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Abstract

Background: In female mammalian cells, random X chromosome inactivation (XCI) equalizes the dosage of X-encoded gene
products to that in male cells. XCI is a stochastic process, in which each X chromosome has a probability to be inactivated.
To obtain more insight in the factors setting up this probability, we studied the role of the X to autosome (X:A) ratio in
initiation of XCI, and have used the experimental data in a computer simulation model to study the cellular population
dynamics of XCI.

Methodology/Principal Findings: To obtain more insight in the role of the X:A ratio in initiation of XCI, we generated
triploid mouse ES cells by fusion of haploid round spermatids with diploid female and male ES cells. These fusion
experiments resulted in only XXY triploid ES cells. XYY and XXX ES lines were absent, suggesting cell death related either to
insufficient X-chromosomal gene dosage (XYY) or to inheritance of an epigenetically modified X chromosome (XXX).
Analysis of active (Xa) and inactive (Xi) X chromosomes in the obtained triploid XXY lines indicated that the initiation
frequency of XCI is low, resulting in a mixed population of XaXiY and XaXaY cells, in which the XaXiY cells have a small
proliferative advantage. This result, and findings on XCI in diploid and tetraploid ES cell lines with different X:A ratios,
provides evidence that the X:A ratio determines the probability for a given X chromosome to be inactivated. Furthermore,
we found that the kinetics of the XCI process can be simulated using a probability for an X chromosome to be inactivated
that is proportional to the X:A ratio. These simulation studies re-emphasize our hypothesis that the probability is a function
of the concentration of an X-encoded activator of XCI, and of X chromosome specific allelic properties determining the
threshold for this activator.

Conclusions: The present findings reveal that the probability for an X chromosome to be inactivated is proportional to the
X:A ratio. This finding supports the presence of an X-encoded activator of the XCI process.
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Introduction

In placental mammals, dosage compensation of X-encoded

gene products is achieved by inactivation of either of the two X

chromosomes in female cells [1]. Random X chromosome

inactivation (XCI) is initiated early during female embryonic

development, and results in a transcriptionally inactive X

chromosome (Xi). The inactive state of the Xi is clonally

propagated through many cell divisions. At the onset of XCI the

X-linked non-coding Xist gene is transcriptionally up-regulated on

the future Xi, and Xist RNA coats the Xi in cis [2–5]. Xist RNA is

required for XCI and most likely attracts chromatin modifying

enzymes involved in the silencing process [6,7]. The Tsix and Xite

genes play a crucial role in the early stages of XCI by suppression

of Xist transcription and Xist RNA accumulation. Both Tsix and

Xite also are non-coding genes that overlap with Xist, but are

transcribed in anti-sense direction [8,9].

The first phase of XCI comprises a counting process, followed

by initiation of XCI when more than one X chromosome is

present per diploid nucleus. We have recently shown that initiation

of XCI is directed by a stochastic mechanism, in which all X

chromosomes in a nucleus have an independent probability to
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initiate XCI within a certain time-span [10]. We proposed that

this probability is proportional to the X to autosome ratio (X:A),

and most likely depends on at least two factors that act through

Xist and Tsix: an X-encoded XCI-activator that stimulates Xist

expression, and itself is transcriptionally inactivated by the XCI

process, and an autosomally encoded XCI-inhibitor that sup-

presses Xist by activating Tsix. Although the action of Tsix is still

not understood, Tsix transcription and chromatin modifications in

the Xist promoter (possibly mediated by Tsix) provide a threshold

that has to be overcome by the XCI-activator, allowing

accumulation of sufficient Xist molecules to silence Tsix and

spread in cis. Early in mouse development or upon differentiation

of embryonic stem (ES) cells, the XCI-activator concentration in a

cell will increase, and in female cells this will drive the initiation of

XCI with a specific probability. This probability is the conse-

quence of stochastic transcriptional activation of both Xist and

Tsix. In male cells, the XCI-activator concentration will be too

low; therefore, these cells induce XCI only sporadically [10].

