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Abstract
Previous research on visual perception of surface material has focused primarily on smooth, matte
surfaces, neglecting surfaces with pronounced three-dimensional (3D) texture or specularity.
Furthermore, studies have typically focused on single material properties, with no consideration of
possible interactions. In this study, we used a conjoint measurement design to determine how
observers represent perceived 3D texture (“bumpiness”) and specularity (“glossiness”) and
modeled how each of these two surface material properties affects perception of the other.
Observers made judgments of “bumpiness” and “glossiness” of surfaces that varied in both surface
texture and specularity. We found that a simple additive model captures visual perception of
texture and specularity and their interactions. We quantify how changes in each surface material
property affect judgments of the other. Conjoint measurement is potentially a powerful tool for
analyzing surface material perception in realistic environments.
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Surfaces can be analyzed at many spatial scales. Koenderink & Van Doorn (1996) delineate
three distinct scale ranges in the perception of surface properties: megascale, mesoscale, and
microscale. Megascale variations are defined by differences in global shape, e.g., the
spherical shape of the orange in Figure 1. Mesoscale refers to the properties of the orange
skin, i.e., the irregular and bumpy surface (mesotexture) of the orange which is similar to a
lemon, but dramatically different from a smooth rubber ball. Variations at the microscale
level include changes in the otherwise invisible surface structure of the orange skin that
result in its glossy appearance. To visually identify an orange, we take into account the
geometry at all three scales. Certain perceptual tasks such as discriminating an orange from
an orange-colored rubber ball require an ability to detect differences in structural geometry
at the meso- and microscales, i.e. material properties. Judgments of surface material are
made frequently and effortlessly, yet surprisingly little is understood about how the visual
system represents materials.

One difficulty in studying material perception is that light interacts with surfaces in a
complex way. As a consequence, it may be difficult for a visual system to estimate surface
material properties independently of one another and of illumination and viewing geometry.
Failures of “material constancy” have been demonstrated for a variety of surfaces viewed
under different illumination conditions (Pont & te Pas, 2006). Visual judgments of
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roughness, glossiness, and color are not independent of viewing conditions or other surface
properties (e.g., Billmeyer & O'Donnell, 1987; Ferwerda, Pellacini, & Greenberg, 2001;
Fleming, Dror, & Adelson, 2003; Ho, Landy, & Maloney, 2006; Ho, Maloney, & Landy,
2007; Hunter & Harold, 1987; Pfund, 1930; Sève, 1993; Zaidi, 2001; although see Obein,
Knoblauch, & Viénot, 2004).

Previous work in material perception has considered one perceived surface property at a
time; however, most surfaces display several properties (e.g., the gloss and mesotexture of
an orange, Figure 1). It would be useful if estimates of gloss were unaffected by surface
mesostructure and vice versa. But, cues to one surface property (e.g., size and position of
specular highlights) can affect visual judgments of another property (e.g., shape). For
example, gloss can affect the perception of global shape by making surfaces appear more
curved (Braje & Knill, 1994;Mingolla & Todd, 1986;Todd & Mingolla, 1983;Todd,
Norman, Koenderink, & Kappers, 1997) and making convex surfaces appear concave (Blake
& Bülthoff, 1990,1991; but also see Nefs, Koenderink, & Kappers, 2006). Similarly, it has
been shown that shape can affect judgments of surface reflectance (Nishida & Shinya,
1998). Whether or not the presence of a specularity improves shape perception, the
systematic patterns of distortions created by specular highlights on a surface provide a
substantial amount of information about 3D surface curvature, and human observers use this
information to derive 3D shape (Fleming, Torralba, & Adelson, 2004;Norman, Todd, &
Orban, 2004).

Figure 2 illustrates how perceived gloss and mesotexture interact. Figure 2b has the same
surfaces as Figure 2a with specular highlights greatly reduced. The surfaces look less glossy,
as one might expect, but also less bumpy. This interaction is not unexpected given recent
research. Techniques have been developed to successfully recover mesotexture from
specularities (Chen, Goesele, & Seidel, 2006;Wang & Dana, 2006). This suggests that a
surface’s specular content can provide strong cues to local shape geometry, i.e.,
mesotexture. The effect of reducing specularities in Figure 2 suggests that two properties—
gloss and mesotexture—interact in judgments of glossiness and bumpiness.

