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ABSTRACT: Our aim was to assess BMC of the hip over 8 yr in prepubertal children who participated in a
7-mo jumping intervention compared with controls who participated in a stretching program of equal duration.
We hypothesized that jumpers would gain more BMC than control subjects. The data reported come from two
cohorts of children who participated in separate, but identical, randomized, controlled, school-based impact
exercise interventions and reflect those subjects who agreed to long-term follow-up (N � 57; jumpers � 33,
controls � 24; 47% of the original participants). BMC was assessed by DXA at baseline, 7 and 19 mo after
intervention, and annually thereafter for 5 yr (eight visits over 8 yr). Multilevel random effects models were
constructed and used to predict change in BMC from baseline at each measurement occasion. After 7 mo,
those children that completed high-impact jumping exercises had 3.6% more BMC at the hip than control
subjects whom completed nonimpact stretching activities (p < 0.05) and 1.4% more BMC at the hip after
nearly 8 yr (BMC adjusted for change in age, height, weight, and physical activity; p < 0.05). This provides the
first evidence of a sustained effect on total hip BMC from short-term high-impact exercise undertaken in early
childhood. If the benefits are sustained into young adulthood, effectively increasing peak bone mass, fracture
risk in the later years could be reduced.
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INTRODUCTION

THE NATURE OF bone to adapt to mechanical loading is
well accepted. Bone responds to increased mechanical

stress by getting stronger and responds to disuse by weak-
ening and losing bone mass. Because bone loss and subse-
quent reductions in bone strength are largely age-related
phenomena, the clinical implications of disuse are more
pronounced among older adults. This may be caused in part
by age-associated reductions in physical activity and also by
the older skeleton’s reduced ability to respond to mechani-
cal loading.(1) The result is an increased risk of fracture.
Skeletal fragility is exacerbated by numerous mechanisms,
including a failure to produce a skeleton of optimal mass

and strength during growth.(2) Increasing evidence supports
exercise during growth as having the greatest potential to
reduce osteoporosis risk later in life,(3–5) and several re-
searchers have reported positive effects of physical activity
on the whole body,(6) lumbar spine,(7) and hip(8,9) in grow-
ing children. Whether these benefits persist into adulthood
and contribute to the development of peak bone mass is
unclear. Although a number of human studies have shown
exercise-induced changes in the skeleton during growth
may not be maintained long-term after exercise cessa-
tion,(10–12) we have previously shown skeletal benefits per-
sist for 7 mo(8) to 3 yr after exercise cessation.(13) More
recently, Warden et al.(14) found short-term exercise in
growing rodents provided lifelong benefits to bone struc-
ture and strength. Whether short-term exercise in humans
can provide similar lifelong benefits is unknown. The aim of
this study was to investigate whether children who partici-The authors state that they have no conflicts of interest.
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pated in a 7-mo targeted, impact exercise intervention ex-
hibited skeletal benefits 7 yr after the intervention had
ceased. We hypothesized that children who participated in
the jumping intervention (100 jumps off a 24-in box 3 times/
wk) would have greater bone mass accrual compared with
children who were not exposed to the jumping exercises.

MATERIALS AND METHODS

Study design and participants

The subjects for this report were drawn from the
BUGSY study (Building Growing Skeletons in Youth), an
ongoing mixed longitudinal study of bone mineral accretion
in growing children. The data reported come from two co-
horts of children who participated in separate, but identical,
randomized, controlled, school-based impact exercise inter-
ventions. Participants were recruited from local elementary
schools in Corvallis, OR, to participate in the 7-mo jumping
interventions. Studies were initiated in the fall of 1997 (pi-
lot, n � 33) and fall of 1998 (n � 89). In each case, par-
ticipants were randomly allocated (within classrooms) to
either a jumping or stretching program and were assessed at
baseline, postintervention (7 mo), and after 7 mo of detrain-
ing.(7,8) In 2002, funding was obtained to continue long-
term surveillance on previous participants. The data pre-
sented here reflect only those subjects who agreed to long-
term follow-up (N � 57; jumpers � 33, controls � 24; 47%
of the original participants). Those subjects agreeing to
long-term surveillance were reassessed at 31, 43, 55, 67, 79,
and 91 mo from study entry. There were no differences in
baseline age, height, weight, body composition, nutrient in-
takes, reported physical activity, maturity status, or race
among the children who continued in the long-term follow-
up compared with those who did not (p > 0.05; Table 1).

