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Abstract
Background: A variety of high-throughput techniques are now available for constructing
comprehensive gene regulatory networks in systems biology. In this study, we report a new
statistical approach for facilitating in silico inference of regulatory network structure. The new
measure of association, coefficient of intrinsic dependence (CID), is model-free and can be applied
to both continuous and categorical distributions. When given two variables X and Y, CID answers
whether Y is dependent on X by examining the conditional distribution of Y given X. In this paper,
we apply CID to analyze the regulatory relationships between transcription factors (TFs) (X) and
their downstream genes (Y) based on clinical data. More specifically, we use estrogen receptor 
(ER) as the variable X, and the analyses are based on 48 clinical breast cancer gene expression
arrays (48A).

Results: The analytical utility of CID was evaluated in comparison with four commonly used
statistical methods, Galton-Pearson's correlation coefficient (GPCC), Student's t-test (STT),
coefficient of determination (CoD), and mutual information (MI). When being compared to GPCC,
CoD, and MI, CID reveals its preferential ability to discover the regulatory association where
distribution of the mRNA expression levels on X and Y does not fit linear models. On the other
hand, when CID is used to measure the association of a continuous variable (Y) against a discrete
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variable (X), it shows similar performance as compared to STT, and appears to outperform CoD
and MI. In addition, this study established a two-layer transcriptional regulatory network to
exemplify the usage of CID, in combination with GPCC, in deciphering gene networks based on
gene expression profiles from patient arrays.

Conclusion: CID is shown to provide useful information for identifying associations between
genes and transcription factors of interest in patient arrays. When coupled with the relationships
detected by GPCC, the association predicted by CID are applicable to the construction of
transcriptional regulatory networks. This study shows how information from different data sources
and learning algorithms can be integrated to investigate whether relevant regulatory mechanisms
identified in cell models can also be partially re-identified in clinical samples of breast cancers.

Availability: the implementation of CID in R codes can be freely downloaded from http://
homepage.ntu.edu.tw/~lyliu/BC/.

Background
A wide variety of bioinformatics tools are available to
assist in studying gene-gene, gene-protein, protein-pro-
tein, and protein-metabolite associations that control cel-
lular functions in both prokaryotes and eukaryotes [1,2].
With technologies capable of producing high-throughput
data at transcriptomic, proteomic, and metabolomic lev-
els, one has opportunities to accelerate the process of
mapping global gene activities into networks and linking
them with their corresponding phenotypic features [3-7].
In this study, a novel statistical approach was experi-
mented on human breast cancer gene expression arrays,
and the estrogen receptor  (ER) transcriptional activi-
ties were the main focus.

In studies using time course microarray data, correlation
analysis continues to serve as one of the most frequently
adopted methods in identifying co-expressed gene sets [8-
11]. For independent array experiments from patient tis-
sues, association analysis also plays an important role in
discovering relationships between transcription factors
and their regulated genes [12,13]. It has been shown in
those studies that the profile similarities present in co-
expressed genes and the association observed in between
transcription factors and their direct target genes are usu-
ally statistically significant and can be easily detected by
correlation measures that aim at identifying linear or par-
tial linear association. However, for the association that
cannot fit linear models well, which may be commonly
observed in biological systems, less attention has been
made due to fewer methods available in measuring such
type of association patterns. An alternative approach is to
employ non-linear methods that deal with discrete distri-
butions by binning strategy. In this regard, coefficient of
determination (CoD) and mutual information (MI) have
been proposed to find associated gene pairs [14,15].

Since 2005, a new measure of association, the coefficient
of intrinsic dependence (CID), has been introduced to be

applicable for microarray analysis in classification and
prediction of cancers at molecular level using clinical gene
expression arrays [16,17]. CID is designed to uncover the
dependency present in between the target (variable Y) and
the predictor (variable X) by comparing distributions of
the target under different values of the predictor. In this
study, CID was further tested in its utility for constructing
transcription factor directed regulatory networks using
clinical breast cancer gene expression arrays. The statistical
analysis conducted in this study reveals the potential of
using CID incorporated with correlation test to identify
ER-regulated gene sets in silico and then to construct a two-
layer regulatory network based on clinical breast cancer
gene expression arrays.

