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Abstract: There is an increasing role of population genetics in human genetic research linking empirical observations 

with hypotheses about sequence variation due to historical and evolutionary causes. In addition, the data sets are increas-

ing in size, with genome-wide data becoming a common place in many empirical studies. As far as more information is 

available, it becomes clear that simplest hypotheses are not consistent with data. Simulations will provide the key tool to 

contrast complex hypotheses on real data by generating simulated data under the hypothetical historical and evolutionary 

conditions that we want to contrast. Undoubtedly, developing tools for simulating large sequences that at the same time 

allow simulate natural selection, recombination and complex demography patterns will be of great interest in order to bet-

ter understanding the trace left on the DNA by different interacting evolutionary forces. Simulation tools will be also es-

sential to evaluate the sampling properties of any statistics used on genome-wide association studies and to compare per-

formance of methods applied at genome-wide scales. Several recent simulation tools have been developed. Here, we re-

view some of the currently existing simulators which allow for efficient simulation of large sequences on complex evolu-

tionary scenarios. In addition, we will point out future directions in this field which are already a key part of the current 

research in evolutionary biology and it seems that it will be a primary tool in the future research of genome and post-

genomic biology. 
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INTRODUCTION 

 There is an increasing role of population genetics in hu-
man genetic research linking empirical observations with 
hypotheses on sequence variation due to historical and evo-
lutionary causes. In addition, the data sets are increasing in 
size, with genome-wide data becoming a common place in 
many empirical studies [1]. As far as more information is 
available, it becomes clear that simplest hypotheses (neutral-
ity, constant population size, uniform recombination) are not 
consistent with data. Therefore, to understand the trace left 
in the DNA by historical and evolutionary factors, more 
complex predictive hypotheses are needed. Simulations will 
provide the key tool to contrast complex hypotheses on real 
data by generating simulated data under the hypothetical 
historical and evolutionary conditions that we want to con-
trast. Thus, we can distinguish among models by simulating 
their evolutionary consequences concerning a given hy-
pothesis [1, 2]. 

 Currently, one of the most exciting examples of the im-
portance of a population perspective in human genetics is the 
study of patterns of linkage disequilibrium (LD) in humans 
[3]. The knowledge of such patterns will facilitate the as-
sembly of genome haplotype maps [4-6] improving enor-
mously the efficiency of disease gene mapping. It seems that 
these blocks are mainly defined by recombination hot spots 
[7, 8]. However, haplotype blocks can also be generated by 
genetic drift in regions of uniform recombination provided 
this is low enough [9]. Therefore, we have now growing em-
pirical knowledge about haplotype block and tagSNPS  
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diversity but less is known about the effect of population 
demographic factors. We have no clear ideas on how the 
combined effect of genetic drift, mutation, recombination 
and migration, affect LD and tagSNP patterns though is 
known they do [10]. Computer simulations will provide a 
powerful tool to test different hypotheses, allowing the dis-
entanglement of complex evolutionary patterns that will be 
difficult to understand in any other way. For example, the 
history of past human migration provides important clues to 
understand present patterns of human DNA variation. Com-
puter simulations have already provided important informa-
tion to test hypotheses concerning population histories [11, 
12]. 

 The growing importance of simulations to fulfill the 
needs for more complex models to explain current DNA 
patterns is reflected by the increase of efficient computer 
simulation programs that aim to deal both with high amount 
of data and with complex models of evolution. Certainly, the 
development of tools to simulate large sequences under natu-
ral selection, recombination and complex demographic pat-
terns is already of great interest in order to better understand 
the signal left on the DNA by different interacting evolution-
ary forces. Simulation are already, and will continue to be, 
an essential tool to evaluate the sampling properties of any 
statistics used on genome-wide association studies and to 
compare performance of methods applied at genome-wide 
scales. Thus, there are two main different approaches of 
computer simulation in population genetics, namely, back-
ward or forward strategies can be followed. Both kinds of 
strategies are complementary. Several new recent simulation 
tools, both backward and forward, have being developed. 
We aim to review some of the recently developed simulators 
which allow for efficient simulation of large sequences on 
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complex evolutionary scenarios. In addition, we will point 
out future directions in this field which are already a key part 
of the current research in evolutionary biology and it seems 
that it will be a crucial issue in the future research of genome 
and post-genomic biology. 

 Noteworthy, in this review we do not intend to mention 
every program that can simulate the evolution of genetic 
information because that list will be enormous and is in-
creasing each day. We will mention just some programs that, 
firstly, provide enough information to allow friendly use for 
a non-programmer person and, secondly, can simulate in an 
efficient way medium or long fragments of DNA e.g. at least 
1 megabase of DNA in the case of coalescent programs or 
10

3
 unlinked genes in the case of forward simulators. By 

efficiency we mean simply the speed of a computational 
process in a one-processor system. 