Each child provided their assent to participate, and each

child’s parent provided informed consent. Each parent and
child pair completed health history, food frequency and
physical activity questionnaires, and anthropometry assess-
ments at each measurement interval. Bone scans of the hip
were conducted at each measurement occasion.

Physical activity and nutritional assessment

Physical activity was assessed by parent and child using a
modified self-reported physical activity questionnaire de-
veloped for children and adolescents.(15) Physical activity
information was partitioned by general activity (such as
physical education and general play) and participation in
organized sports. Sporting activity was recorded as a di-
chotomous variable (no sport activities � 0; one or more
sport activities � 1).

Dietary intake was assessed using the Harvard Medical
School Youth Diet Survey developed for children and ado-
lescents between the ages of 9 and 18 yr.(16) This food f

† Controls greater than jumpers, p < 0.05.
‡ Males greater than females, p < 0.05.
§ Males greater than females, p < 0.01.
¶ Females greater than males, p < 0.001. requency ques-

tionnaire is designed to be self-administered; however, to
improve accuracy, the questionnaire was filled out by par-
ent and child together.(17) A researcher familiar with the
diet survey was available to answer questions regarding the
classification of foods and serving sizes. Visual aids were
also available to help participants and their parents to de-
termine appropriate responses. Completed food surveys
were sent to Harvard Medical School for analysis. Calcium
was evaluated in the statistical models but was found to
have no effect on the change in BMC parameters and was
subsequently excluded. Calcium and vitamin D values at
baseline and at the 91-mo follow-up are reported for de-
scriptive purposes (Tables 1 and 2).

TABLE 1. CHARACTERISTICS AT BASELINE

Intervention groups

Jumpers (n = 33) Controls (n = 24)

Male (n = 19) Female (n = 14) Total (n = 33) Male (n = 16) Female (n = 8) Total (n = 24)

Race (W/A/B/MR) 18/1/0/0 13/1/0/0 31/2/0/0 16/0/0/0 8/0/0/0 24/0/0/0
Age (yr) 7.4 (1.0) 7.9 (0.8) 7.6 (1.0) 7.9 (1.1) 8.1 (0.8) 7.9 (1.0)
Maturity (pre/post PHV) 19/0 14/0 33/0 16/0 8/0 56/0
Height (cm) 126.7 (8.8) 127.1 (8.8) 126.8 (8.7) 127.2 (7.2) 129.8 (6.9) 128.1 (7.0)
Weight (kg) 27.8 (5.9) 27.6 (6.1) 27.7 (5.9) 26.1 (3.8) 28.4 (6.3) 26.9 (4.7)
Relative fat mass (%)* 16.8 (6.4) 20.1 (3.1) 18.1 (5.6) 17.9 (6.3) 20.9 (7.1) 19.0 (6.6)
Bone variables

Total hip BMC 11.64 (2.33) 10.6 (2.96) 11.22 (2.6) 10.89 (2.53) 10.1 (1.37) 10.65 (2.24)
Femoral neck BMC 1.89 (0.38) 1.59 (0.37) 1.77 (0.4) 1.79 (0.4) 1.5 (0.26) 1.7 (0.4)
Trochanter BMC 2.54 (0.68) 2.47 (0.84) 2.51 (0.73) 2.24 (0.59) 2.13 (0.54) 2.21 (0.56)

Total calcium (mg) 1265 (355) 1220 (300) 1248 (331) 1257 (258) 1263 (175) 1259 (226)
Vitamin D (IU) 420 (182) 425 (66) 423 (129) 435 (85) 453 (51) 444 (66)
Team sports

[(n) %] reporting none (5) 26.3 (7) 50.0 (12) 36.4 (5) 31.2 (3) 37.5 (8) 33.3
[(n) %] reporting �1 (14) 73.7 (7) 50.0 (21) 63.6 (11) 68.8 (5) 62.5 (16) 66.7

Values are mean (SD).
* Percent body fat estimated from triceps and subscapular skinfold.(22)

W, white; A, Asian; B, black; MR, mixed race.
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Anthropometric measures

Standing height, sitting height, and weight were assessed
at each visit. Standing and sitting height were measured to
the nearest 0.1 cm using a wall-mounted stadiometer. A
standard protocol outlined by Martin et al.(18) was used to
assess sitting height. Weight was measured to the nearest
0.1 kg using an electronic weighing scale. Measurements
were taken twice unless there was a discrepancy >0.4 cm
(height and sitting height) or 0.4 kg (weight), and then a
third measurement was taken. Recorded values were the
average of two measurements or the median of three. Leg
length was calculated by subtracting sitting height from
standing height. For the analysis, a change in height from
study entry (�height) was calculated.