Several findings support the presence of an X-linked XCI-

activator. Tetraploid XXXX ES cells initiate XCI significantly

faster than XXXY cells [10]. In addition, female ES cells with a

heterozygous deletion including Xist, Tsix and Xite (DXTX), still

show initiation of XCI on the wild type X chromosome. XCI is

not initiated in male cells with one copy of Xist, Tsix and Xite

indicating a novel trans acting activator, encoded by a gene located

outside the deleted area [10]. Also, studies in differentiating ES cell

lines with stably integrated Xist promoter transgenes show

significantly more expression of a linked reporter in female cells

compared to male cells [11]. The genomic location of the

XCI-activator is unknown sofar. However, previous studies which

analyzed XCI in male cell lines with multi-copy YAC transgenes

ranging in size from 320 to 460 kb, encompassing Xist

and flanking regions, revealed initiation of XCI on the single

X chromosome [12,13]. Interestingly, a BAC sequence covering

a region upstream of Xist, not including Xist itself, also induced

ectopic XCI in transgenic male and female cells [14]. These

studies indicate that the sequence encoding the XCI-activator is

likely to be located within the sequence covered by these

transgenes. Smaller transgenes, only including Xist and flanking

sequences, have also been reported to induce ectopic XCI in

male cells, when present as multiple tandemly inserted transgenes

[15,16]. Our finding that XCI is still initiated in female cells

with a DXTX deletion, however, indicates that the overlapping

region covered by the DXTX deletion and these transgenes

[15,16] is not required for the counting process. Some of the

reported observations may also be attributed to the presence of

Tsix transcription, which was not yet discovered, and hence

not taken into consideration, at the time these studies were

performed.

In diploid and tetraploid cells, one X chromosome will remain

active per diploid genome. However, in triploid cells this ratio of

one active X chromosome per diploid autosomal set cannot be

achieved. Therefore, triploid cells provide a unique situation for

studying the mechanism of XCI counting and choice and gene

dosage related cell selection. Several studies have been conducted

with human and mouse XXY and XXX triploid embryos and

embryo-derived cell lines, to try to determine the pattern of X

inactivation. In these experiments cultured differentiated cells were

examined which had completed the XCI process [17], and

indicated that the majority of cell lines derived from human live

born XXX triploids predominantly show two active X chromo-

somes [18–20]. In contrast, analysis of 10-day-old XXY and

XXX mouse triploid embryos showed that most cells had one

active X chromosome [21]. Unfortunately, both studies did not

discriminate between primary choice in XCI and the effect of cell

selection processes on XCI.

To explore the mechanism determining the probability of an X

chromosome to be inactivated, we have generated XXY triploid

mouse ES cells. Analysis of XCI in these cells allowed us to

determine the influence of the X:A ratio on the initiation of XCI,

and to discriminate between the effects of XCI initiation and cell

selection. In addition, we have used stochastic and mathematical

simulation studies to follow the kinetics of XCI in a population of

developing or differentiating cells.

Results

Generation of triploid ES cells
Our previous studies with tetraploid XXXX, XXXY and

XXYY mouse ES cell lines have indicated that the probability for

an X chromosome to be inactivated is directly related to the X:A

ratio [10]. To further explore this finding we aimed to generate

triploid ES cell lines with XYY and XXY karyotypes, having an

X:A ratio of 1:3 and 2:3, respectively, for which XCI has not been

studied before. To generate triploid ES cell lines we decided to

fuse puromycin resistant female and male ES cells with round

spermatids or spermatozoa containing a neomycin resistance (neo) gene

targeted to either the autosomal Ube2b gene or the X-

chromosomal Ube2a gene. Both Ube2a and Ube2b encode

ubiquitin-conjugating enzymes involved in DNA replicative

damage bypass [22]. The encoded proteins have at least partially

overlapping functions, and two functional alleles of either Ube2a or

Ube2b per cell are sufficient to generate viable diploid mice. Also,

spermatogenesis is not dysregulated in Ube2a knockout and Ube2b

heterozygous mutant mice [23,24]. Therefore, it was expected that

loss-of-function of one targeted Ube2a or Ube2b allele, in the

Ube2b+/2 and Ube2ay/2 mice, respectively, will not have an effect

on the viability of hybrid fusion products. In the present study, the

targeted mutant alleles serve the function of selection for fused

cells.

All PEG mediated fusion experiments were conducted twice.