We first use three gene lists to evaluate the power of CID
in identifying ER-regulated genes. The first list (gene set I)
contains a set of genes with expression mechanisms
mainly driven by direct binding of ER to estrogen
response element (ERE) in the promoter regions [18,19].
The second and third lists are retrieved from a recent study
that provided potential primary (gene set II) and second-
ary target genes (gene set III) of ER based on experiments
of a cell culture model MCF-7 [20]. To clarify the contri-
bution of employing CID in detecting ER related genes,
we simultaneously include Galton-Pearson's correlation
coefficient (GPCC) [9,21,22], Student's t test (STT)
[21,23,24], coefficient of determination (CoD) [25-27],
and mutual information (MI) [28] when analyzing our
patient arrays (48A) with CID. Two types of information
are used as the predictor (variable X) when identifying ER-
regulated genes. The first one is the mRNA expression
level of the gene ESR1, and the second one is the protein
level status of ER. In the analysis of using mRNA levels,
GPCC shows promising ability of finding ER direct targets
(Figure 1a). On the other hand, when applied on discrete
variables (ER+/-), CID shows similar performance as com-
pared to STT (Figure 1b), and detects more TF-target asso-
ciations in gene set III than CoD and MI (Figure 1d).
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Moreover, CID reveals its advantage of discovering indi-
rect or partial linear association on continuous variables
(using mRNA levels of ESR1) (Figure 1c). This suggests
CID's application on construction of large-scale regula-
tory network, where we can include more functional tran-
scription factors of interest even if their protein level
statuses are not experimentally determined.

In the end, this study shows how information derived
from different data sources (a specially conditioned time
course data from cell line models and a selected set of
independent arrays from patient tissues) and learning
algorithms (clustering and various statistical analyses) can
be put together to investigate whether the relevant tran-
scriptional regulatory mechanisms built in cell models
can be partially re-identified in the given breast cancer sys-
tems (Figure 2). Thus, one can attempt to use this knowl-
edge to gain a greater understanding of the breast cancers

and uncover ways toward more rational adjuvant hor-
mone therapy for those patients.

Results and discussion
Statistical identification of ER associated genes in 48A
Thirty three genes (gene set I) are experimentally proved to
have ERE site(s) at the promoter regions by others
[18,19]. They are analyzed for the relationships with ER
in our cohort (48A) by different statistical tests. The main
focus of this study is to investigate whether the association
between a transcription factor (i.e. ER) and its target
genes (e.g. the genes in gene set I) can be detected based on
expression profiles. In other words, in absence of the pro-
tein status, the statistical method is expected to discover
the association between the regulators and their targets
based only on the mRNA levels of both genes, measured
simultaneously in a single experiment. In this regard, sta-

Number of selected primary target genes of ER (gene set II) and non-primary target genes of ER (gene set III) versus the number of reported genes that are considered associated with ESR1Figure 1
Number of selected primary target genes of ER (gene set II) and non-primary target genes of ER (gene set III) 
versus the number of reported genes that are considered associated with ESR1. (a) results of using ESR1 on gene 
set II; (b) results of using ER+/- on gene set II; (c) results of using ESR1 on gene set III; (d) results of using ER+/- on gene set III.
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tistical methods that deal with continuous variables in
both of the conditioners and the targets are the main
focus. This includes CID-ESR1, GPCC-ESR1, CoD-ESR1,
and MI-ESR1 (see Methods). To show the difference in
results when protein level information is adopted, we
access the ER status for each patient sample and conduct
association analysis by applying statistical methods deal-
ing with discrete variables as the predictors, including
CID-ER, STT-ER, CoD-ER, and MI-ER (see Methods). The
results are summarized in Tables S2–S4 of Additional File
1.

Here, we first report the results using mRNA levels of ESR1
as the variable X. Among the 33 genes analyzed, only four
genes (4/33) are consistently detected (p  0.05) by all the
four tests; 15 genes (15/33) are ranked as significance (p 
0.05) by at least one of the four statistical tests (Table S2).
This indicates that different methods have their prefer-
ences in detecting different types of TF-target association
patterns based on their gene expression distribution pat-
terns in a given population (Figure 3, Table S1 of Addi-
tional File 1, and Additional File 2). Among the 15 genes
significantly identified by at least one test, CID-ESR1

claims 12 genes as significance. The same number of genes
is identified by GPCC-ESR1. Both CID-ESR1 and GPCC
identify more genes than the other two methods. The
intersection information between any two methods is
summarized in Figure S3a of Additional File 1. Next, for
the analyses based on ER status, five genes (5/33) are con-
sistently detected by all the methods; 16 genes (16/33) are
ranked as significance by at least one of the four methods
(Table S2). In this case, CID-ER identifies the most
number of genes (12) among the four tests. Below we use
two examples (one is from gene set I) to explain why these
TF-target gene associations can be discovered by CID-
ESR1 and/or CID-ER.