Body fat was estimated using sex-specific prediction
equations during the first 3 yr of data collection.(19) Two
anatomical sites (triceps and subscapular) were measured
on the participants right side using Lange (Cambridge Sci-
entific Industries, Cambridge, MD, USA) skinfold calipers
(precision error � 2% based on a subsample of 20 children
randomly chosen from our population). Beginning with the
43-mo follow-up, body fat was determined from whole body
DXA scans. Because of the differences in our methods of
estimating body fat over time, these data are presented for
descriptive purposes only. Trained and qualified techni-
cians blinded to the group status of the participants con-
ducted all measurements.

Bone mineral assessment

In this study, BMC (g) of the left proximal femur (total
hip, femoral neck, trochanter) was evaluated using DXA
(QDR 4500A; Hologic, Waltham, MA, USA). Bone mea-

surements of the hip have an in-house precision error of
1–1.5%. Trained and qualified technicians conducted all
measurements. Over the 8-yr period during which these
data were collected, the Bone Research Laboratory ac-
quired several upgrades to its DXA software. As a result,
all scans from each of the nine measurement occasions were
reanalyzed using the latest software version (Hologic QDR
software, version 12.3, Delphi A) to ensure data accuracy.
A single researcher was responsible for reanalyzing all of
the scan data to improve reliability of the analyses. Spine
and anthropometric phantoms were scanned daily and
weekly, respectively, to maintain quality assurance of the
QDR 4500A.

For each hip site a change in BMC (�BMC) accrual was
calculated. For clarification, at each measurement occasion,
we subtracted the study entry value from the values at sub-
sequent visits. Therefore, for an individual measured at
study entry, 7 mo, 19 mo, and then yearly for the following
7 yr, there are seven change (�) scores.

Biological maturity

Peak height velocity (PHV) is a commonly used biologi-
cal parameter in growth studies that allows subjects to be
aligned at comparable biological rather than chronological
ages.(20) It is also the only sexual maturational landmark
that occurs in both boys and girls and thus allows sex com-
parisons at the same maturational age to be performed.(21)

In this study, bone measurements are considered in terms
of time before and after PHV.(20,22) We were able to cal-
culate actual height velocities for 13 boys and 8 girls who
had gone through PHV. A further 25 were at or less than a
year from PHV. Therefore, until the majority of the group

TABLE 2. CHARACTERISTICS AT 91-MO FOLLOW-UP

Intervention groups

Jumpers (n = 29) Controls (n = 20)

Male (n = 18) Female (n = 11) Total (n = 29) Male (n = 13) Female (n = 7) Total (n = 20)

Race (W/A/B/MR) 17/1/0/0 10/1/0/0 27/2/0/0 13/0/0/0 7/0/0/0 20/0/0/0
Age (yr) 15.0 (1.3) 15.5 (1.4) 15.2 (1.3) 15.3 (1.4) 15.8 (0.9) 15.5 (1.2)
Maturity (pre/post PHV) 4/14 0/11 4/25 2/11 0/7 2/18
Height (cm) 170.8 (8.9)† 162.8 (5.4)† 167.8 (8.6)‡ 173.4 (8.4)† 169.5 (3.0)† 172.0 (7.1)‡

Weight (kg) 65.3 (15.1) 58.2 (9.4) 62.6 (13.5) 63.1 (11.5) 61.8 (16.8) 62.7 (13.2)
Relative fat mass (%)* 20.4 (9.2)§ 29.8 (7.8)§ 23.7 (9.7) 16.5 (7.6)§ 29.5 (8.5)§ 21.0 (10.0)
Bone variables

Total hip BMC 39.93 (9.56)¶ 31.26 (5.40)¶ 36.84 (9.22) 39.31 (9.93)¶ 30.15 (3.38)¶ 36.1 (9.27)
Femoral neck BMC 4.92 (0.88)¶ 4.18 (0.53)¶ 4.66 (0.81) 4.73 (0.93)¶ 4.21 (0.69)¶ 4.55 (0.87)
Trochanter BMC 11.11 (2.62)¶ 8.31 (1.42)¶ 10.1 (2.62) 10.91 (2.54)¶ 7.49 (1.05)¶ 9.72 (2.69)