Fusion of the neomycin resistant Ube2a-neo round spermatids and

spermatozoa with female or male ES cells did not result in double

resistant colonies (Figure 1A). In addition, fusions of Ube2b-neo

round spermatids with male ES cells, and fusions of Ube2b-neo

spermatozoa with either female or male ES cells, also did not result

in double resistant colonies. In contrast, double resistant colonies

were obtained by fusion of Ube2b-neo round spermatids with female

ES cells, and these colonies were picked and expanded for further

analysis. PCR analysis of genomic DNA indicated the presence of

the Ube2b-neo allele in all the ES clones picked, confirming the

fusion of a round spermatid containing the Ube2b-neo allele

(Figure 1B). FACS analysis, using propidium iodide to determine

the DNA content, indicated that all our cell lines were triploid

(Figure 1C). The small 2n population we attribute to contamina-

tion of the triploid cells with diploid male feeders that we used to

grow the ES cells on. Karyotyping also indicated that, in all cell

lines, the majority of cells had 60 chromosomes, which are stably

maintained through many passages (Figure 1D, and data not

shown). Interestingly, X and Y chromosome paint analysis showed

that all cell lines had an XXY 3n karyotype (N = 18) although the

haploid round spermatids that were used for fusion can be

expected to contain either an X chromosome or a Y chromosome

in a 50/50 ratio (Figure 1E and 1F).

These results suggest that triploid XYY cells are absent due to

an insufficient dosage of X-encoded genes. In addition, the lack of

XXX 3n karyotypes suggests that introduction of an X

chromosome through a round spermatid leads to a non-viable

XCI and X to Autosomal Ratio
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triploid ES cell. The absence of triploid XXX ES cell lines (X:A

ratio of 1) can not be explained by a dosage problem, but might be

due to the presence of an epigenetically modified X chromosome

present in spermatids. During spermatogenesis, the largely

unpaired X and Y chromosomes are transcriptionally inactivated,

forming the XY body or sex body in a process called meiotic sex

chromosome inactivation (MSCI) [25]. Chromatin modifications

present on the XY body may be partly maintained in post-meiotic

round spermatids. Such modifications, particularly relevant for the

X chromosome with a large gene content, may explain lethality of

the triploid XXX ES cells.

To test whether the spermatid derived X was reactivated after

cell fusion, we fused round spermatids of males containing an X-

linked GFP transgene [26] with male and female ES cells. Analysis

of diploid ES cells containing the X-linked GFP transgene shows

robust GFP expression, indicating that the transgene is properly

expressed in ES cells. In contrast, after fusion of GFP round

spermatids with ES cells, we did not see reactivation of the

transgene (data not shown). Selection for reactivation of the

transgene by applying puromycin selection, at days 0, 3 and 5 after

fusion, did not result in clones resistant to both selection reagents.

Therefore, we conclude that ES cells are incapable of reactivating

the X from spermatids. This is in contrast to ES fusions with

female somatic cells, which lead to reactivation of the Xi [27].

X chromosome inactivation in triploid XXY ES cells
To study XCI in the obtained XXY triploid ES cells, we

differentiated 9 of these cell lines into embryoid bodies (EB).

Cells were fixed and subjected to RNA-FISH after 3, 5, 7, and

10 days of differentiation, using an Xist specific probe to stain

the Xist coated Xi’s. After a three-day differentiation period,

we mainly found cells with zero or one Xi, indicating that

the triploid XXY cells are capable to initiate XCI (Figure 2A).

At this time point only ,2.5% of cells had one Xi (XaXiY) and

we sporadically (,0.1%) found cells with two Xi’s (XiXiY). During

the differentiation process, the relative number of cells with

one Xi increased, to ,40% at day 10 of differentiation (Figure 2B).

To exclude the possibility that our triploid XXY ES cells lost or

gained X chromosomes over the differentiation process, we

performed DNA-FISH with an X chromosome specific BAC

probe on cells differentiated for seven days. To obtain a reliable

measurement, at least 100 nuclei were scored for every cell line.

