinase/Akt and downstream signaling, which lead to neuronal survival.
Genetically modified mice or rats that overexpress or are deficient in superoxide dismutase have
provided strong evidence in support of the role of mitochondrial dysfunction and oxidative stress as
determinants of neuronal death/survival after stroke and neurodegeneration.
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Introduction
Mitochondria are central integrators for and transducers of apoptotic signals in neurons.
Mitochondria physiologically generate adenosine triphosphate through oxidative
phosphorylation via the electron transport chain. Reactive oxygen species (ROS) generated
from mitochondria mediate molecular signaling, such as p53. In mitochondria-dependent
apoptosis, molecular signaling returns to mitochondria, then triggers the release of critical
apoptotic activators and effectors of cell death, such as cytochrome c or apoptosis-inducing
factor, from the mitochondrial intermembrane space.

p53 is the master regulator of cell death by inducing apoptosis (Schmitt et al. 2002). p53
encodes a sequence-specific transcription factor that controls apoptosis-related gene
expression. Bcl-2-associated X protein (Bax) (Miyashita and Reed 1995), BH3 interacting
domain death agonist (Bid) (Wang et al. 1996; Sax et al. 2002), NADPH oxidase activator 1
(Noxa) (Oda et al. 2000b), p53 acetate-induced protein 1 (p53AIP1) (Oda et al. 2000a), and
p53-upregulated modulator of apoptosis (PUMA) (Nakano and Vousden 2001; Yu et al.
2001), all of which are products of p53, act directly on mitochondria and induce apoptosis.
p53-induced protein with a death domain (PIDD), which is also a product of p53, activates
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caspase-2, resulting in the activation of mitochondria-dependent apoptosis (Tinel and Tschopp
2004; Berube et al. 2005; Ren et al. 2005; Seth et al. 2005). Moreover, p53 mediates apoptosis
in a transcription-independent manner (Chipuk et al. 2004) (Fig. 1).

Recent findings demonstrate that p53 is involved in neuronal death that occurs with stroke and
neurodegeneration (Crumrine et al. 1994; Li et al. 1994; Tomasevic et al. 1999; Saito et al.
2005; Endo et al. 2006a). Overexpression of copper/zinc-superoxide dismutase (SOD1)
downregulated PUMA (Niizuma et al. 2009), suggesting a functional relationship between
oxidative stress and the p53 signaling pathway. Here, we discuss the role of mitochondrial
dysfunction and oxidative stress as determinants of neuronal death after stroke and
neurodegeneration, focusing on Bax, PUMA, PIDD, transcription-independent p53
translocation, and SOD1 overexpression.

Bax signaling pathway
Bax has an extensive amino acid homology with Bcl-2. Bax homodimerizes and forms
heterodimers with Bcl-2 (Oltvai et al. 1993). Cell fractionation and confocal microscopy
showed that Bax localized in the cytosol of most cells, although it has the C-terminal putative
transmembrane domain, similar to that of Bcl-2 (Hsu et al. 1997). With apoptotic stimuli, Bax
is post-transcriptionally activated, then it oligomerizes and translocates to mitochondria.
Mitochondrial Bax triggers cytochrome c release from mitochondria (Gross et al. 1998; Fiskum
et al. 1999).

Bax is known to have roles in neuronal death. Bax mRNA was upregulated after transient
global cerebral ischemia (tGCI) (Honkaniemi et al. 1996). Bax protein levels increased after
tGCI (Krajewski et al. 1995) and focal cerebral ischemia (FCI) (Gillardon et al. 1996). Recent
studies indicate that Bax transcription was regulated by p53, and translocation was mediated
by c-Jun N-terminal kinase (JNK) in focal ischemia and experimental Parkinson’s disease
(Okuno et al. 2004; Perier et al. 2007). Bax interacts with truncated Bid, Bim, or PUMA, which
triggers cytochrome c release in neurons (Desagher et al. 1999; Okuno et al. 2004; Niizuma
et al. 2009).

In summary, apoptotic stimuli cause Bax to increase and translocate to mitochondria.
Mitochondrial Bax interacts with other Bcl-2 family proteins, which triggers cytochrome c
release (Fig. 1).

PUMA signaling pathway
PUMA was originally identified as a direct target of p53 with two putative p53 binding sites
(Nakano and Vousden 2001; Yu et al. 2001). PUMA has been reported to be a strong inducer
of apoptosis. In an in vitro study, PUMA expression caused rapid apoptosis (Yu et al. 2001)
and PUMA inhibition by antisense oligonucleotide reduced apoptosis (Nakano and Vousden
2001). PUMA induced apoptosis through a mitochondria-dependent pathway (Nakano and
Vousden 2001; Yu et al. 2001).