Total calcium (mg) 1099 (510) 989 (376) 1057 (459) 1329 (441) 1194 (382) 1282 (416)
Vitamin D (IU) 254 (132) 290 (215) 267 (165) 402 (197) 276 (109) 358 (179)
Team sports

[(n) %] reporting none (5) 27.8 (4) 36.4 (9) 31.0 (4) 30.8 (2) 28.6 (6) 30.0
[(n) %] reporting �1 (13) 72.2 (7) 63.6 (20) 69.0 (9) 69.2 (5) 71.4 (14) 70.0

Values presented as mean (SD).
* Percent body fat determined from whole body DXA scans.
† Males greater than females, p < 0.05.
‡ Controls greater than jumpers, p < 0.05.
§ Females greater than males, p < 0.001.
¶ Males greater than females, p < 0.01.
W, white; A, Asian; B, black; MR, mixed race.
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go through PHV, a predicted value (years from PHV) has
to be used in the analysis. Age of attainment of PHV was
estimated by applying sex-specific anthropometric predic-
tion equations.(23) These equations use markers of somatic
growth to predict how far a child is, in years, from reaching
PHV. The equations were developed using data from a
longitudinal study of children’s growth and verified in two
other similar longitudinal studies. The prediction equation
was applied at each measurement occasion. As subjects ap-
proach PHV, the prediction increases in accuracy. For this
analysis, the measurement occasion closest to PHV was
used. Subjects were classified as either pre- or post-PHV at
each measurement occasion (pre-PHV maturity � 0, post-
PHV maturity � 1).

School-based exercise intervention

The specifics of the exercise intervention have been re-
ported elsewhere.(7) Briefly, the exercise intervention was
conducted from October to May during the 1997 and 1998
school years. Time was taken off for winter and spring
breaks (∼1 and 3 wk, respectively). All children were in-
volved in regularly scheduled physical education (PE)
classes once a week for 30 min. The exercise intervention
was incorporated into the regular school schedule. Children
participated in either a jumping (intervention) or stretching
(control) program 3 d/wk for 20 min on separate days from
the regularly scheduled PE classes. The general format for
each exercise session included a 5-min warm-up activity, 10
min of jumping or stretching, and a 5-min cool down. Chil-
dren were introduced to the program, and jumpers were
progressively trained to reach a maximum of 100 jumps per
session by the fifth week of the program. The height of the
box from which they jumped (24 in) did not change during
the intervention. Average ground reaction forces for 100
jumps was ∼8 times body weight (using a single force plate)
in a subsample of participants (n � 24).(24) The control
groups had equivalent contact time with instructors and
performed nonimpact stretching activities while their class-
mates were jumping. Compliance to the intervention as
measured by attendance was ∼96% for both jumpers and
stretchers in both cohorts (1997, 1998).

Statistical analysis

Descriptive results are expressed as mean ± SD (version
14.0; SPSS, Chicago, IL, USA). Intervention and control
group comparisons were made with t-tests (p < 0.05), and
Bonferroni adjustments were made for multiple compari-
sons. The hypotheses were tested using hierarchical (mul-
tilevel) linear modeling using random effects models
(MlwiN version 1.0; Multilevel Models Project, Institute of
Education, University of London, London, UK). This pro-
cedure has been described previously.(25)

To summarize the analyses, hierarchical models were de-
veloped for analyzing hierarchically structured data. In this
example, indices of bone accrual were measured repeatedly
in individuals (level 1 of the hierarchy) and between indi-
viduals (level 2 of the hierarchy). Analysis models that con-
tain variables measured at different levels of the hierarchy
are known as multilevel regression models. Additive, mul-

tilevel regression models were adopted to describe the
�BMC from study entry.

yij = �j + �jxij + k1zij + . . . knzij + �ij

where yij is the �BMC (g) on measurement occasion i in the
jth individual; �j is the constant for the jth individual; �jxij is
the slope of the �BMC (g) parameter with time from study
entry (years from start; i.e., time from baseline visit) for the
jth individual; and k1zij to knzij are the coefficients of ex-
planatory variables (i.e., age at study start, sex, race, matu-
rity, �height, �weight, sport activity, and intervention
group) at assessment at occasion i in the jth individual, and
�ij represents the level 1 residual (within individual vari-
ance) for the ith assessment of the �BMC (g) in the jth
individual.

