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The Gestalt psychologists reported a set of laws describing how vision groups elements to recognize
objects. The Gestalt laws “prescribe for us what we are to recognize ‘as one thing’” (Köhler, 1920).
Were they right? Does object recognition involve grouping? Tests of the laws of grouping have
been favourable, but mostly assessed only detection, not identification, of the compound object.
The grouping of elements seen in the detection experiments with lattices and “snakes in the grass”
is compelling, but falls far short of the vivid everyday experience of recognizing a familiar, meaningful,
named thing, which mediates the ordinary identification of an object. Thus, after nearly a century,
there is hardly any evidence that grouping plays a role in ordinary object recognition. To assess group-
ing in object recognition, we made letters out of grating patches and measured threshold contrast for
identifying these letters in visual noise as a function of perturbation of grating orientation, phase, and
offset. We define a new measure, “wiggle”, to characterize the degree to which these various pertur-
bations violate the Gestalt law of good continuation. We find that efficiency for letter identification is
inversely proportional to wiggle and is wholly determined by wiggle, independent of how the wiggle
was produced. Thus the effects of three different kinds of shape perturbation on letter identifiability
are predicted by a single measure of goodness of continuation. This shows that letter identification
obeys the Gestalt law of good continuation and may be the first confirmation of the original
Gestalt claim that object recognition involves grouping.
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In what many take as the defining paper of the
Gestalt movement in perception, Wertheimer
(1923; translated in Ellis, 1938) made a bold
claim, the laws of grouping, and set an ambitious
goal, to understand object recognition. In that
paper, “Laws of organization in perceptual
forms”, he said: “I stand at the window and see a
house, trees, sky.. . .. I gaze for a long time.. . .
And I discover that part of a window sash and
part of a bare branch together compose an N.”
Wertheimer presented several “Gestalt” laws that
describe how we group elements to see shape.
The Gestalt laws “prescribe for us what we are to
recognize ‘as one thing’” (Köhler, 1920; excerpts
are translated in Ellis, 1938. We quote p. 168
[German]/p. 32 [English].). Nearly a century
later, the laws have held up well. They are routi-
nely mentioned and accepted. A few more have
been added. None have been rejected.
Wertheimer got the ball rolling by presenting
compelling visual demonstrations of each law.
For example, he presented regular lattices of dots
with different spacings horizontally and vertically
and showed that this spacing determined the per-
ceived grouping into rows or columns (Figure 1).
Many of us show Wertheimer’s demonstration,
unchanged, in our undergraduate classes in per-
ception because it makes his point well. It shows
a Gestalt law in action: Proximity promotes group-
ing. The grouping is assessed by the observer’s
binary preference (column vs. row). It is just as
exciting today as in 1923 that simple principles

can be demonstrated so easily, bringing us closer
to understanding how we recognize objects. It
was brilliant to play off horizontal versus vertical
grouping, allowing simple printed demos to
titrate the various laws of grouping against each
other. It is a rich paradigm, still bearing fruit
(Kubovy & van den Berg, 2008).

Palmer and Rock (1994, p. 30) said, “The Gestalt
work on perceptual organization has been widely
accepted as identifying crucial phenomena of per-
ception, yet it has had curiously little impact on
and integration with modern perceptual theory”.
Wertheimer’s dot lattice is exciting as a first step,
but disappointing as an end point, if the goal is to
understand object recognition. Everyone reports
seeing grouping in the lattices, but seeing elements
as a group is only a pale shadow of ordinary object
recognition (Figures 1 and 2). Here we present
experiments showing that grouping (specifically,
good continuation) contributes to object recog-
nition (identifying a letter). Before presenting
our experiments, we draw the reader’s attention
to the surprising omission of object recognition
in the large literature on grouping. Thus, this
may be the first evidence that grouping contributes
to object recognition.

How can this be? Are there not innumerable
examples in the literature of grouping influencing
object recognition? What about the Gottschaldt
embedded figures, and the many papers on
figure–ground and amodal completion? Most of
the studies of grouping, including those just

Figure 1. Dot lattices, reproduced from Wertheimer (1923), demonstrating grouping by proximity. Columns (left) or rows (right) are

evident, but they are not familiar, meaningful, named things.
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mentioned, used binary discrimination tasks,
which tend not to demand ordinary object recog-
nition. Gottschaldt’s (1926) embedded figures
show that observers have great difficulty detecting
a given familiar simple figure within a complex
one; there is only one possible target, and it is a
yes/no detection task. It is impressively difficult
to find the target, but, even when one does
succeed, this task does not seem to be an
example of ordinary object recognition, which is
quick, familiar, meaningful, and named.
Recognition in the Gottschaldt task is familiar,
but not quick.