Recent reports have demonstrated that PUMA induces apoptosis by interacting with anti- or
pro-apoptotic proteins (Nakano and Vousden 2001; Yu et al. 2001; Chen et al. 2005; Kim et
al. 2006; Steckley et al. 2007). PUMA can interact with multiple Bcl-2 family members through
the BH3 domain (Chen et al. 2005). It localized to mitochondria and interacted with both pro-
apoptotic Bax (Kim et al. 2006; Steckley et al. 2007) and anti-apoptotic Bcl-2 or Bcl-XL
(Nakano and Vousden 2001; Yu et al. 2001) through a BH3 domain, followed by cytochrome
c release and caspase activation.
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PUMA is also known to have important roles in neuronal apoptosis. Its overexpression induced
apoptosis in primary neurons (Cregan et al. 2004), and PUMA nullizygous neurons are resistant
to araC-induced apoptosis (Wyttenbach and Tolkovsky 2006). PUMA mediated oxidative
stress-induced neuronal apoptosis through cytochrome c release and caspase activation in a
primary culture of mouse neurons (Steckley et al. 2007). It also mediated camptothecin-
induced neuronal death in a primary mouse neuron culture (Uo et al. 2007). PUMA regulated
neuronal death after tGCI (Reimertz et al. 2003; Niizuma et al. 2009) (Fig. 2).

In summary, PUMA is induced by p53, and interacts with pro-apoptotic and anti-apoptotic
Bcl-2 family proteins, resulting in cytochrome c release (Fig. 1).

PIDD signaling pathway
PIDD was also identified as a target of p53 (Lin et al. 2000). Since PIDD overexpression in
p53-deficient human cell lines induces cell-cycle arrest and apoptosis, PIDD is considered to
act downstream of p53. Full length PIDD is constitutively cleaved into an N-terminal fragment
and a C-terminal fragment (PIDD-C) by autoproteolysis. PIDD-C is further cleaved into PIDD-
CC by autoproteolysis (Tinel and Tschopp 2004; Tinel et al. 2007).

Evidence for the role of PIDD-CC in the activation of caspase-2 has been accumulating (Tinel
and Tschopp 2004; Berube et al. 2005; Ren et al. 2005; Seth et al. 2005). PIDD-CC, receptor-
interacting protein-associated ICH-1/CED-3 homologous protein with a death domain
(RAIDD), and procaspase-2 form a large protein complex, which is referred to the PIDDosome,
similar to the caspase-9—activating apoptosome complex (Tinel and Tschopp 2004). PIDD
interacts with RAIDD through the death domain, and RAIDD interacts with caspase-2 through
the caspase recruitment domain, resulting in the crystal structure of the PIDDosome (Park et
al. 2007). Procaspase-2 was schematically dimerized and activated by the PIDDosome (Park
et al. 2007). Similar to the caspase-9—activating apoptosome complex, the PIDDosome
regulates stress-induced apoptosis (Tinel and Tschopp 2004).

In contrast to PIDD-CC, PIDD-C is thought to have an anti-apoptotic role. In a recent study,
PIDD-C formed a protein complex with a nuclear factor-κB essential modulator and receptor-
interacting protein 1. This activated the transcription factor nuclear factor-κB pathway in
response to genotoxic stress (Janssens et al. 2005).

In neuronal death, PIDD-CC increased after tGCI, followed by caspase-2 activation and Bid
cleavage (Niizuma et al. 2008). Truncated Bid interacts with Bax, exposing the N-terminus of
Bax and inducing its oligomerization followed by release of pro-apoptotic proteins from
mitochondria (Desagher et al. 1999).

In summary, PIDD is transcriptionally induced by p53, then cleaved by autoproteolysis. PIDD-
CC forms the PIDDosome, which activates caspase-2. Caspase-2 cleaved Bid, followed by the
interaction of Bax and truncated Bid, resulting in cytochrome c release (Fig. 1).

Transcription-independent p53 translocation
Most of the effects of p53 are ascribed to its function as a transcription factor. However, reports
have suggested that p53 can also induce apoptosis independently of its transcriptional activity
(Caelles et al. 1994; Bennett et al. 1998; Mihara et al. 2003). In response to certain death
stimuli, a fraction of stabilized p53 rapidly translocates to mitochondria in some cell types
(Marchenko et al. 2000; Mihara et al. 2003; Erster et al. 2004). In p53 null cancer cells,
exogenous p53 targeted to mitochondria induced apoptosis and suppressed colony formation
in a transcription-independent manner (Mihara et al. 2003). Furthermore, endogenous
mitochondrial p53 forms inhibitory complexes with anti-apoptotic Bcl-XL and Bcl-2 proteins,
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which cause cytochrome c release and caspase activation (Mihara et al. 2003). Mitochondrial
translocation of p53 launches a rapid pro-apoptotic response in a transcription-independent
manner that jump-starts and amplifies the slower transcription-dependent response (Erster et
al. 2004). This translocation may be regulated by the Akt-Mdm2 pathway through
monoubiquitylation of p53 (Marchenko et al. 2007).