COALESCENT SIMULATORS 

 Coalescence is a sample-based theory relevant to the 
study of population samples and DNA sequence data [13-
15]. A random genealogy of a sample is generated and then 
mutations are randomly placed on the genealogy. Thus, coa-
lescent-based simulations, are computationally very efficient 
because they are backward based on the history of lineages 
with survived offspring in the current population ignoring, 
however, all those whose offspring did not arrived to the 
present [16]. Due to its efficiency, it has been used to derive 
several algorithms to estimate parameter values that maxi-
mize the probability of the given data [17]. 

 In Table 1 we can see different coalescent simulators that 
somewhat allow efficient simulation of more or less large 
DNA fragments evolving under complex evolutionary mod-
els. The most classical one, ms [18], permits flexible and 
efficient simulation of different standard neutral evolutionary 
models with recombination, variable population size, migra-
tion, etc. Thus, ms program can efficiently generate samples 
(only with 2-allele segregating sites) and trees under differ-
ent neutral scenarios. Different programs focus different ef-
fort in modelling distinct and specific aspects of evolution. 
For example, SPLATCH [19] allows modelling spatial and 
temporal environmental heterogeneity, while SelSim [20] 
allows to study the combining effect of selection and recom-
bination and the Fearnhead set of programs [21] allows the 
study of the impact of strong selection onto patterns of vari-
ability under different scenarios. Noteworthy, coasim [22], 
cosi [1], msHOT [23], mlcoalsim [24] and GENOME [25] 
programs allow for a flexible and complete set of situations 
including recombination hotspots. Finally, the efficiency of 
the programs is very important because will allow to simu-
late larger sequences in acceptable times. Thus, efficiency, 
i.e. the speed of the process should be a consequence of bet-
ter algorithms that allow for both a good use of computer 
memory space and faster execution times. In this aspect 
some programs were noticeable. For instance, various pro-
grams need about 10-15 minutes to simulate 10,000 samples 
of size 100 chromosomes with 250 SNPs each (or a DNA 
region with 250 partially linked loci) under a population size 
of 1,000 and a population recombination rate of 10 for the 
whole chromosome segment. These settings imply about a 

Table 1. Different Coalescent Simulators for Genomes Evolving Under Complex Evolutionary Models. The Programs are Sorted 

by the Reference Date 

Name Sel Rec VRec VarN M MM CEM Tree Ref 

Seq-Gen No No No No No Yes Yes Yes R97 

TREEVOLVE No Yes No Yes Yes No No No G99 

SIMCOAL2 No Yes Yes Yes Yes Yes No Yes E00 

ms No Yes No Yes Yes No No Yes H02 

SPLATCHE No No No Yes Yes Yes No Yes C04 

SelSim Yes Yes No No No Yes No No S04 

Serial SIMCOAL No No No Yes Yes Yes No Yes A05 

Coasim No Yes Yes Yes Yes Yes No No M05 

Cosi No Yes Yes Yes Yes Yes No No S05 

Hap and dip Yes No No Yes Yes Yes No No F06 

msHot No Yes Yes Yes Yes No No Yes He07 

GENOME No Yes Yes Yes Yes No No Yes L07 

mlcoalsim Yes Yes Yes Yes Yes No No No R07 

Evolver No No No No No Yes Yes Yes Y07 

Sel: Selection. Rec: recombination. VRec: Variable recombination rates. Var N: Variable population size. M: Migration. MM: Different Mutation Models. CEM: Codon or amino-
acid evolution models. Tree: Produces a genealogy. Ref: Reference. R97: [27]. G99: [30]. E00: [31]. H02: [18]. C04: [19]. S04: [20]. A05: [32]. M05: [22]. S05: [1]. F06: [21]. 
He07: [23]. L07: [25]. R07: [24]. Y07: [28]. 
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genome segment of 250 Kb assuming 1cM per Mb. How-
ever, mlcoalsim [24] and Coasim [22] take seconds. Unfor-
tunately, mlcoalsim does not produce “real” sequences be-
cause just manage two allele variants per site. The program 
is anyway very useful for testing hypotheses e.g. demogra-
phy and selection impacts on linkage disequilibrium at the 
genome level [26]. Another program that is very efficient is 
Seq-Gen [27] which produces samples of length 10Mb in 
seconds. However, in the case of Seq-Gen the user needs a 
phylogenetic tree to evolve the sequences along the 
phylogeny. It does not assume recombination but different 
data partitions can be made with different trees. It can be 
piped with the output of other programs as ms. A similar 
program to Seq-Gen is Evolver which belongs to package 
PALM [28] however to change some of the options in 
Evolver the user needs to change the source code and re-
compile. 

 Indeed, the need is increasing of simulating larger DNA 
regions under complex evolutionary situations. Fortunately, 
some new algorithms are also emerging. Noticeable is GE-
NOME [25] which uses a modified coalescence algorithm to 
allow for the impressive numbers of 150 Mb in 1 hour man-
aging scaled mutation, recombination and migration rates of 
the order of 6  10

4
. Other important new method is fastcoal 

[29] which uses a new algorithm for fast coalescent simula-
tion of large DNA segments, being able to simulate genome-
wide data several orders of magnitude faster than classical 
coalescent ones. However, fastcoal makes simplifying as-
sumptions about the genealogy that GENOME does not. 