We found that over 93% of the XXY cells still contained two X

Figure 1. Generation of triploid ES cells. A) The different fusion experiments performed; (2) no clones present, (+) clones present which could
be picked and expanded. Fusion of Y-bearing spermatids and spermatozoa for Ube2a knockout mice was not examined, since the neo selection
marker localizes to the X (gray boxes). B) PCR with genomic DNA detecting the wild type and mutated Ube2b-neo allele. Clone numbers are indicated,
and control DNA was isolated from wild type, Ube2b2/2 and +/2 mice. C) FACS analysis detecting the DNA content of diploid ES cells, and four
different triploid ES cell lines analyzed in (B). D) Karyotyping of 9 triploid ES cell lines, shown in (B); indicated are chromosome counts of individual
methaphase spreads. Right panels show representative examples of metaphase spreads. E) Y chromosome paint analysis; shown is the number of
metaphase spreads with 0, 1, and 2 Y chromosomes. Right panels show representative examples of metaphase spreads subjected to DNA FISH using
a Y paint probe (red, DNA is blue). F) X chromosome paint analysis, shown is the number of metaphase spreads with 1, 2, 3, and 4 X chromosomes.
Right panels show representative examples of metaphase spreads subjected to DNA FISH using an X paint probe (Red, DNA is blue).
doi:10.1371/journal.pone.0005616.g001

XCI and X to Autosomal Ratio

PLoS ONE | www.plosone.org 3 May 2009 | Volume 4 | Issue 5 | e5616



chromosomes, and only 3% of the cells were found to have three

X chromosomes, suggesting that the karyotype of these triploid

XXY ES cells is stable throughout the differentiation period that

we assayed (Figure 2C).

We further examined whether the increase in time of the

percentage of XiXaY cells (Figure 2B) might be caused by cell

selection. We therefore added BrdU 24 hours prior to cell fixation

of day 7 differentiated ES cells, and performed immuno/RNA

FISH, detecting BrdU positive cells and Xist RNA. Comparison of

BrdU positive cells with one or no Xist cloud(s) shows that there are

significantly more cells with one cloud, indicating that XiXaY cells

indeed have a small but significant proliferative advantage

(p,0.001; Figure 2D and 2E).

Previously, we have proposed that the probability for an X

chromosome to be inactivated is proportional to the X:A ratio

[10]. To further explore this finding we compared the percentage

of cells that had initiated XCI at day 3 of differentiation between

cell lines with various X:A ratios, notably our XXY triploid ES cell

lines (with an X:A ratio of 0.67) and tetraploid and diploid cells (4n

XXXX cells with X:A = 1; 4n XXXY cells with X:A = 0.75; 4n

XXYY cells with X:A = 0.5; 2n XX cells with X:A = 1; and 2n XY

cells with X:A = 0.5). ES cell lines were differentiated through EB

differentiation and subjected to RNA FISH to detect Xist RNA.

For each line with a different X:A ratio or a different ploidy

number, we performed three independent differentiation experi-

ments.

The results (Figure 2F) confirm our previous findings [10] that,

at day 3 of differentiation, XXXX cells have initiated XCI in

significantly more cells (58%) than XXXY cells have (20%).

Furthermore, tetraploid XXYY and diploid XY cells initiated XCI

in less than 0.3% of the cells, whereas diploid XX ES cells initiated

XCI in 50% of the cells (Figure 2F). At day 3, triploid XXY cells

had initiated XCI in 3–4% of the cells (Figure 2F). This percentage

falls between that found for XXXY and XXYY cells. From these

results we conclude that the probability to initiate XCI depends on

the X:A ratio, and that this relationship appears not to be linear

(Figure 2F).

Parameters required for computer simulated XCI
To better understand the kinetics of XCI in a developing female

embryo or a differentiating population of female ES cells we

decided to simulate the XCI process. There are four important

parameters required to simulate XCI, based on a stochastic model

for XCI: 1) the probability for an X to initiate XCI, 2) the time

window required for one choice round, 3) the rate of cell division,

and 4) cell selection.