CID is designed to measure association between two
genes of interest by evaluating the distribution pattern
diversity of target gene expressions among patient sub-
groups, which are partitioned based on the predictor gene
expressions in ascending order. Here, two genes, BRCA1
(a gene in gene set I) and CCNA2 (a gene that will be intro-
duced later), are used to illustrate the general interpreta-
tions for association measured by CID. The scatter plot of
BRCA1 versus ESR1 mRNA levels is shown in Figure 4a

The established ER mediated regulatory network is partially constructed by conducting GPCC and CID analyses in 48AFigure 2
The established ER mediated regulatory network is partially constructed by conducting GPCC and CID anal-
yses in 48A.
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accompanied with the result of GPCC, which is not signif-
icant (p > 0.05). This plot indicates a mixture of linear and
non-linear relationships between ESR1 and BRCA1. It has
been discussed that the promoter region of BRCA1 gene
might be responsive to estrogen stimulation in both direct
and indirect ways [18,19,29]. The indirect model suggests
other transcriptional regulators to bind the promoter
region before gathering active ER to form a complex. As
the result, it regulates BRCA1 expression via either increas-
ing or decreasing mRNA levels in a synergistic manner
(i.e. non-linear relationship) [30]. If without the influence
from some of regulators, ER differentially up or down
regulates BRCA1 mRNA expression via a basal activity of
transcriptional mechanism, by which the concentra-
tion(s) of all the essential components of transcriptional
machine determine the proportional changes of target
gene expression levels (i.e. linear relationship). Thus,
BRCA1 is ER target gene following both linear and non-
linear relationships which were seen by CID (p  0.05).

CID aims at discovering observations of BRCA1 that clus-
tered together given a certain range of expression levels of
ESR1. Intuitively, if the expression levels of BRCA1 are
clustered when given low expression of ESR1, one yields
high prediction power on the expression levels of BRCA1.
The red points in Figure 4a, for example, indicate one
would observe BRCA1 having expression level between -2
and -1 with high probability when the expression level of
ESR1 is within the range (-2, -1). Accordingly, Figure 4b
shows the red subgroup contributes the most to the CID
value (See Methods).

We further use CCNA2 (a gene from the 302 genes men-
tioned in the next subsection) as an example to illustrate
how CID detects remote association between a TF and its
target genes. Figure 4c–f describe the association between
CCNA2 and ER being evaluated by examining the rela-
tive mRNA levels of CCNA2 against the mRNA (or pro-
tein) levels of ESR1 (or ER) in different subgroups. (There

The brief demonstration of the selected situations when CID, GPCC, and STT evaluate the significance differently based on the same data distributionFigure 3
The brief demonstration of the selected situations when CID, GPCC, and STT evaluate the significance differ-
ently based on the same data distribution. (a)-(b) represent when variables are continuous and thus the CID analysis is 
compared with GPCC. (c)-(d) represent when one of the variables is discrete and thus the CID analysis is compared with STT.
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Statistical analyses for each gene in 48AFigure 4
Statistical analyses for each gene in 48A. Two examples are demonstrated in this figure. One is BRCA1 (a)-(b), 
which has been significantly identified by CID as the ER target gene. Another is CCNA2 (c)-(f), which was significantly recog-
nized by CID/STT.
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are five and two subgroups for CID-ESR1 and CID-ER
analyses, respectively.) Through a series of evaluations
directed by CID, the clustered subgroup in red is analyzed
to be the major contributor (see Methods) to CID-ESR1.
STT is designated to measure the difference of means
between groups, which are labelled with red dashed lines
in Figure 4e. A significant mean difference has been
claimed by STT (p = 0.032). On the other hand, CID meas-
ures not only the difference of means but the diversity of
generally distributional patterns. The differential cluster-
ing patterns of CCNA2 expression in ER(-) as compared to
ER(+) is measured by CID-ER with significance (p = 0.01).