We have two goals in this study. First, we wish to estimate perceptual scales for two
material properties, gloss and mesotexture. Second, we wish to model and understand their
evident interaction. We employ a particular method, conjoint measurement, that allows us to
achieve both goals with one experimental design (Krantz, Luce, Suppes, & Tversky, 1971,
Chaps. 6,7; Luce & Tukey, 1964; Roberts, 1979, Chap. 5). We will demonstrate that an
additive conjoint measurement model sufficiently describes the psychophysical mapping of
each property to an internal scale of gloss and bumpiness. Although this is not the first study
to examine the perceptual scaling of a material property (i.e., gloss, Ferwerda et al., 2001),
this is the first study to simultaneously estimate the perceptual scaling for each of two
material properties of a given surface and provide a simple model of their interaction.

Methods
Stimuli

Stimuli were 3D mesotextured surfaces positioned in a frontoparallel plane 70 cm in front of
the observer. For convenience we will refer to the mesotexture in the surfaces we employ as
“bumpiness.” Each stimulus was assigned one of five possible bumpiness levels
(mesotexture) and one of five gloss levels (specular reflectance) for a total of 25 possible
surfaces. We denote the physical value of glossiness as gi and bumpiness as bj (i, j = 1,2,…,
5).
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We defined the stimuli using a Cartesian coordinate system whose x- and y-axes lay within
the fronto-parallel plane of the stimulus. The z-axis was parallel to the observer’s line of
sight. Four hundred points in the stimulus plane forming a 20 × 20 cm square grid were
jittered in the x- and y-directions by random values ranging over ±0.2 cm. Ellipsoids
(possibly intersecting) were centered on each of these 400 points with principal axes parallel
to the x-, y-, and z-axes. The radii in the x- and y-directions were 1 cm. For a surface texture
with bumpiness level bj, the z-radii of the ellipsoids were chosen randomly from the range
[0,bj], where bj = (j + 1)2/10 cm.

The gloss value gi was used to set two parameters associated with specular reflectance in the
Ward reflectance model as implemented by the Radiance rendering software (Ward, 1994):
the specular reflectance parameter ρs, which controls the proportion of incoming light
reflected off of the surface at an angle close to the angle of incidence, and the
microroughness parameter α, which controls the amount of blurring of the specular lobe.
Gloss level g1 corresponded to a matte (Lambertian) surface reflectance (i.e., ρs = 0, making
α irrelevant). Gloss levels g2 through g5 corresponded to four logarithmically spaced levels
ρs ranging from 0.007 to 0.053 and α ranging from 0.178 to 0.032. A combination of a high
value of ρs and low value of α yielded a surface of high gloss and sharp highlights, while a
low value of ρs and high value of α yielded a surface of low gloss with blurred highlights.
These gloss levels were chosen such that each level of gloss was approximately equally
discriminable from the next (see Fleming et al., 2003; Pellacini, Ferwerda, & Greenberg,
2000). The diffuse component (ρd) or surface albedo was fixed at red = 0.1, green = 0.2, and
blue = 0.1, yielding a dark green surface color. All surfaces were rendered with
interreflections (up to two ambient bounces) as well as occlusions and vignetting.

Each surface was rendered under a rectangular light source with dimensions 92 × 52 cm
positioned above and to the left of the observer. These scene and object parameters provided
the observer with several cues to gloss including the color and shape of the specular
highlights. Each stimulus was rendered from the right and left eye’s viewpoints, and viewed
binocularly, providing a binocular disparity cue to depth. Four random surfaces were
generated for each combination of gloss and bumpiness levels to minimize the chance of
observers using idiosyncratic patterns in the distribution of ellipsoids to aid their judgments.
Figure 3 shows a single stimulus stereo pair and the entire set of stimuli varying in physical
gloss and bumpiness.