Grouping elements versus recognizing
an object

We all spend our days recognizing objects, includ-
ing words. This ordinary process of object recog-
nition is a vivid rich experience. The object is
typically a familiar thing. In recognizing it, we
typically attach a short name and meaning, and
we know its parts and what we can do with it
(Gibson, 1979; Rosch, Mervis, Gray, Johnson, &
Boyes-Braem, 1976; Tversky & Hemenway,
1984). That ordinary case corresponds, roughly,
to basic object categorization (Rosch et al., 1976).
Object recognition is vivid in the ordinary case,
but becomes less and less vivid as the ordinary con-
ditions (familiarity, name, meaning, basic cat-
egory, one of many) are stripped away.

The essence of object recognition is the categ-
orization. Thus the task assigned to the observer
greatly affects the experience. We lack a hard
and fast rule, but we can identify some important

factors that affect whether the observer will see
mere grouping of elements or quickly recognize a
familiar, meaningful, named thing. Rosch et al.
noted that superordinate and subordinate cat-
egories, larger and smaller than basic categories,
have longer names and longer reaction times.
Discrimination tasks (with two alternatives) seem
less object oriented than identification tasks
(with many alternatives). Object categories seem
more evident in tasks that have a higher memory
load (see “Categorical perception” below).

In psychophysics, we distinguish three tasks:
detecting, discriminating, and identifying. In prac-
tice, the distinction boils down to the number of
response categories allowed: two for detecting
and discriminating, and more for identifying. We
include detection as a special case of discrimi-
nation, because we can always think of the dis-
crimination between A and B as detecting the
difference, A minus B. So we concentrate on the
difference between discriminating and identifying.
Of course, discriminating between two possible
objects is equivalent to identifying one of two
possible objects. But, when identifying one of n
objects, it turns out that the n ¼ 2 case is very
different from the rest, n . 2.

The familiar game of twenty questions is an
effective way to probe someone’s conception of
an object. But, in that game, those binary yes/no
questions are all different. When, in the typical
psychophysical experiment, observers are asked to
make the same binary perceptual discrimination
again and again, the task, for the observer, seems
less and less about objects and more and more
about the raw stimulus experience, the sensation.

The n ¼ 2 case is also special for the ideal
observer. Ideal identification of one of n possible
signals involves comparing the noisy stimulus
with n templates (to calculate likelihood of the n
hypotheses). (For treatment of the ideal identifier,
see Van Trees, 1968, or Appendix A of Pelli,
Burns, Farell, & Moore-Page, 2006.) However,
as noted above, there is a shortcut when n ¼ 2.
Identifying one of two signals is equivalent to
detecting the difference. The observer can
compare the stimulus with the difference template
and calculate the likelihood ratio of the two

Figure 2. An R, demonstrating ordinary object recognition: a

familiar, meaningful, named thing.
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hypotheses and use that as the basis for the binary
decision. This is mathematically equivalent and
has the virtue of requiring less computation and,
most important, requires memory of only one tem-
plate. When n . 2, considering the differences
among the signals is no longer attractive as there
are at least as many differences (1 vs. 2, 2 vs. 3, 1
vs. 3) as signals.

By the way, there is nothing wrong with dots.
Letters made of dots are still good letters. And
let us not forget Johansson’s (1973, 1975) point-
light displays: “a few bright spots (5–12) in . . .
motion evoke a vivid impression of a walking,
running, etc., human being” (Johansson, 1976).
“From only a few moving point lights, attached
to the joints of an otherwise invisible moving
actor, people readily perceive the underlying
human figure, categorize the displayed action
after viewing it for only fractions of a second,
and can even perform subtle tasks such as gender
recognition” (Beintema, Georg, & Lappe, 2006).

No hard and fast rule

To our surprise, none of the factors that we have
identified as important seem to be essential.
Identifying a nameless squiggle (or Greeble) is
less vivid than the ordinary case, but more vivid
than mere grouping. Most binary discriminations
fail to yield vivid objects, but the discrimination
of certain object properties is much worse when
the stimulus is not seen as an object. In these cases,
good discrimination demands object recognition.
For example, observers are much better at judging
whether the barrel/hourglass illusory contour
defined by four tilted corners is fat (barrel) or
thin (hourglass) if the corners are perceived as
four corners of one object rather than as four dis-
connected elements (Ringach & Shapley, 1996).