To further clarify the difference among CID and other sta-
tistical methods, we use other two gene lists (gene set II
and III) to demonstrate that different methods may have
their own strengths in detecting ER target genes through
primary and non-primary mechanisms. The results have
been shown in Table S3 and S4 of Additional File 1.
Besides, the intersection information between any two
methods is summarized in Figure S3b-c of Additional File
1. In Figure 1, we show the selecting power of these tests
by plotting the accumulated number of identified known
target genes versus the number of top-ranked genes
reported (genes are ranked by the p-values in ascending
order). Figure 1a shows that GPCC outperforms the other
tests in finding ER direct targets (gene set II). However, in
Figure 1c, GPCC loses its advantage in detecting ER reg-
ulated genes through non-primary mechanisms (gene set
III). In Figure 1b, the performance of all the tests is similar
(CID-ER and STT-ER perform slightly better than the oth-
ers). Meanwhile, as shown in Figure 1d, STT demonstrates
its ability in detecting ER non-linear association when
provided with ER+/- status. Though CID does not outper-
form the other methods when using ER+/- status, it is
shown in Figure 1c that CID presents its favourable ability
of discovering remote association based on continuous
mRNA expressions, which reveals its own role in large
scale analysis where immunohistochemical status of gene
products cannot be always generated.

Combining CID and GPCC in constructing transcriptional 
regulatory network
Different statistical methods have their own uniqueness
(Table S1 in Additional File 1, Figure 3, and Figure 4), and
we have shown in the previous subsection that GPCC has
its strength in detecting ER primary targets. Meanwhile,
CID is shown to have preference over GPCC in detecting
association between transcription factors and their non-
primary downstream genes. While CID shows similar per-
formance with STT in discovering both primary and non-
primary association between TFs and the regulated genes
when given categorical distributions, CID has the advan-
tage over STT in detecting downstream genes of transcrip-
tion factors based on only mRNA expression values. This
indicates CID to be a new measure of association which
has its own role in uncovering TF-target relationships as
compared to GPCC and STT. Three methods do share
common and different preferences in measuring TF-target
association. Thus, we hypothesize that a combined analy-
sis would be desirable for discovering a range of TF-target
associations in order to take advantage of the strength
from different measures. In this subsection, we use an
example to explain how CID can be incorporated with
GPCC to discover association between regulators (predic-
tors – variable X) and the regulated genes (targets – varia-
ble Y), which have been translated as essential links to
build a transcriptional regulatory network. Since protein-
level information is not always available in gene expres-
sion array analysis, STT is not included in the following
example of application.

First, we use time course gene expression profiles on MCF-
7 upon estrogen treatment [31] to compile a list of 302
potential estrogen responsive genes by trajectory cluster-
ing [32] (see Methods). Among the selected genes, 201
probes (183 genes) were successfully matched in our
microarray 48A by gene names. Both GPCC-ESR1 and
CID-ESR1 are performed on these 201 candidate probes,
resulting in three distinct groups listed in Table 1. The first
group contains 60 genes, which are detected by GPCC-
ESR1 and thus considered as the potential ER-regulated
genes. It is observed that thirteen genes (FER1L3, FKBP4,
GREB1, IL17RB, NPY1R, PGR, PKIB, RERG, RET, RLN2,

Table 1: Summary for characteristics of the identified gene sets when constructing the two-layer network in Figure 2.

Reported as significance by: ER direct targets (18#) E2F targets (11&)

GPCC-ESR1 (60*) 13 1
CID-ESR1 but not GPCC-ESR1 (22*) 1 7

Neither CID-ESR1 nor GPCC-ESR1 (101*) 4 3

* The number of genes in 48A identified by the statistic of interest.
# The number of genes in 48A appeared in gene set II.
&The number of genes in 48A appeared in the gene list of E2F family direct target by others [38].
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SFXN2, SYTL4, and TPBG) in this group is found in gene
set II (direct target genes of ER predicted in Bourdeau et al.
[20]). This ratio (13/18) is considerably much higher than
random guess (18 60/183  5.9 genes).