Apparatus
We presented the left and right images to the corresponding eyes of the observer on two 21-
in. Dell LCD monitors placed to the observer's left and right and viewed through a mirror
stereoscope. Lookup tables were used to correct the nonlinearities in the gun responses and
to equalize the display values on the two monitors based on luminance measurements made
with a Photo Research PR-650 spectrometer. The maximum luminance achievable on either
screen was 114 cd/m2. The stereoscope was contained in a box whose side measured 124
cm. The front face of the box was missing and that is where the observer sat in a chin/head
rest. The interior of the box was coated with black flocked paper (Edmund Scientific,
Tonawanda, NY) to absorb stray light. Only the stimuli on the screens of the monitors were
visible to the observer. The casings of the monitors and any other features of the room were
hidden behind the non-reflective walls of the enclosing box. Additional light baffles were
placed near the observer's face to prevent light from the screens reaching the observer's eyes
directly. The optical distance from each of the observer's eyes to the corresponding
computer screen was 70 cm. The stimuli were rendered to be 70 cm in front of the observer
to minimize any conflict between binocular disparity and accommodation. The observer's
eyes were approximately in line with the center of the scene being viewed.
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Software
The experimental software was written in the C programming language. We used the X
Window System, Version 11R6 (Scheifler & Gettys, 1996), running under Red Hat Fedora
Core 2 for graphical display. The computer was a Dell Optiplex GX 270 Workstation with a
Matrox G450 graphics card. The rendered stereo image pair was represented by floating
point RGB triplets for each pixel of the image. These triplets were the relative luminance
values of each pixel. We translated the output relative luminance values to 24-bit graphics
codes, correcting for nonlinearities in the monitors' responses by means of measured lookup
tables for each monitor.

Procedure
Two sets of observers participated, the first judging bumpiness (Experiment 1) and the
second judging glossiness (Experiment 2). All observers first participated in a screening test
that consisted of two blocked conditions in which they were required to make judgments of
bumpiness or glossiness within each given gloss or bumpiness level, respectively. We
performed the screening test to ensure that observers could order the stimuli in bumpiness
for fixed gloss and vice versa. In doing so, we tested one of the necessary conditions for an
additive conjoint representation, monotonicity (Krantz et al., 1971, p. 249).

On each screening trial, observers viewed two surfaces in succession and judged which
appeared bumpier or glossier, depending on the condition. In the condition in which
observers judged bumpiness, only the comparisons between stimuli with the same gloss
level were tested, resulting in a total of 50 trials (one trial per comparison). Likewise,
glossiness judgments were only made for pairs of stimuli having the same level of
bumpiness.

On each trial of the main experiment, observers viewed one of the 325 possible pairs
(including self-comparisons) of the 25 surfaces in Figure 1. Like the screening test, the
observer’s task was to judge which of the two surfaces on each trial appeared bumpier
(Experiment 1) or glossier (Experiment 2). Each pair was presented three1 times.

The trial sequence proceeded as follows: first, a central fixation point was presented for 200
ms. Next, the first surface was presented for 400 ms followed by a 200 ms interstimulus
interval (blank frame). Then, the second surface was presented for 400 ms. The observer
indicated by key press whether the first or second surface appeared to be bumpier (or
glossier). The next trial was initiated immediately after the response.

Observers
A total of 12 observers participated in this study (six each in Experiments 1 and 2). One
additional observer failed to pass the screening test (i.e., obtained less than 90% correct
responses) and was excluded from the main study. All observers were unaware of the
purpose of the study and had normal or corrected-to-normal vision.

An additive conjoint measurement model of material perception
To determine whether observers could ignore cues to gloss when making judgments of
bumpiness and vice versa, we fit an additive conjoint model to our data. For the model, it
was assumed that the physical gloss level gi and bumpiness level bj of surface sij separately
and additively contribute to perceived bumpiness and gloss. We modeled perceived

1This value was calculated to be the smallest number of repetitions needed to produce reliable parameter estimates for gloss and
bumpiness based on simulations of the additive conjoint model.
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bumpiness  for the additive model as the sum of contributions (“cues”) to bumpiness from
physical bumpiness Bb(bj) and physical gloss Bg(gi),

(1)

Perceived gloss was modeled similarly,

(2)

Note that this is not the typical weighted linear cue combination model commonly discussed
in the literature (e.g., Landy, Maloney, Johnston, & Young, 1995). We assume only that
cues combine additively after we scale them by functions Bg(.), Bb(.) and Gg(.), Gb(.).