Our point is not merely semantic. We claim
that mere grouping is not object recognition, but
we do not know where to draw the line for what
to accept as object recognition. We could relin-
quish that claim and accept mere grouping as a
very weak form of object recognition, lacking
essential qualities of ordinary object recognition.
We insist that ordinary everyday object

recognition is quick, familiar, meaningful, and
named, and that most of these qualities are
absent from most, if not all, of the existing tests
of grouping.

Categorical perception

One of the hallmarks of object recognition is cat-
egorical perception, whereby observers discrimi-
nate the same physical difference in a stimulus
parameter much better if the difference crosses a
category boundary, so that the two alternatives
are perceived as different things. Consider a well-
known example from speech perception. (For
similar evidence of categorical perception in vision,
see Goldstone, 1994.) A syllable sound can be syn-
thesized with various voice onset times. The voice
onset time can be set to any value on a continuous
scale, but the synthesized sound is perceived as
qualitatively different over that range—for exam-
ple, ba, da, pa. The breaks between categories are
at different voice onset times for native speakers
of different languages. This categorization is
demonstrated in a hard task, “ABX”, that requires
the observer to retain three sounds in order to
make a judgement. (The observer must say whether
the stimulus was ABA or ABB, where A and B are
sounds played one after another. A and B change
randomly from trial to trial.) However, if the task
is replaced by a binary discrimination of a single
sound, A or B (which do not change within a
block), the just-noticeable difference for voice onset
time is reduced enormously and shows no correlation
with the location of the category boundaries of the
listener’s language (Carney, Widin, & Viemeister,
1977).

The easy binary discrimination with light
memory load seems to assess early sensory limits.
The hard ABX task is also binary (identifying X
as A or B) but has a high memory load and exhibits
category boundaries like those observed in percep-
tion of speech, in which the memory load may be
similarly high. It seems that we can judge a single
sensory impression without categorizing coarsely,
but when forced to compare several impressions
we rely on object-based memories that are coarsely
categorized.
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Snake in the grass

Subsequent investigators refined Wertheimer’s dot
lattice technique, studying factors that bias the
observer to report the elements as grouped in
one way or the other (Epstein, 1988; Hochberg
& Peterson, 1987; Kanizsa, 1976; Kubovy,
Holcombe, & Wagemans, 1998; Peterson &
Gibson, 1994; Rock & Palmer, 1990). Field,
Hayes, and Hess (1993) updated Wertheimer’s
paradigm, asking observers to detect a contour (a
curvilinear grouping) in a field of randomly per-
turbed elements (gratings). This task is affectio-
nately called detecting a “snake in the grass”
(Figure 3). Elements (gratings) are placed along
an invisible path. Proximity and good continuation
among the elements increase the probability that
the observer will see the elements as a group
and thus detect the path. It is now well established
that observers are less likely to detect contours that
violate the Gestalt laws of good continuation
(Beck, Rosenfeld, & Ivry, 1989; Brunswik &
Kamiya, 1953; Dakin & Hess, 1998; Kovacs,
1996; Kovacs & Julesz, 1994; McIlhagga &
Mullen, 1996). Geisler et al. measured the edge co-
occurrence statistics of natural images and showed
that a grouping model based on these statistics pre-
dicts the observer’s contour-detection performance
(Elder & Goldberg, 2002; Geisler, Perry, Super, &
Gallogly, 2001). However, all this only addresses

the observer’s ability to detect (not identify) a contour.
When the contour represents a recognizable shape,
does grouping help identification, as Wertheimer
claimed? Detection is a binary discrimination and,
we argued above, does not typically result in object
recognition. Just detecting (noting a difference)
shows a role for grouping in perception, but falls
short of showing a role in object recognition.

Letters

Letter identification is mediated by feature detec-
tion (Pelli et al., 2006). The features are simple
and detected independently. The feature detectors
mediating letter identification are the same well-
known spatial frequency channels as those that
mediate grating detection (Majaj, Liang, Martelli,
Berger, & Pelli, 2003; Majaj, Pelli, Kurshan, &
Palomares, 2002; Solomon & Pelli, 1994).
Despite reading a billion letters over a lifetime,
people still recognize letters (and words) by detect-
ing many simple features rather than detecting
each letter (or word) as a whole, which would be
much more efficient (Geisler & Murray, 2003;
Pelli et al., 2006; Pelli, Farell, & Moore, 2003).