The 22 genes in the second group shown in Table 1 are
reported to be significantly associated with the mRNA lev-
els of ESR1 by CID-ESR1, but not by GPCC-ESR1. It is
observed that some of the genes in this group are target
genes of E2F family members. For example, CCNE2 and
PCNA are previously reported to be regulated by E2F1,
and CCNA2 is found to be mainly targeted by E2F family
but is also as one of ER target genes [33-37]. In this
regard, we apply a further GPCC test on those 22 genes
versus each of the E2F family members appeared in our
microarray, including one probe of E2F1, E2F2, E2F4,
E2F5, E2F6, and E2F7 and two probes of E2F3. In addi-
tion, GPCC-ESR1 is performed on each E2F member to
validate the association between ESR1 and E2F members
in our array data (48A). As shown in Figure 2, only three
activators E2F1, E2F2, and one probe of E2F3 show signif-
icant dependency on ESR1 by GPCC in our cohort.
Among the 22 genes in the second group, 20 of them (20/
22) are found significantly correlated with at least one of
the expression levels of E2F1, E2F2, or E2F3.

It is worthy of notice that some of essential relationships
in a transcriptional regulatory network in general [38-40]
are found in Figure 2. For instance, nine of them (ATAD2,
CCNA2, CCNE2, MSH2, MSH6, PCNA, PRKDC,
RACGAP1, and RFC3) have been reported as E2F target
genes in another study [29,38], and FIGNL1 is predicted
as a novel E2F1-inducible gene in [39]. Among the 22
genes in this group, only two of them (NRCAM, and
C9orf80) do not show their dependency with any E2F
members, and thus are not shown in Figure 2.

We wonder if we can conclude that most genes in the first
group in Table 1 are estrogen responsive genes through
the primary mechanism and the second group through
non-primary mechanism involving other regulators. As
discussed previously, among the 18 genes of gene set II, 13
genes are found in the first group, but only one gene is
found in the second group. Furthermore, we observe that,
among the tested 183 genes, 11 of them are E2F target
genes reported in [38]. As shown in Table 1, seven of the
11 E2F target genes fall in the second group, but only one
is found in the first group. The differential characteristics
of the first group (60 genes) and the second group (22
genes) reveal the advantage of incorporating CID with
GPCC in constructing regulatory network. Finally, it is
observed that some previously annotated relationships
(four ER direct targets and three E2F targets) [20,38] are
falling in the third group (101 genes). Thus, they are spec-
ulated as not being significant in our cohort. Some gene

expression relationships in Figure 2 are unknown rela-
tionships and deserve to be further investigated by in vitro
studies.

Interestingly, CCNA2, CCNE2, and PCNA show being
down-regulated in our breast cancer cohort. It indicates
the suppressive expression of those identified genes regu-
lated by ER mediated transcriptional activities, which is
opposite to that in the estrogen treated MCF-7 model
[31,36]. It has been discussed previously that ER tran-
scriptionally regulates E2F1 expression via indirect tether-
ing mechanism [33]. In the presence of estrogen, E2F1 is
the major transcriptional regulator and/or the co-regula-
tor of genes mediating cell cycle in vitro [36]. Therefore, we
reason that upon estrogen exposure ER suppressed E2F1
mRNA expression in our cohort. The research evidence
also support E2F1 may being a major transcription factor
of CCNA2, CCNE2 and PCNA upon estrogen exposure
[36,37,41]. As a consequence of ER suppressive effect on
the gene expression of E2F1 in ER(+) population of 48A,
we conclude that ER suppresses the mRNA expression of
CCNA2, CCNE2, and PCNA mainly via E2F1, at least in
part.

One drawback for CID is that it does not tell whether it is
positive or negative association when a subject gene is
considered statistical dependent to the query transcription
factor. In this regard, GPCC is suggested to supply the
required information. Finally, we conclude that the exam-
ple shown in Figure 2 reveals the possibility of efficiently
constructing regulatory network for scientists to generate
more hypotheses based on statistical tests. In this paper,
we consider only one regulator X at a time to examine
whether it is related to the expression levels of the regu-
lated gene Y. In molecular systems, however, it is com-
monly observed that multiple regulators (multiple X's)
simultaneously govern the behaviour of Y. By definition,
CID is ready to be extended to measure associations
between multiple predictors (X's) and the target (Y). How
to construct a more realistic network by integrating such
multivariate associations identified by CID deserves fur-
ther studies.