As written, the two equations model interactions by additive “contamination” of the estimate
of one property by cues to the other. If the two surface properties do not interact, then

 should equal zero for all i and j. When analyzing the data, we also test this simple
additive model against a model that allows more complex, non-additive interactions between
the surface properties.

In comparing the bumpiness of surfaces Sij and Skl, we assume that the observer forms the
noise-contaminated decision variable,

(3)

and judges surgace Sij as bumpier precisely when Δ > > 0. The parameter σ represents the
observer’s precision in judgment.

If we simultaneously scaled all of the values of  and σ by a positive constant, or added a

constant to all of the values of , the predictions of the model would not be affected. For

convenience, we anchor the scales by setting  and scale them so that σ = 1. We

then estimate the remaining 8 free parameters  using maximum
likelihood estimation (Mood, Graybill, & Boes, 1974). We fit a similar model of
comparisons of gloss.

Our model makes no assumption about the direction of the cue effect, i.e., whether gloss
increases or decreases bumpiness; estimated parameters can be positive or negative. Indeed,
in a departure from the ordinary additive conjoint model (Krantz et al., 1971, Chap. 6) we do
not force Bg(.), Bb(.) and. Gg(.), Gb(.) to be monotonic functions.

Results
Judgments of bumpiness and gloss from two typical observers for the 25 stimuli used in
Experiments 1 and 2, respectively, are shown in the left panels of Figures 4a and 4b. The
right panels show predicted results of an ideal observer with judgments of bumpiness and
gloss uncontaminated by cues from the task-irrelevant property. Notice that although
observers’ performance is fairly close to ideal, there are obvious deviations. We estimated

the perceived bumpiness  and gloss  parameters by maximum likelihood fit of the
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additive model to determine the relationship (if any) between gloss and mesotexture. Figure
4c shows the averaged parameter estimates for all observers in Experiment 1 (top panel) and
2 (bottom panel). Parameter estimates for the observers shown in 4a and 4b are indicated by
open circles. Note that the parameter estimates were first normalized to the maximum value

of  (or ) for each observer to best illustrate the relative magnitude of cue contamination.
The monotonically increasing form of Bb(.) shows that perceived bumpiness increased with
bumpiness level. Likewise, perceived gloss increased with gloss level. This is not surprising
given that observers were screened in advance to ensure that their ordering of bumpiness
and gloss was close to veridical. What is surprising is that the functions of perceived
bumpiness and gloss were strikingly similar across all observers in each respective
experiment (data not shown, except indirectly in Figure 5) suggesting that observers used
one common perceptual scale for bumpiness and one for gloss in each experiment. The
function Bb(.) increases approximately linearly with increasing bumpiness level and Gg(.) is
sigmoidal in form. Thus, the internal scaling of bumpiness and glossiness can be described
by fairly simple transformations of the corresponding physical properties.

Were observers’ judgments of bumpiness and gloss contaminated by cues to the irrelevant

property? Clearly, all parameter estimates  were greater than zero for i, j = 2,…,5
for the two typical observers highlighted in Figure 4c. We tested whether there was
significant contamination of bumpiness judgments by changes in gloss and vice versa for all
observers using a nested hypothesis test (Mood et al., 1974, p. 440 ff.)..

To do this, we fit an independent-property model in which these task-irrelevant

contributions  were fixed at zero. Thus, for perceived bumpiness, the
independent-property model has only four parameters  and likewise for
the gloss model. The fits of these independent-property models were compared to the
additive-model fits by the same likelihood-ratio test. The independent-property model was
rejected for four out of six observers in both Experiments 1 and 2 at the Bonferroni-
corrected level (χ2 ≥ 0.089, p < 0.008). In other words, most observers could not ignore cues
to gloss in making judgments of bumpiness and, similarly, could not ignore cues to
bumpiness in making judgments of glossiness. An increase of gloss increased perceived
bumpiness on average for all observers by as much as 11% of the range of bumpiness levels
we used. Likewise, glossiness judgments for surfaces with higher bumpiness level increased
by as much as 27% of the range of gloss levels used here.