We argue above that the binary discrimination
tasks typically do not demand object recognition,
and that the observer may not be doing it.
Requiring the observer to identify is important.
But it is not necessary to bring the whole world

Figure 3. A snake (left) and a snake in the grass (right). From Field, Hayes, and Hess (1993). “In this example each successive element differs

in orientation by + 30 deg and for this difference in orientation the string of aligned elements is easily detected.” We detect the “snake” but it is

not a familiar, meaningful, named thing.
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into the lab to get observers to do ordinary object
recognition. The humble task of identifying letters
is enough. It is quick, familiar, meaningful, named
recognition (Figure 2).

Snake letters

To get back to Wertheimer’s original goal of
understanding object recognition, especially letter
identification, we created letter-shaped contours
and displayed them on a background of visual
noise. Our alphabet, based on Sloan’s, has 10
letters (see Method). This task allows us to directly
measure efficiency of letter identification as a func-
tion of deviation from collinearity. Each standard
(Sloan) letter is defined by the path a pen’s
stroke would follow in drawing it. In the standard
condition, gratings are placed at regular intervals
along the letter’s (invisible) path, aligned with
the path. We perturbed collinearity by rotating,
offsetting, or phase shifting successive gratings,
right or left alternately, relative to the path
(Figure 4).

Figure 4 shows some perturbed letters. Note
that the perturbation seems to bend the stroke,
making it seem serpentine or wiggly. Inspired by
this impression, we fitted a sinusoid, tangent to
the white–black (not black–white) crossing near-
est to the centre of the gratings. We define wiggle
as the angle the sinusoid makes with its axis.

Each wiggled alphabet was created once and
was then used unchanged through all training
and testing.

The noise background was fresh (independent,
identically distributed) on each presentation. The
visual noise background swamps any additive intrin-
sic noise in the observer and makes the task an expli-
cit computational problem, for which the optimal
algorithm (maximum likelihood choice among the
possible letters) may be solved mathematically and
implemented as a computer program that represents
the ideal observer (Appendix A of Pelli et al., 2006).
We measured threshold contrast for 82% correct

letter identification for both human and ideal obser-
vers. At threshold, we computed the contrast energy,
integrated square of the contrast function over the
signal area. The ratio of threshold energies, ideal
over human, is called efficiency (Pelli & Farell,
1999).1 Efficiency strips away the intrinsic difficulty
of the task to reveal a pure measure of human ability.
See Pelli and Farell (1999) for a tutorial explaining
how to measure efficiency.

Our paradigm is similar in some ways to the
tumbling E test introduced by Levi, Sharma, and

Figure 4. Measuring wiggle. The first row shows three unperturbed

letters: The gratings are collinear with the path of the letter. The

second row shows a sample letter for each of our three

perturbations: orientation (Z), offset (R), and phase (S). In the

third row, we use a straight stroke path and fit a sinusoid

tangent to the white–black zero crossings nearest to the centre of

each grating. White is always to the left of the sinusoid. Finally,

in the bottom row, we measure the angle the sinusoid makes with

its own axis.

1 To be precise, we plot high-noise efficiency hþ ¼ Eideal/(E – E0), where Eideal and E are the ideal and human thresholds in

noise, and E0 is the human threshold without noise, but the E0 correction is negligible at high noise levels (Pelli & Farell, 1999).
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Klein (1997). Like our snake letters, their letters
consisted of gabors. However, instead of adding
a white noise background they perturbed the pos-
ition of each gabor randomly on each presentation.
Like us, they compare human and ideal thresholds
to compute efficiency, but their manipulations did
not assess the role of grouping, so their results are
not relevant here.