In neuronal cell death, p53 translocated to mitochondria and interacted with anti-apoptotic Bcl-
XL, followed by cytochrome c release after tGCI (Endo et al. 2006a). Inhibition of p53
translocation caused by a specific dosage of the p53 inhibitor, pifithrin-α, resulted in
neuroprotection of the hippocampal CA1 subregion against cerebral ischemia and reperfusion
(Endo et al. 2006a).

In summary, p53 can induce apoptosis in a transcription-independent manner by interacting
with Bcl-XL after ischemia (Fig. 1).

SOD1 overexpression
Evidence is accumulating in support of the idea that activation of p53 signaling pathways,
which precedes release of pro-apoptotic proteins from mitochondria, can cause apoptosis in
ischemic neurons. However, the upstream events that lead to p53 signaling and neuronal death
are unclear. ROS formation during reperfusion after cerebral ischemia in the mitochondria
appears to be one such event. This is supported by the finding that p53 target genes upregulated
in response to elevated oxidative stress in liver samples (Han et al. 2008). ROS cause DNA
damage, which activates DNA-dependent kinase and ataxia telangiecta protein, resulting in
phosphorylation of p53 at specific serine residues (Nakagawa et al. 1999; Shangary et al.
2000).

Specific scavengers of ROS, such as SOD1, may play a major role in modulating death
signaling. SOD1 is an antioxidant isoenzyme mainly localized in the cytosol that dismutates
superoxide anions to hydrogen peroxide (Fridovich 1975). SOD1 is constitutively present in
all cells (Huang et al. 1999). In animals that overexpress SOD1, cytochrome c release and
neuronal death were highly inhibited after FCI (Kinouchi et al. 1991; Chan 1996; Fujimura et
al. 2000), tGCI (Murakami et al. 1997; Chan et al. 1998; Endo et al. 2006b), and subarachnoid
hemorrhage (Endo et al. 2007). The phospho-Akt survival pathway was significantly
upregulated in SOD1-overexpressing animals compared with wild-type animals (Noshita et
al. 2003; Endo et al. 2006b, 2007). In contrast to the survival pathway, p53 upregulation was
inhibited by SOD1 overexpression after FCI (Saito et al. 2005). Moreover, PUMA upregulation
was inhibited in SOD1-overexpressing animals after tGCI (Niizuma et al. 2009), suggesting
that oxidative stress may modulate pro-survival Akt signaling and pro-death p53 signaling that
determine death or survival of ischemic neurons.

In contrast to SOD1 overexpression, SOD1 homozygous mutants (SOD1-/-) and heterozygous
mutants (SOD1-/+) showed high mortality, increased infarct volume, and greater apoptotic
neuronal cell death after FCI (Kondo et al. 1997). SOD1 deficiency also showed increased
neuronal death after tGCI (Kawase et al. 1999).

These results cumulatively suggest that oxidative stress, known to be generated during
reperfusion following an ischemic event, is associated with cell survival signaling such as Akt,
cell death pathways such as p53, and the determination of subsequent neuronal survival or
death.
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Conclusion
Oxidative stress may regulate p53-dependent transcription, p53 translocation, and pro-survival
Akt signaling through phosphorylation, at least in part. Decreasing oxidative stress by SOD1
overexpression results in neuroprotection. Mitochondrial dysfunction and oxidative stress may
determine neuronal death/survival after stroke and neurodegeneration.
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Fig. 1.
Involvement of p53 signaling after ROS generation. After ROS generation from mitochondria,
p53 transcriptionally generates pro-apoptotic proteins such as Bax, Noxa, p53AIP1, PUMA,
and Bid. These products act directly on mitochondria. Mitochondrial translocation of Bax is
promoted by JNK through transcriptional activation of Bim. Full-length PIDD (PIDD-FL) is
also transcriptionally upregulated by p53. PIDD-CC, a fragment of PIDD-FL cleaved by
autoproteolysis, activates caspase-2 through the formation of the PIDDosome, which precedes
Bid truncation and translocation to mitochondria. Moreover, p53 translocates to the
mitochondrial membrane and activates the mitochondria-dependent apoptotic pathway in a
transcription-independent manner. BH3-only proteins and p53 interact with both pro-apoptotic
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Bax and anti-apoptotic Bcl-XL on the mitochondrial membrane. This interaction causes Bax
oligomerization and activation, which triggers cytochrome c release, leading to neuronal death.
tBid, truncated Bid.
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Fig. 2.
Mitochondrial PUMA upregulation after tGCI. (A) Western blot analysis shows that
mitochondrial PUMA increased 4 and 24 h after tGCI, followed by cytosolic upregulation of
cleaved caspase-9 and cytochrome c release. β-actin and cytochrome oxidase subunit IV (COX
IV) analyses are shown as internal controls. c, control. (B) Coimmunoprecipitation analyses
show that PUMA immunoreactivity precipitated by Bcl-XL or Bax increased after tGCI. Bcl-
XL precipitated by Bcl-XL, and Bax precipitated by Bax were used to show equal precipitation.
IP, immunoprecipitation; IB, immunoblotting. (Data modified from Niizuma et al. 2009.)
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