FORWARD SIMULATORS 

 Forward simulations are less efficient than coalescent 
based ones because the whole history of the sample is fol-
lowed from past to present. On the other hand, forward simu-
lation has some advantages over the coalescent framework. 
The first of all is the same that causes coalescent simulation 
efficiency, namely, the coalescence does not keep track of 
the complete ancestral information. In consequence, if the 
interest is focused on the evolutionary process itself, rather 
than on its outcome, forward simulations should be preferred 
[33]. Second, coalescent simulations are complicated by 
simple genetic forces such as selection, and although differ-
ent evolutionary scenarios have been built-in (see Table 1 
above) it is still difficult to implement models incorporating 

complex evolutionary situations with different kinds of se-
lection, variable population size, recombination, complex 
mating schemes, and so on. In fact, we can only simulate 
very limited forms of selection and recombination under the 
coalescent. In addition, when simulating recombination un-
der a coalescent codon model we usually do not account for 
intracodon recombination. Similarly, coalescent methods 
cannot yet simulate realistic samples of complex human dis-
eases [34]. Indeed, when simulating non-neutral scenarios 
and/or complex models under the coalescence, much of the 
computational efficiency is lost. Moreover, the coalescent 
model is an approximation based on specific limiting values 
and relationships between some important parameters [35]. 
Hence, there is an increasing interest on forward population 
genetic simulation and new efficient tools have been devel-
oped recently. In Table 2 some of these forward simulators 
are listed. The oldest ones are FPG [36] and EASYPOP [37]. 
FPG can simulate a broad range of conditions including 
natural selection, recombination migration and so on. How-
ever is somewhat limited by the genome size it can manage. 
It allows for a total genome length of up to 1000 segments 
each limited to 32 polymorphic sites. With these lengths, 
could be possible to model a genome of up to 3.2 Mb. How-
ever with high population sizes and genome lengths the pro-
gram is very slow. EASYPOP has a more efficient use of 
memory (can manage thousands of SNPS) but simulates only 
neutral loci. More powerful are some new forward simula-
tors that recently emerged. For example, SIMUPOP [38] can 
manage large multi-generation populations with mutation, 
migration and selection hence allowing user-defined disease 
allele frequencies. However, running such complex models 
require that the user write its own macros in the python lan-
guage. Other new flexible forward simulators are FREE-
GENE [39] and GenomePop [40] which use techniques as 
scaling to simulate large populations and genomic regions 
through many generations. FREEGENE permits both direc-
tional and balancing selection but manage only two allele 
models and symmetric Island migration model. GenomePop 
permits only directional selection, but real DNA sequences 
and arbitrary migration models. 

 These programs can manage a high number of independ-
ent or linked SNPs. For example, FREEGENE is able of 
simulate genome regions of several Mb during 10N genera-
tions in a personal computer in acceptable time. GenomePop 
is also able to evolve a genome of 100 chromosomes with 

Table 2. Different Forward Simulators for Genomes Evolving Under Complex Evolutionary Models. The Programs are Sorted by 

the Reference Date 

Name Sel Rec VRec VarN M MM CEM Seq Tree Ref 

FPG Yes Yes No No Yes No No Yes No JH 

EasyPop No Yes No No Yes Yes No No Yes B01 

SimuPop Yes Yes Yes Yes Yes Yes No No Yes P05 

FREEGENE Yes Yes Yes Yes Yes No No No No H07 

GenomePop Yes Yes Yes Yes Yes Yes Yes Yes No C08 

Sel: Selection. Rec: recombination. VRec: Variable recombination rates. Var N: Variable population size. M: Migration. MM: Different Mutation Models. CEM: Codon Evolution 
Model. Seq: The user gets a DNA sequence sample. Tree: The user gets the genealogy of the sample. Ref: Reference. JH: [36]. B01:[37]. P05: [38]. H07: [39]. C08: [40]. 
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1,000 SNPs each. Considering uniform recombination of 0.1 
per genome (population recombination rate of 40 per chro-
mosome) and assuming 1cM per 1Mb this implies 0.1 Mb 
per chromosome i.e. a 10 Mb genome.  

CONCLUSIONS 

 Simulation software is already a key part of the current 
research in evolutionary biology and it will be a primary tool 
in the future research of genome and post-genomic evolu-
tionary biology (Table 3). The feasible understanding of evo-
lutionary processes will provide humans with the tools to 
meliorate human health and fitness. The future should find 
us in the effort of combining the insight provided by com-
plex stochastic models with the thoughtful use of simulation 
methods for both, inference and modelling of complex evo-
lutionary scenarios. Therefore, more sophisticated algo-
rithms will be developed to represent and simulate efficiently 
the genetic data. Hence, the efficiency of new algorithms 
jointly with the use of multiple-computer clusters will hope-
fully allow the study of the virtual evolution of genomes 
under very different conditions. 
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