More relevant is the tumbling C test of
Saarinen and Levi (2001). They made a Landolt
C (a perfect circle with a gap) out of gabors and
presented the C at one of four orientations (908
apart), asking the observer to say which. They
compared the threshold contrast for Cs made up
of gabors that were all collinear with the C’s
path, or all orthogonal with the path, or each ran-
domly collinear or orthogonal. Like us, they found
that the orthogonal case resulted in higher
thresholds than the collinear case. (The random
case elevated threshold slightly more than the
orthogonal case, but this difference was statistically
significant for only one of the three observers, and
in the group average.) They note in their abstract
that their use of four-way identification was an
advance on the prior work, which was all binary

discrimination: “A number of previous studies
have reported that integration of local information
can aid ‘pop-out’ or enhance discrimination of
figures embedded in distractors. Our study differs
from the previous studies in that, rather than a
figure–ground discrimination, our experiments
measured contrast thresholds for shape identifi-
cation” (Saarinen & Levi, 2001). While four-way
identification is indeed an advance, it is our
impression (confirmed by Levi, personal communi-
cation) that, at least subjectively, this particular task
quickly reduces to detecting the gap and reporting
its location, especially when near threshold. Thus,
even though they were asking observers to identify
four versions of a letter, it does not seem that the
observers were doing ordinary object recognition.

Figure 5 presents letter-chart versions of two of
our three experiments, perturbing orientation (left
panel) and offset (right panel). (We could not
make a similar three-column chart for phase
wiggle, because, as we defined it, there are only
two strengths: on and off.) The perturbation
increases from left to right. Letter contrast
diminishes from bottom to top. For each column
(perturbation) your efficiency is given by the

Figure 5. Letters in noise, demonstrating that good continuation is important for letter identification. For each letter chart, starting from the

bottom, read up each column as far as you can. The height of the faintest identifiable letter is your contrast sensitivity for such letters. a. The

orientation of the gratings relative to the letter stroke alternates + 08, + 308, or + 608 (left to right). b. The offset of the gratings from the

letters stroke alternates + 0, + 2, or + 4 cycles (left to right). Letter contrast Lmax –Lbackground) / Lbackground decreases by factors of
p

2 from

0.87 in the bottom row to 0.11 in the top row. The root mean square noise contrast is 0.15.
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highest (faintest) letter you can identify. Note the
drop in efficiency as wiggle increases from left to
right.

A “wiggle” is “a wavy line drawn by a pen,
pencil, etc.” (Oxford English Dictionary, noun, 3).
Others have measured sinusoidal curvature in
order to study shape perception (e.g., Prins,
Kingdom, & Hayes, 2007; Siddiqi, Kimia,
Tannenbaum, & Zucker, 1999; Tyler, 1973;
Wilson & Richards, 1989). Our treatment of
wiggle is novel in applying one metric to three
different kinds of perturbation, to test whether
the effect of the various perturbations is mediated
by this one parameter.

Method

Observers
There were two observers. C.J.C. was an under-
graduate intern and is an author. A.S. was an
undergraduate. Both observers had normal or cor-
rected-to-normal acuity and were tested binocu-
larly, with their correction, if any. Both gave
written consent.

Display
The stimulus consists of a letter added to a back-
ground of noise. The stimuli are created on a
Power Macintosh using MATLAB and the
Psychophysics Toolbox (Brainard, 1997; Pelli,
1997; http://psychtoolbox.org). The observer
views a gamma-corrected computer monitor
(Pelli & Zhang, 1991) from a distance of
100 cm. Each pixel subtends 0.019 deg. There
are 74 pixels per inch. The frame rate is 75.5 Hz.
The video attenuator drives just the green gun of
the Apple 1700 Multiscan color monitor. The
background luminance is set to the middle of the
monitor’s range, 16 cd/m2.

Snake letters
In effect, we created a new font for each kind and
degree of perturbation. This was done once. Each
font, once made, never changed and was used
unchanged throughout training and testing of
both observers. (Here we are interested in how
well an observer can perform, after adequate

training with the font, in identifying a wiggly
font. We are not studying how well observers
can generalize from one font—and wiggle—to
another.)

Each snake letter in a font is made from a letter
path (based on Sloan), a perturbation rule (orien-
tation, offset, or phase), a mark, and a mark
spacing. The standard mark m(x, y) is a gabor,
the product of a sinewave grating and a Gaussian
envelope,

m(x, y) ¼ sin (2pfx) exp �
x2 þ y2

l2

� �

where m(x, y) is a unit-contrast mark (vertical at
the origin), x and y are horizontal and vertical pos-
itions in deg, f ¼ 1 c/deg is spatial frequency, and
l ¼ 0.3 deg is the space constant of its envelope.
The mark interval (travel distance along the path
from making a mark to making the next mark) is
0.91 deg.