As indicated by our findings, the probability for an X to initiate

XCI is proportional to the X:A ratio, and XCI is most likely

triggered by a threshold nuclear concentration of an X-encoded

XCI-activator. Although the nuclear concentration of XCI-

activator will be the same for both X chromosomes present in a

female cell, specific allelic properties of the individual X

chromosomes can result in different probabilities because of

effects in cis. Previous studies with female ES cell lines harboring

deletions of either Xist, Tsix or Xite have indicated that the

probability to initiate XCI positively correlates with the Xist

Figure 2. Analysis of XCI in differentiating triploid XXY ES cells. A) RNA FISH analysis with an Xist probe (FITC, DNA in blue) on day 3
differentiated triploid ES cells, shows cells with no (left panels) or one (right panels) Xist cloud. B) The average distribution and standard deviation of
cells with different numbers of Xist clouds throughout differentiation. C) DNA FISH analysis on day 7 differentiated triploid ES cells. Shown is the
relative number of cells with 0, 1, 2 and 3 X chromosomes. D) Combined Xist RNA-BrdU detection (Xist in FITC, BrdU in Rhodamine red, DNA in DAPI
blue), indicating the presence of cells with negative and positive BrdU staining (from left to right). E) Quantification of the Xist RNA-BrdU detection,
shown are the relative number and standard deviation of BrdU positive cells with 0, 1 and 2 Xist clouds. F) The relative number and standard
deviation of cells that have initiated XCI (at least one Xi), per cell line at day 3 of differentiation.
doi:10.1371/journal.pone.0005616.g002
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transcription rate and negatively with the transcription rate of Tsix

and Xite [6–9,28]. Based on their anti-sense nature, transcription

initiated by the Tsix and Xite promoters may constitute a threshold

for Xist to accumulate in cis. Also, Xist promoter related

modifications could restrict the action of the XCI-activator and

may therefore be involved in setting up the threshold. Only when

sufficient XCI-activator is present in the nucleus enough Xist

transcription is initiated to overcome Tsix mediated repression,

thereby effectuating a probability to initiate XCI. Xist transcription

initiation is a stochastic process itself, and depending on the

nuclear XCI-activator concentration, bursts of Xist transcription

will generate a continuum of small probabilities to initiate XCI in

time. This probability will drop after inactivation of an X

chromosome with the decline in the XCI-activator concentration

that depends on the nuclear half life of the XCI-activator. In our

simulations we have used a time window with a specified

probability, which represents the integrated probability within

that time window.

To test whether XCI is dependent on cell division, we first

analyzed the number of cell divisions during a 10 day period of

embryoid body (EB) differentiation, for ES cells with different X:A

ratios. To determine the increase in cell number we differentiated

105 cells, and isolated DNA before and after differentiation. OD

measurements of two independent differentiation experiments

indicated that the different ES lines divided between 4 and 7 times

in the 10 day differentiation period (Figure 3A). Next, female

diploid ES cells were EB differentiated for one or two days, and

then subjected to c-irradiation-, mimosine- or colcemid-mediated

cell cycle arrests for one day. Initiation of XCI in treated and

untreated cells was compared by counting the number of cells with

or without an Xi, using RNA FISH with an Xist probe. We found

no significant increase or decrease in the number of cells with an

Xi after cell cycle arrest, although the cells that had been c-

irradiated at day 1 showed a slight decrease in cells that initiated

XCI (Figure 3B). This result suggests that cell division is not

required, or perhaps plays a minor role in the initiation of XCI.

Nevertheless, cell division characteristics are important in the XCI

process, because previous studies have shown that cells that

inactivate too many X chromosomes stop dividing or slow down

the cell division rate, which allows the cycling population of cells to

outgrow the cells that inactivated too many X chromosomes

[10,29].

Cell selection also plays an important role in the XCI process, as

male cells that inactivate their single X chromosome will die.

Studies with inducible Xist cDNA transgenes integrated on the

single X chromosome in male cells showed that Xist mediated

silencing manifests within 24 hours, and that cell death becomes

imminent within three days of Xist induction [29]. Also, diploid

female cells inactivating two X chromosomes or incapable of

initiating XCI are prone to die [6,30].