Modeling strategy

Models were built in a stepwise procedure; that is, pre-
dictor variables (�, fixed effects) were added one at a time.
Likelihood ratio statistics were used to judge the effects of
including further variables. Predictor variables (�) were ac-
cepted as significant if the estimated mean coefficient (E)
was greater than twice the SE of the estimate (SEE); that is,
p < 0.05. If the retention criteria were not met, the predictor
variable was discarded. To allow for the nonlinearity of
growth, years from start power functions were introduced
into the linear models. Years from study start was centered
on the middle time point of the study (38 mo), which al-
lowed the intercept for all models to be in the middle of the
data rather than at study entry (when years from study start
would equal 0, a visit not being modeled directly). This
factor (years from start centered) was added as both a fixed
and random coefficient. Once confounders of growth,
maturation, and physical activity were controlled, the ef-
fects of the intervention were evaluated by adding an in-
tervention variable (intervention group; jumping � 1, con-
trols � 0). These variables were retained if E was greater
than twice the SEE; that is, p < 0.05. The models were used
to predict �BMC at each visit occasion attributable to the
factors in the models (Table 2).

RESULTS

After 8 yr of data collection, data from a total of 421
measurements from 57 individuals who were measured on
three or more occasions were used. For all models, the
significant variances at level 1 indicated that �BMC in-
creased significantly within individuals over the 8-yr obser-
vation period (E > 2 × SEE; p < 0.05). At baseline, there
were no differences in height, weight, hip BMC values,
sports participation, maturation, calcium, or vitamin D in-
takes between jumpers and control subjects (Table 1). At
the last follow-up visit (91 mo), 49 subjects (86% of those
agreeing to long-term follow-up) returned for testing.
There were no differences in weight, sports participation,
maturation, or calcium and vitamin D intakes between
jumpers and control subjects at 91 mo, but control subjects
were taller than jumpers (p < 0.05; Table 2). When exam-
ining the overall growth trajectories (baseline through 91
mo), we found no differences between groups or sex for
height or body mass development (p > 0.05).
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Intervention effect

Sex and race did not have a significant independent effect
on �BMC at any modeled bone site. The model for total
hip �BMC (Table 3) indicates that, after controlling for age
at study start, maturity, �height, �weight, and sport activity,
a significant independent intervention effect was found.
This effect was significant at each measured time point after
the intervention (p < 0.05). Subjects who participated in the
jumping intervention gained an additional 0.55 g of BMC
compared with control subjects (p < 0.05). An intervention
effect was not observed at the trochanter or femoral neck
(Table 3).

In terms of the percent contribution of the intervention
to the percent change in BMC, we observed that, after
controlling for growth, maturation, and sports participation,
jumpers had 3.6% greater hip BMC than controls immedi-
ately after the intervention (7 mo). The relative contribu-
tion of the intervention subsided as the effects of growth
and maturation assumed a greater contribution to the
change in BMC over time (Fig. 1). This was most notable 2
yr after the exercise program ended (43 mo). The interven-
tion effect leveled off in the last 3 yr, suggestive of a stable,
persistent contribution of the intervention. At the last fol-
low-up (91 mo), jumpers had 1.4% greater BMC at the hip
compared with controls (p < 0.05; Fig. 1).

DISCUSSION

Our aim was to study the long-term effects of a high-
intensity jumping program on the growing skeleton. We

TABLE 3. MULTILEVEL REGRESSION MODELS FOR CHANGE FROM STUDY ENTRY FOR TOTAL HIP, TROCHANTER AND FEMORAL NECK

ALIGNED BY YEARS FROM STUDY ENTRY.