Sloan is a special font designed by Louise Sloan
for eye charts and contains only the 10 letters C D
H K N O R S V Z. The shapes of the 10 Sloan
characters are specified by the NAS-NRC
Committee on Vision (NAS-NRC, 1980), based
on Louise Sloan’s design. Sloan is available from
us for research purposes. We used MATLAB to
create a simple Logo-like language in which we
wrote a short computer program for each letter
that describes its path as instructions to a “turtle”
holding a pen—for example, activate pen,
advance 1 unit, turn 908 to the right, deactivate
pen, and so on [http://en.wikipedia.org/wiki/
Logo_(programming_language)]. The imaginary
turtle moved along the path. If the pen had ink,
its stroke would draw the letter. However, to
make a snake letter, the turtle instead made a
mark at regular intervals during its pen-active
travel along the path. The location and orientation
of each mark are the same as those of the turtle,
plus any perturbation. The sign of the perturbation
was alternately positive and negative from mark to
mark. A particular font had a particular kind of
perturbation (orientation, offset, or phase) and a
particular value (angle, displacement, or phase
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angle). The only nonzero phase perturbation we
used was +180. In this way the turtle walked
the path of the letter and made many marks as it
travelled. Each letter in the font consists of the
sum of all the marks made during the turtle’s
walk along the letter’s path. Each mark is a copy
of the standard mark, moved and rotated to the
turtle’s current location and orientation, and
possibly further rotated, offset, and phase shifted.
The imaginary bounding box of the zero-thickness
paths of the Sloan letters was 4 deg � 4 deg.

Letters
All the fonts are rendered off screen (in computer
memory) at a reduced scale. Independent Gaussian
noise is added to each pixel. Then the image is
expanded by pixel replication to its final size—
each pixel growing to become a square check—
and copied to the screen. The expansion is a
doubling of size, horizontally and vertically. The
experiments reported here present only one letter
at a time, at fixation.

Ordinary reading presents many adjoining
letters spanning a range of eccentricities. In that
case, the number of letters that the observer can
acquire in each glimpse is limited by “crowding”
of the more peripheral letters (Pelli & Tillman,
2008; Pelli et al., 2007). However, there was no
crowding in the experiments reported here.

Noise
The noise is static, made up of square checks:
2 � 2 pixels. Each check is a luminance increment
or decrement, sampled independently from a zero-
mean Gaussian distribution truncated at +2
standard deviations. The power spectral density
of a random checkerboard (with statistically inde-
pendent check luminances) equals the product of
the contrast power and the area of a noise check.
The root mean square contrast of the noise is
0.15. The power spectral density of a random
checkerboard (with stochastically independent
check luminances) equals the product of contrast
power and the area of a noise check. At a distance
of 100 cm, a 2 � 2-pixel check subtends 0.041 deg
so the power spectral density N is 0.152

0.0412 ¼ 10– 4.42 deg2. The noise covers the

letter and extends 1 deg beyond its (invisible)
bounding box.

Training
For each observer, the results of the first 2,000
trials with each font were discarded before collect-
ing the data reported here. This criterion is based
on the finding that efficiency for identifying letters
from a new alphabet initially grows rapidly but
grows very slowly after 2,000 trials (Pelli et al.,
2006).

A trial: The identification task
On each trial, the observer is briefly shown a faint
letter in visual noise and is then asked to select the
letter from a display of all the letters in the alpha-
bet. Each trial begins with the appearance of a fix-
ation point on the grey background. The observer
moves a mouse-controlled cursor to the fixation
point and clicks the mouse button to initiate the
trial. The stimulus consists of a signal and zero-
mean white Gaussian noise added to the steady
uniform background. The signal is a snake letter,
randomly selected from a given font (see “Snake
letters” above). This static stimulus is displayed
for 200 ms and disappears. After a 200-ms delay,
the whole alphabet is displayed at 80% contrast
at the same size as the letter in the stimulus. The
observer is asked to identify the signal letter by
clicking a letter in the whole-alphabet display.
After the observer responds, the correct letter is
highlighted. A correct response is rewarded with
a beep. The alphabet then disappears, and the fix-
ation point reappears.

The signal letter and the whole-alphabet
display are in the same font, and the font is the
same for every trial in a block.