Conclusion
We have developed a methodology for extracting a tran-
scriptional regulatory network in a high-throughput gene
expression data set. First, a new measure of association
CID is demonstrated to provide additional information to
other traditional tests. Second, a small example is
employed to illustrate that how estrogen responsive genes
with similar expression profiles can be first retrieved
based on time course experiments and then the structure
of network can be discovered by association analysis
combing GPCC and CID. We conclude this statistical
Page 8 of 13
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approach to be novel and it facilitates the process of draw-
ing a statistically relevant network in a given population.

Methods
Clinical breast cancer expression array
All the 48 clinical arrays (48A) used in this study were
from a patient cohort (started from 2002 to 2005) col-
lected at National Taiwan University Hospital (NTUH).
The tumor samples were defined by greater than 50%
tumor cells per high-power field examined in a section
adjacent to the tissue used. These clinical arrays were gen-
erated using the Human 1A (version 2) oligonucleotide
microarray from Agilent technologies, according to the
methods provided by the manufacturer [42]. All patients
had given informed consent according to guidelines
approved by the Institutional Review Board (IRB) of
NTUH. The quality control of expression arrays was veri-
fied by quantitative measurement of the mRNA levels of
four chosen genes, which each was normalized by the
constitutive mRNA expression level of TATA box-binding
protein (TBP). Estrogen receptor  (ESR1), progesterone
receptor A (PGR), G protein coupled receptor 30 (GPR30),
and human epidermal growth factor receptor-2 (HER-2/
neu) were the selected four genes. The data was generated
via quantitative reverse transcriptase polymerase chain
reaction (qPCR) and the detailed procedure was described
previously [43]. Four linear correlation plots, showing the
consistency between array and qPCR measurements are in
Additional File 1 (Figure S1), demonstrating the quality
control (QC) data for 48A.

Immunochemical staining of ER
All the paraffin sections of breast cancer specimens (3–5
m in thickness) on slides were processed in Ventana's
automated staining system (BenchMark® LT) (Ventana
Medical Systems, Inc) for the immunohistochemical stain
(IHC). There were two main steps. Firstly, the slides were
probed with CONFIRM™ anti-Estrogen Receptor (SP1)
rabbit monoclonal primary antibody (Catalog # 790–
4325, Ventana Medical System Inc., Tucson, AZ, USA).
Secondly, to localize and visualize ER protein within the
specimen, iVIEW™ DAB Detection kit (Catalog # 760-091,
Ventana Medical System Inc.) was applied. The negative
control slides for tumor specimens were solely stained
using iVIEW™ DAB Detection kit (Catalog # 760-091, Ven-
tana Medical System Inc.). All the slides after immunos-
tain were further examined by two experienced
pathologists. There are 12 ER(-) and 36 ER(+) specimens
in 48A. Based on qPCR, the ESR1 mRNA levels (-Cp)
were ranged from -4 to 3 for ER(+) group and from -9 to -
4 for ER(-) group (Figure S2 in Additional File 1).

Jarzabek et al. [44] reported that the lack of ER protein
expression is not due to lack of ER gene expression or
methylation of ER promoter, but due to differential

post-transcriptional or post-translational mechanisms. In
addition, Potemski et al. [45] reported their results not
supporting ER mRNA to be a key factor in molecular dis-
tinction between breast tumors. However, we found ESR1
(AF#5561, AF# stands for Agilent feature number) and
IHC of ER status is positively correlated but not in a linear
relationship (data not shown). Poola and Yue [46] sug-
gested a clinical applicable approach in using ER mRNA
level as the quantitative analysis for identification of
ER(+) breast cancer. And, one should be noticed that the
definition of positive IHC stain for ER protein in this
study is for tumor slide having shown greater than 10%
tumor cells with moderate to high amount of immunore-
active nuclear ER protein. In this study, we first used IHC
and qPCR data to demonstrate that the immunohisto-
chemical status of ER is correlated to its mRNA levels.
After that, we adopted the data in Figure S1 to illustrate
the validity of using array data for large-scale association
analyses in this study.

Microarray preprocessing and statistical analyses
Microarray raw data were through data processing which
included background correction, elimination of poor
quality spots, and log transformation of RNA measures
relative to a reference (Stratagene's human common refer-
ence RNA) using base-2 logarithm (Detailed information
about the gene expression data can be found at http://
homepage.ntu.edu.tw/~lyliu/BC/).