We plot the same curves shown in Figure 4c in a form commonly used in analysis of
variance in Figures 5a and 5b (top rows, solid lines) for all observers in Experiments 1 and
2, respectively. The solid lines correspond to the fit of the additive model. The additive
model forces these level contours to be parallel. The clean separation of the contours
confirms that perceived bumpiness increased with physical bumpiness and perceived gloss
increased with physical glossiness for all observers (identical to the upper curves in Figure
4c). Almost all observers perceived an increase in bumpiness with increasing gloss level as
shown by the slight upward trend in almost all of the bumpiness level contours (Figure 5a).
Similarly, most observers could not ignore bumpiness when making judgments of glossiness
(Figure 5b), although in this case the trend was less clearly monotonic again confirming the
trend observed in Figure 4c.

We next tested whether the interaction between bumpiness and gloss could be sufficiently
described by the simple additive “contamination” model defined in Eq. 1 and Eq. 2. We
compared the fit of the additive model to that of a full model that allows nonlinear
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interactions between the two cues. In the full model, we model the perceived bumpiness 
as an unconstrained value

(4)

and we model perceived gloss similarly,

(5)

As before, we assume that, in comparing the perceived bumpiness of surfaces Sij and Skl, the
observer forms the noise-contaminated decision variable

(6)

and judges surface Sij as bumpier precisely when Δ > 0. Again, without loss of generality,
we anchor the scale by setting  and set σ = 1. We then estimate the remaining 24

values . We fit the glossiness judgments analogously.

The full model parameter estimates of  are plotted as dashed lines in Figures 5a
and 5b, respectively. We performed a nested hypothesis test (Mood et al., 1974, p. 440 ff.) to
determine whether the full model resulted in a significantly better fit to the choice data than
the more constrained additive model. The nested hypothesis test revealed that the additive
model performed just as well as the full model for five out of the six observers in
Experiment 1 and three out of six of the observers in Experiment 2 at the Bonferroni-
corrected level (χ2 ≥ 32.61, p < 0.008). Table 1 reports the log-likelihood and corresponding
p values. We also regressed the additive model predictions against the full model
predictions. R2 values ranged from 0.97 to 0.99 (median 0.98) for the six observers in
Experiment 1 and 0.83 to 0.99 (median 0.96) for Experiment 2 suggesting that the additive
and full model predictions were similar. Finally, we computed the residual differences

between the two models for both judgments (i.e., ), and normalized the
residuals for each subject to have mean 0. Gray-scale plots of the normalized residuals are
shown in the bottom rows of Figures 5a and 5b. The residual values are small and show no
obvious common pattern. Thus, we conclude that the additive model is adequate to model
the data.

Discussion
In this study, we used conjoint measurement to derive scales for the perceptual correlates of
two surface material properties, gloss and bumpiness. An ideal observer judging glossiness
should ignore variations in surface texture, and vice versa. In contrast, human observers
perceived physically glossier surfaces to be bumpier and physically bumpier surfaces to be
glossier, suggesting that cues to mesoscale and microscale properties are inextricably linked.
In terms of the estimated perceptual scales, we found that we could model the interaction of
the two properties as a simple additive “contamination” of each by the other. The degree of
contamination, while significant, is small on average for all observers: about 11% for
contamination of bumpiness by gloss and 27% for contamination of gloss by bumpiness,
relative to the range produced by the relevant cue.
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What might explain these interactions? The bas-relief ambiguity (Belhumeur, Kriegman, &
Yuille, 1999) may have contributed to the observed misestimates of bumpiness. But, the
availability of binocular disparity should have helped observers to overcome this ambiguity
as well as to maintain gloss constancy across variations in mesotexture (Blake & Bülthoff,
1990, 1991; Norman et al., 2004). As for misestimates of glossiness, previous studies on the
perception of gloss suggest that the changes in cues to gloss like the shape, size, and
distribution of specular highlights affect judgments of glossiness (e.g., Beck & Prazdny,
1981; Berzhanskaya, Swaminathan, Beck, & Mingolla, 2005). Thus, it is possible that
observers’ judgments of the glossiness of surfaces used in this study were affected by local
changes on each surface bump produced by changes in physical bumpiness.