A block: Threshold
The Michelson contrast c of a letter is (Lmax –
Lmin)/(Lmax þ Lmin). Threshold contrast is
measured by 40-trial blocks of the modified
Quest staircase procedure (King-Smith, Grigsby,
Vingrys, Benes, & Supowit, 1994; Watson &
Pelli, 1983) using a threshold criterion of 82%
correct and a b of 3.5. For identification, the gues-
sing rate g is the reciprocal of the number of letters
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in the alphabet, since we presented all letters
equally often. For experienced observers the pro-
portion correct at high contrast is nearly 1, so we
set the lapsing (or “finger error”) rate d to 0.01.
Threshold energy E for the alphabet is the
average letter energy (across all the letters) at the
threshold contrast for the alphabet. The reported
efficiencies are based on the average log contrast
threshold estimate from three 40-trial blocks.

Readers more accustomed to thinking about
contrast should note that efficiency and energy
are proportional to squared contrast.

Efficiency
Tanner and Birdsall (1958) introduced the notion
of comparing human and ideal thresholds to
compute efficiency, h ¼ Eideal/E. Here, E is the
human observer’s letter threshold energy measured
in the presence of display noise with power spectral
density N. Eideal is the threshold for the ideal obser-
ver. Pelli and Farell (1999) point out several advan-
tages to instead computing high-noise efficiency,

h� ¼
Eideal

E � E0
�

E0 is the letter threshold energy for the human
observer, measured with zero display noise. h�

counts only the extra energy needed to overcome
the display noise, discounting the energy needed
to see the signal on a blank screen. The distinction
between the two efficiencies, h� and h�—that is,
the correction for the zero-noise threshold E0—
becomes insignificant when the display noise is suf-
ficiently strong to greatly elevate threshold,
E ..E0. Since this was true for most of the effi-
ciencies reported here, we just say “efficiency”,
though it was always computed by Equation 2.

The ideal observer performs the same task as
the human—identifying letters in noise—and we
measure its threshold in the same way: On each
trial the ideal-observer computer program receives
a noisy stimulus and returns an identification
response, which is scored as right or wrong. The
mathematical description of the computation per-
formed by the ideal observer is given by the theory
of signal detectability for identifying one of many

known signals in white noise (Van Trees, 1968).
The ideal observer must decide from which of
the 10 letters of the alphabet the letter-in-noise
stimulus was most probably created.

The ideal observer is not intended as a model
of the human observer. It merely provides a refer-
ence that allows us to place human performance
on an absolute scale (Geisler, 1989). Human
efficiency below 100% indicates a failure to fully
utilize the available information. Finding a high
human efficiency would rule out inefficient
models. It is usually easy to impair an overly
efficient model to match human efficiency, but
difficult or impossible to salvage an inefficient
model.

Figure 6. Efficiency as a function of wiggle of orientation (solid

symbols), offset (open symbols), and phase (x-in-square symbol).

The observers are C.J.C. (squares) and A.S. (circles). We

measured threshold contrast energy (integrated square contrast) for

letter identification as we perturbed grating orientation, offset,

and relative phase. We implemented the ideal observer as a

computer program and measured its threshold contrast energy for

the same letter sets as those used for the human observer. The

ratio of energy threshold of ideal to human is efficiency, an

absolute scale that allows us to compare human performance across

all our conditions (Pelli & Farell, 1999). Furthermore, it allows

us to compare our new results to previous results for letters of

various fonts, alphabets, and sizes. The bent line is the best fit of

the clipped reciprocal h0(w) ¼ h0 / min(1, w/w0), where w is

wiggle, with two degrees of freedom, h0 ¼ .074 and w0 ¼ 15

deg, to minimize the fitting error (log h–log h),, where h is

efficiency, and rms is root mean square.
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Results

Figure 6 plots efficiency as a function of wiggle for
our three perturbations: orientation (solid
symbols), offset (open symbols), and phase (x-in-
square symbol). The three kinds of perturbation
look quite different (Figure 4) but have the same
effect on efficiency, all tracing out one curve.
Efficiency is 8% at zero wiggle and falls, in
inverse proportion to wiggle, for wiggles higher
than 158.

It is traditional for psychophysics papers to have
a lot of data on few observers, which may seem
strange to colleagues from other branches of psy-
chology. In some studies in psychology the
limited data that can be obtained from each obser-
ver are too variable to yield any conclusion.
Averaging over many observers may overcome
this, but at the cost of drawing conclusions that
are valid for the average but may not be true of
any individual. That is not the case here. In psy-
chophysics, we are more concerned with the per-
ceptual phenomena themselves than their
incidence. Here, the data from each observer
stand on their own, yielding valid conclusions for
each observer. Given that our result is valid, inde-
pendently, for each observer tested, we can say that
it is valid for them (2 out of 2), and that this result
must be fairly common in the population.2 Our
data show both that this phenomenon is real for
two people, and that it is quite common, with an
incidence somewhere between 37% and 100%.