Coefficient of intrinsic dependence
The main statistical method applied in this paper for iden-
tifying the gene lists of estrogen regulated transcription
activities was the coefficient of intrinsic dependence
(CID) [16] with a few modifications. This new measure is
model-free and can handle both continuous and categor-
ical variables. For the genes of interest, we employed CID
to measure their individual association with both ER
IHC status (ER) and ER mRNA status (ESR1) and com-
pare the results with other applicable statistical methods
in either case.

CID-ESR1 is designated to describe the association
between ESR1 and a gene of interest. The computation of
CID-ESR1 for a selected gene includes several phases.
First, CID promoted subgrouping the entire cohort (48A)
into five approximately equally sized subgroups. The
rationale of dividing the cohort as five subgroups was
aiming at preserving the minimum number in each sub-
group ( 10) required for meeting the statistical accuracy
of CID analysis [16]. The partition of those five subgroups
was based on their presorted mRNA expression levels of
ESR1 in an ascending order. The smallest 20% of mRNA
expression levels of ESR1 were assigned to subgroup 1; the
smallest 20–40% of mRNA expression levels of ESR1 were
assigned to subgroup 2; and so on. In Figure 4a and Figure
Page 9 of 13
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4c, the five subgroups constructed according to the
ascending order of ESR1 mRNA levels were marked with
different colors. Let symbol yi and xi denote the mRNA lev-
els of gene Y and ESR1 for the i-th individual, respectively.
In each subgroup j, the following quantity was evaluated:

where

In the case studied here, N = 48 and Nj = 9 or 10. The

quantity in Equation (1) could be visualized in Figure 4b
and Figure 4d. The black solid curve, representing FN(yi),

is called empirical cumulative distribution function
(CDF) of Y, which is evaluated at all possible values
within the range of mRNA levels of gene Y. The colored

curves, representing (yi), are conditional CDF's of Y

for the corresponding subgroups in Figure 4a and Figure

4c. The discrepancy between FN(yi) and (yi) measures

the levels of dependence within the subgroup. A weighted
average is taken to account all discrepancies measured
within different subgroups and yields the value of CID-
ESR1:

where K = 5 is the number of subgroups and C(N) is a con-
stant depending only on N to ensure the CID values are
within the range [0,1] [17]. In particular, C(N) = 1/6 - 1/
[6(N)2] if the Y variable is continuous with all distinct val-
ues. In the case studied here, C(N) = 0.1666 = 1/6 - 1/
[6(48)2]. CID = 0 stands for "Independent" and CID = 1
for "Fully dependent".

CID can also evaluate the differential expression patterns
of genes in between ER(+) and ER(-) clinical arrays. We
designate it as CID-ER. The entire cohort (48A) was
divided into two subgroups, ER(+) and ER(-), respec-

tively. The computation of CID-ER is similar with that of
CID-ESR1, except the cohort (48A) was divided into two
subgroups (ER(+) and ER(-)) instead of five. Figure 4f pro-
vided one example of the computation of CID-ER. The
black solid curve represents the empirical CDF of Y, while
two colored curves represent empirical conditional CDF's
of Y for corresponding subgroups ER(+) (green) and ER(-
) (red), respectively. CID-ER can be computed by

where Nj = 36 and 12 for ER(+) and ER(-) subgroups,
respectively, and C(N) = 0.1666 like that in CID-ESR1.

The subgroup of gene Y whose conditional CDF was the
farthest away from the CDF of the whole cohort (black
solid line) (for example, the red dashed line in Figure 4b,
the light-blue dashed line in Figure 4d and the red dashed
line in Figure 4f) contribute as the largest to the CID value
of gene Y and resulted in the significance evaluated by
CID [17]. It can be observed that the subgroups contribute
the most to the CID values are also the most aggregated
subgroups in the scatter plots.