Variables

�BMC

�Total hip �Hip trochanter �Femoral neck

Random Level 1 (within individuals) Level 1 (within individuals) Level 1 (within individuals)
Constant 1.43 ± 0.14 0.20 ± 0.02 0.03 ± 0.003

Level 2 (between individuals) Level 2 (between individuals) Level 2 (between individuals)
Constant Years from start

centered
Constant Years from start

centered
Constant Years from start

centered
Constant 4.03 ± 0.88 1.62 ± 0.34 0.49 ± 0.11 0.16 ± 0.04 0.02 ± 0.006 0.01 ± 0.002
Years from start

centered
1.62 ± 0.34 0.62 ± 0.13 0.16 ± 0.04 0.05 ± 0.01 0.01 ± 0.002 0.004 ± 0.001

Fixed Estimates Estimates Estimates
Constant −7.37 ± 1.15 −1.76 ± 0.05 −0.53 ± 0.16
Years from start

centered
−0.55 ± 0.24 −0.35 ± 0.09 NS

Years from start
centered2

0.21 ± 0.02 0.05 ± 0.01 0.02 ± 0.002

Age at study
start

0.33 ± 0.11 NS 0.04 ± 0.02

Sex NS NS NS
Race NS NS NS
Maturity 1.23 ± 0.35 0.52 ± 0.13 NS
�Height 0.51 ± 0.04 0.18 ± 0.02 0.04 ± 0.003
�Weight 0.13 ± 0.03 0.05 ± 0.01 0.02 ± 0.004
Sport activity 1.10 ± 0.21 0.23 ± 0.09 0.14 ± 0.3
Intervention

group
0.55 ± 0.22 NS NS

Fixed effect values are presented as estimated mean coefficients ± SEE [�BMC g from study entry].
Random effects values presented as estimated mean variance ± SEE [�BMC g from study entry2].
Years from start centered is years from 38 mo.
Sex (0 � male, 1 � female); race (0 � white, 1 � nonwhite); maturity (0 � pre-PHV, 1 � post-PHV); �height (cm) from study entry; ��eight (kg)

from study entry; sport activity (0 � no sport activities, 1 � 1 or more sports activities); intervention group (0 � controls, 1 � jumpers).
Values are p < 0.05 (mean > 2 × SE estimate) unless noted as NS (NS, not significant).

FIG. 1. Jumping intervention effect on ��otal hip BMC after 8
yr. Percent change in total hip BMC in jumpers above that of
controls after 7 mo of exercise training, 1 yr of detraining (19 mo),
and 4–8 yr of detraining (43–91 mo). The intervention participants
had 3.6% greater bone mass than controls immediately after the
intervention and 1.4% greater bone mass at the total hip than
controls after 8 yr. *Results are adjusted for baseline age, �Ht,
�Wt, maturity, and sports participation and are significant at each
of the seven measurement intervals (p < 0.05).
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report that, after 8 yr, children who participated in a 7-mo
randomized, controlled jumping intervention had signifi-
cantly greater hip BMC than controls. The intervention ef-
fect was significant at each measured time point after the
intervention (Fig. 1). Although the relative contribution of
the intervention effect decreased over time, it nevertheless
persisted even after controlling for the effects of normal
growth and maturation. We did not observe a sustained
effect at the femoral neck, despite having previously re-
ported increased FN BMC immediately after the interven-
tion.(7) We attribute this to the greater variability in the
femoral neck measure compared with the total hip and to
the considerably smaller sample size in our long-term co-
hort.

Strengths of the study include the randomized interven-
tion, a highly specific exercise prescription, a rigorous ana-
lytical approach, and long-term subject retention. This
study represents the first published report of the enduring
effects (∼8 yr) of a randomized controlled exercise inter-
vention on BMC gains in growing children. We attribute
the lasting skeletal effects reported in this paper to a very
specific exercise program (jumping) with an effective dose
of 300 jumps per week off 24-in boxes. The statistical ap-
proach allowed us to observe the magnitude of the inter-
vention effect after controlling for the effects of growth,
maturation, and physical activity. Furthermore, the statisti-
cal design supported data retention, because a missed visit
did not warrant subject exclusion from analyses (100% of
subjects agreeing to long-term follow-up had at least three
visits and were included in the analyses). However, subject
retention was also high with 86% of the subjects whom
agreed to long-term follow up measured at the last visit (91
mo).