Discussion

One simple explanation for the drop in efficiency
with increasing wiggle might be that our human
observers use internal letter templates that do not
incorporate the wiggle exceeding 158. The wiggle
makes the letters different from the templates,
making their identification harder. It is possible
that observers used inaccurate templates, but it is

not for lack of training. After only 2,000 trials, a
novice observer’s ability to identify letters of a
foreign alphabet reaches the performance of life-
long readers of that alphabet, and even an enor-
mous amount of further practice provides rela-
tively little further improvement (Geisler &
Murray, 2003; Pelli et al., 2006). All results in
Figure 6 are after at least 2,000 trials of practice
with that perturbed set of letters and should thus
be robust, little affected by the observer’s prior
exposure or further practice. If we trained
without wiggle and tested with wiggle, then we
would be assessing the observer’s ability to gener-
alize across wiggle.3 But in fact each experiment
used the same wiggly alphabet for testing and
training, so we are measuring the observer’s
ability to identify a wiggly alphabet, and the
results show that more wiggle (poorer continu-
ation) makes identification harder. More precisely,
wiggle raises human threshold, but has no effect
on the threshold of the ideal observer.

Why is the ideal immune to wiggle? It is
proven in Appendix A of Pelli et al. (2006) that
the threshold for the ideal observer depends only
on the covariance among the m possible signals
and the level of white noise (Equations A.12 and
A.24). The wiggle has practically no effect on
the covariance between letters, so the ideal’s
threshold is practically unaffected by wiggle. The
intuition is that the ideal observer compares the
noisy stimulus with each of m templates and
picks the most similar. For the ideal it does not
matter whether the templates are wiggly or not.

Another simple explanation is that wiggle
increases complexity, the number of features in
the object. Pelli et al. (2006) found inverse propor-
tionality between efficiency and perimetric com-
plexity, which they suggested might be a
plausible estimate of number of features. That
idea seems plausible here too. By this interpret-
ation, grouping reduces the number of features,
which improves the efficiency.

2 To be precise, if one takes two independent samples from a population of any size and discovers that both samples have a certain

property, then one may conclude, with 95% confidence, that at least 37% of the population has that property. The webpage http://

www.causascientia.org/math_stat/ProportionCI.html calculates the binomial confidence interval.
3 Our ability to read many fonts and handwritings suggests that we generalize well (Edelman, Flash, & Ullman, 1990).
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Past work has explored integration of nonover-
lapping gratings using two experimental para-
digms: contour integration and masking. Some
scientists extended the paradigm of the early
Gestalt psychologists, exploring the role of the
Gestalt laws in the detection of objects (contours)
made of gratings—that is, seeing a “snake in the
grass”. In the masking paradigm, scientists
studied how visibility of a single grating is affected
by flanking gratings. We wondered how results
with our “snake” letters would compare to existing
results of the masking paradigm. We reexamined
their data using our scales. Field et al. (1993)
measured the probability of detecting contours
consisting of relatively aligned gratings in a field
of randomly oriented gratings. They found that
proportion correct drops with increasing angle
between successive gratings along the contour.
We calculated the wiggle of their contours and
converted proportion correct to (d0)2, which is pro-
portional to efficiency. Log-log regression of (d0)2

versus wiggle reveals log-log slopes of –1.2
(r ¼ .98) and –1.1 (r ¼ .97) for their two obser-
vers, which agrees with the slope of –1 we fitted
to our results. Solomon et al. measured the effect
of nonoverlapping flanking gratings on the detec-
tion of a single grating, finding that the threshold
contrast is a factor of

p
2 lower if the flanks are in

phase with the target than if they are out of phase
(Polat & Sagi, 1993; Solomon, Watson, &
Morgan 1999). This is consistent with the differ-
ence in efficiency between our in- and out-of-
phase letters.4

CONCLUSION

Our experiments show that wiggle, a measure of
sinusoidal curvature, characterizes the effect of
good continuation on letter identification, inde-
pendent of the kind of perturbation. This shows
that this Gestalt law of grouping plays an import-
ant role in letter identification. This may be the

first evidence that a Gestalt law of grouping
plays a role in ordinary object recognition: quick,
familiar, meaningful, and named.
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