There is a growing body of evidence that the human visual system makes use of simple,
image-based statistics to evaluate material properties. Nishida & Shinya (1998) found visual
estimates of surface reflectance can be modeled by a luminance histogram matching
algorithm. Similarly, Fleming, Dror, & Adelson (2003) found that although highlights alone
may be used to distinguish between matte and glossy surfaces, perceived gloss is a function
of the statistics of the responses of band pass spatial filters to the image. Recently,
Motoyoshi, Nishida, Sharan, & Adelson (2007) found that visual estimates of gloss correlate
well with the skew of the distribution of luminance values and that changing the skewness of
the distribution affected perception of both lightness and glossiness of the surfaces.
Similarly, Ho et al. (2006; 2007) found that human observers’ estimates of surface
roughness are affected by image statistics such as the proportion of pixels in shadow.

Judgments of glossiness, bumpiness and global shape all provide information about the
structural properties of the orange in Figure 1 but at very different spatial scales. The
conjoint measurement procedure we employed here allowed us to simultaneously estimate
the mapping between information at two of these scales and assess how information at one
scale affected perception at the other. We found that both the derived perceptual scales and
the interaction could be modeled in a remarkably simple form. Conjoint measurement is one
type of scaling procedure that is potentially a powerful tool for analyzing surface material
perception and, more generally, the perception of more complex visual scenes.
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Figure 1.
An example of a typical object (an orange) that has (a) megascale, (b) mesoscale, and (c)
microscale properties.
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Figure 2.
Examples of real world mesoscale texture (a) with and (b) without specular highlights.
Images of the raspberries without specular highlights were created by using a polarizing
filter and the image of the toad was created by digitally removing highlights using the
Adobe Photoshop CS™ software.
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Figure 3.
(a) Example stimulus stereo pair. Stimuli were green surface patches composed of 20 × 20
intersecting ellipsoids. This example has physical bumpiness level i = 3 and gloss level j = 2.
The left and right image pairs are for crossed and uncrossed viewing, respectively. (b) One
representative set of stimuli showing all combinations of gloss and bumpiness level.
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Figure 4.
Results for Experiments 1 & 2. (a) Bumpiness judgments made by one typical observer RK
in Experiment 1 (left panel) and predicted judgments of bumpiness uncontaminated by
changes in physical gloss for the ideal observer (right panel). The gray level of each square
in the matrix represents the proportion of time that Surface B was perceived bumpier than
Surface A for each pairwise comparison. (b) Glossiness judgments made by one typical
observer FC in Experiment 2 (left panel) and predicted judgments of glossiness
uncontaminated by changes in physical bumpiness for the ideal observer (right panel). (c)
Averaged normalized additive model parameter estimates for all observers are shown for
Experiment 1 (top panel) and 2 (bottom panel). Parameter estimates for bumpiness or
glossiness judgments as a function of gloss level— , respectively—are indicated in

gray and as a function of bumpiness level— , respectively—are indicated in black.
Parameter estimates for observers RK and FC are indicated by the open circles in each
respective plot. Standard errors across observers are plotted for each experiment (N=6).
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Figure 5.
Full and additive model predictions and residual differences for all observers in Experiments

1 & 2. (a) Estimates of perceived bumpiness from the fits of the full ( , dashed curves) and

additive ( , solid curves) models are plotted as a function of gloss level, with bumpiness

level as the parameter. Corresponding residual differences  are shown as grayscale

plots in the bottom row. (b) Similar plots of perceived gloss estimates from the full ( ,

dashed curves) and additive ( , solid curves) models as a function of bumpiness level with

gloss level as the parameter. Again, corresponding residual differences  are shown
in the bottom row. Significant differences between the additive and independent-property
model fits are indicated with the ♦ symbol. Significant differences between the full and
additive model fits are indicated with the ❖ symbol. (Note: Residuals were forced to have
mean 0; an additive shift of scale values leaves the predictions of both models unchanged.)
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