Several limitations to the study must be acknowledged.
First, we were unable to include lean mass in the models
because our methods of estimating body composition var-
ied between the two funding cycles, and we only had lean
mass estimates beginning in 2002. Although lean mass has
been shown to be a powerful predictor of the �BMC in
growing children,(26,27) weight is highly related to lean mass
in our data set (r � 0.82, p < 0.001) and thus was used in the
models. This correlation was derived from data collected
between 2002 and 2006 when lean mass was measured and
included at least two measures from all 57 subjects. Second,
we did not include minutes of weight-bearing activity as a
variable in our models because of changes in our question-
naire methods. However, in a separate, long-term study of
a similar intervention, we did not observe that minutes of
weight-bearing activity contributed to changes in bone
mass.(13) Thus, to control for physical activity, we used only
sport participation and are confident that we are capturing
the most important physical activity variable.

Finally, because of the 2D nature of the DXA assess-
ment, we did not measure bone geometry. Understanding
mineral distribution is important to understanding bone
structural behavior. Given the diminishing effect of the in-
tervention on BMC observed in our data, it is possible that
the sustained benefits we observed may disappear before
these children reach skeletal maturity. However, Warden et
al.(28) found that structural and strength benefits from ex-

ercise-induced loading in rats persisted even as initial in-
creases in bone mass diminished. It is plausible that our
jumping intervention induced a structural change that we
were not able to identify with DXA. Future studies should
include measures of bone geometry to determine whether
bone structure was affected by the intervention, and if so,
whether those changes persist.

Approximately 50–80% of bone mass is genetically de-
termined.(29,30) This leaves a substantial proportion of the
variance in bone mass that may be modified by environ-
mental stimuli such as exercise. The assertion that exercise
undertaken in childhood may have substantial effects on
the acquisition of peak bone mass and subsequent reduc-
tions in fracture risk in adulthood is often cited as the ra-
tionale for intervention studies. Whereas numerous studies
have shown that exercise results in an immediate ben-
efit,(7,31–35) there are few data from controlled longitudinal
studies to suggest that exercise effects persist beyond a few
years once training has ceased.(8,12)

Valdimarsson et al.(12) observed persistent effects from
soccer training after 8 yr among active female athletes (18.3
± 4.0 yr of age at baseline) and former female soccer players
(40.0 ± 4.5 yr of age and retired for a mean of 9.7 yr at
baseline). The authors report that soccer training was asso-
ciated with greater BMD accrual during the playing years
and steeper declines in bone mass in players compared with
controls after retirement from soccer training. However,
the higher BMD attributable to soccer training in youth
among the former players was protective in that despite a
greater rate of loss once training ceased, the players still had
greater BMD compared with controls even 20 yr after re-
tirement from soccer training.

Our study differed from Valdimarsson et al.(12) in two
ways: (1) children in our study were prepubertal during
exercise training and (2) our subjects participated in an
acute 7-mo program of specifically defined impact exercise.
However, despite the short-term exercise training, children
in the jumping intervention had greater gains in BMC than
nonjumpers 7 yr after the program ended. These findings
are consistent with our recent report that a similar random-
ized, controlled intervention in growing children resulted in
lasting effects on bone 3 yr after the intervention ended.(13)

Although we cannot infer whether the effects of our inter-
vention will persist into late adulthood, these data showed
a long-lasting effect through childhood and adolescence not
previously reported. Research suggests environmental
stimuli during a critical window of time permanently affect
subsequent structure, function, or developmental schedule
of the organism.(36–38) This effect of environmental expo-
sure is likely to be more marked in early life than at later
ages, and the influence is more likely to exert a fundamen-
tal effect on the development of metabolic capacity.(36–38) If
so, it is possible that exposure to sufficient mechanical
stimuli during a “critical window” of pre- or early puberty
may provoke a permanent change in bone metabolism that
promotes enhanced accrual throughout growth. We hy-
pothesize that the high forces delivered to the hip during
the jumping intervention enhanced growth in our study co-
hort that resulted in significantly greater BMC values that
persisted for 8 yr. Our research design allowed us to control
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lifestyle (e.g., dietary calcium, physical activity) and genetic
(e.g., race, maturation timing) factors that may have per-
sisting effects on bone mass and to observe the independent
effects of our randomized, controlled, intervention on
changes in bone mass in this cohort of growing children.

In conclusion, we report a sustained effect on BMC ac-
crual from a simple, high impact jumping program. If this
intervention became a regular activity within a mandatory
physical education curriculum, children who choose not to
engage in sport or physical activity outside of school would
gain skeletal benefit. Furthermore, if the benefits are sus-
tained into adulthood, effectively increasing peak bone
mass, this could result in reductions in lifetime fracture
risk.
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