Other statistical methods for comparison
Four more statistical methods were included in this study
in addition to CID. They were Galton-Pearson's correla-
tion coefficient (abbreviated to GPCC; analysis for contin-
uous variables) [9,21,22], Student's t-test (abbreviated to
STT; analysis for binary variables) [21,23,24], coefficient
of determination (CoD) [25-27], and mutual information
(MI) [28]. CoD and MI were applied to measure associa-
tion of genes with both ER IHC status (ER) and ER
mRNA status (ESR1). However, CoD and MI are originally
designed for discrete data only (can be either binary or
multiple classes) and partitioning is required in order to
account for association between continuous variables. We
intuitively partitioned the entire cohort (48A) by the same
method used by CID. The brief feature descriptions for
these statistical methods are demonstrated in Table S1 of
Additional File 1. CID consists of the concepts for using
the statistical evaluations on the significance for the linear
and nonlinear association between two genes of interest
and describes the significance by evaluating the distribu-
tion pattern of gene expression in subgroups. When two
genes have the linear association, it indicates the expres-
sion profiles of those two genes being proportional or
inversely proportional to each other. Otherwise, we
claimed that two genes have nonlinear association.

In Figure 3, two typical distinguished features of CID are
demonstrated in comparison with two most commonly
used methods, GPCC and STT. When the expression val-
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ues of gene Y under a given expression condition of gene
X are clustered together, CID gives a higher score indicat-
ing the significance in association but no significance
observed by GPCC (Figure 3a). However, when the scat-
tering expression pattern occurs, CID gives a lower score
indicating independent association (Figure 3b). In the
case of Figure 3b, the data is considered to be insignificant
by CID analysis but it is found to be significant by GPCC
as linear association (Figure 3b). When the binary varia-
bles (e.g. ER+/-) are applied in finding the association pat-
terns, STT only evaluates the significance statistically by
evaluating whether two sample means are different or not
regardless the data distribution patterns (Figure 3d), while
CID determines the significance solely via the closely clus-
tered distribution of data even both variables having the
similar means (Figure 3c).

Accessing the significance of genes by permutation
After obtaining a statistic for gene Y, the p-values of the
statistics were accessed by 1,000 times of permutation. In
each time of permutation, the 48 mRNA levels of gene Y
are randomly reordered. The statistics can be computed
again based on reordered mRNA levels of gene Y. These
1,000 values of statistic obtained by random permuta-
tions mimic the distribution of the statistic under inde-
pendence. The p-value is accessed by the number of 1,000
simulated values greater than or equal to the observed
value of statistic divided by 1,001. The genes were ranked
according to the ascending order of p-values. Whenever
there are more than one gene relate to the same p-value,
the ranking scores for those genes are given differently
based on their observed values of statistics in a descending
order. The permutation procedure described above is
applied to all the statistical tests conducted in this paper.

Gene lists for performance comparison
Three lists are collected for comparing the predicting
power of CID with GPCC and STT. The first gene list con-
tains 33 genes that were characterized as ER target genes
via the in vitro findings of both O' Lone et al. [19] and
Klinge [18]. These 33 genes have ERE at their promoter
regions. This gene set is designated as gene set I throughout
the paper. In addition to gene set I, we further include the
primary and secondary estrogen target genes reported in a
recent study [20]; two lists are provided in its Table 1,
where the list on the right-hand side provides the poten-
tial primary genes regulated by estrogen and the un-
bolded genes on the left-hand side are considered as
potential secondary (or even higher order) target genes.
We organized these two gene lists as gene set II (direct tar-
get genes of ER) and gene set III (indirect target genes of
ER) by finding the corresponding gene probes in our
arrays, which results in 85 genes in gene set II and 46 genes
in gene set III.

MCF-7 time course expression array
The MCF-7 time course expression array (Affymetrix
human genome u133 plus 2 arrays) was downloaded
from supplementary data in online publication of Carroll
et al. [31]. The data contains gene expression profiles of
MCF-7 upon estrogen treatment for 4, 8 and 12 hours,
respectively. After gene filtering and statistical test
(ANOVA), there were 1,438 genes left. Those genes were
then feed into the trajectory clustering algorithm [32]. In
total, 302 genes were classified as continuously up-regu-
lated estrogen responsive genes after trajectory clustering
(the increase-increase-increase (III) pattern). In this paper
we used these 302 genes as a gene set for constructing a
two-layer regulatory network. After comparing the gene
symbols of the 302 genes with the probe list of our arrays,
total only 183 genes (represented in 201 probes) are
known for their gene names. Therefore, they are collected
as the gene candidates of the constructed network.
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