Computer simulated XCI
To comprehend the kinetics of XCI, we have developed a

stochastic simulation model to determine the populations of cells

with a different number of Xa’s and Xi’s. In this approach, the

distribution of different cell populations is derived using a

simulation program with a random number generator, thereby

mimicking the choice process. With a small starting population of

cells, as present in the female mouse embryo around the time XCI

is induced, the stochasticity resulted in different outcomes of the

choice process for every new calculation. This phenomenon

deviates from what would be obtained in deterministic mathe-

matical models, but corresponds to experimental reality. Our

stochastic simulation of the XCI process used a three-dimensional

matrix in which each Z stack represented one choice round

(Figure 4A). For our simulations we used a fixed or changing

probability per choice round per X chromosome, and specific cell

cycle characteristics depending on the X:A ratio.

We started by simulating the XCI process in XX diploid female

ES cells throughout a 10 day differentiation period, using a fixed

probability in time to run the simulations, and compared the

resulting distributions with experimental data obtained with

differentiating XX female ES cells. For cells with an X:A

ratio$0.5 we used a cell division rate of once every two days,

based on our cell division analysis (described above). In addition,

the simulation assumed that cells with all X chromosomes

inactivated stop dividing, which is based on previous studies

[31]. To be able to compare the simulations with available

experimental data, we set the time window to 1 day, representing

the integrated probability for cells choosing the X to be inactivated

over 1 day. In the calculations we have excluded the option that, in

XaXi cells that just have inactivated an X chromosome, the active

second X chromosome may still have a probability to be

Figure 3. Initiation of XCI independent of cell division. A) Determination of the number of cell divisions during a 10 day EB differentiation
period. Shown are the average and standard deviation of two separate experiments with two different ES lines per X:A ratio or ploidy number. B)
Analysis of initiation of XCI after a cell cycle block. Diploid female ES cells were EB differentiated for one day (left graph) or two days (right graph), and
treated with colcemid or mimosine, or cells were lethally c-irradiated, and allowed to differentiate for one more day before fixation. Control samples
were allowed to differentiate for two or three days. The percentage of cells that initiated XCI was determined by Xist RNA FISH, followed by the
quantification of the number of cells with Xist clouds.
doi:10.1371/journal.pone.0005616.g003
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Figure 4. Computer simulation of XCI. A) Left upper panel shows a schematic representation of the stochastic simulation which is executed in a
three dimensional matrix. Cells (boxes) go through consecutive choice rounds (numbers) interrupted by cell divisions (triangle). The three different
cell types are represented by XaXa = yellow, XiXa = green, XiXi = gray boxes. The dashed lines indicate the origin of progeny of one XiXa and one XiXi
cell after cell division (not all lines are shown, and note that the XiXi cells do not divide). The right panels show the experimental data from
differentiated 2n female XX ES cells (exp.), and the stochastic simulation of XCI with a 5%, 10%, 20%, 30%, and 40% fixed probability per X
chromosome (sim.). The different bar-graphs show the relative distribution of the three different cell types (XaXa = yellow, XiXa = green, XiXi = gray).
Numbers below the bar graphs indicate days of differentiation (1–10), and cell division is indicated with a triangle. For time points represented by
light gray bars no data is available. B) Probability curves representing the increase of the probability y in time based on equation [6], with m = 1, for
XX 2n and XXXX 4n cells (purple), and m = 0,75 for XXXY 4n cells (orange). The probability at a given time point is the integrated probability over a
time frame of one day. A negative value for y results in a probability of 0, and is represented by a faint line. C) Upper left panel shows simulation of
XCI in XX diploid cells based on probabilities determined using different probabilities in time indicated in the curve, shown in (B). Upper middle panel

XCI and X to Autosomal Ratio
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inactivated. We performed the simulations with 100 cells, which

mimics the number of cells present in the female mouse embryo

around the time XCI is initiated. A number of 5 independent

stochastic simulations generated the data for statistical analysis of

the average and standard deviation. The graphs in the figures only

show the average value for each time point. Comparison of the

simulations, using an increasing range of fixed probabilities from

5% to 40% for both X-chromosomes, with previously obtained

experimental results for differentiated XX female ES cells

indicated that a fixed probability between 10% and 20% fits our

experimental data best (Figure 4A; Figure S2A, B and C and

Figure S3A, B and C) [10]. To validate the simulation results we

also compared these with data obtained using a mathematical

approach were fixed probabilities were used to calculate the

different XaXa, XaXi and XiXi populations, which showed

similar population dynamics (Text S1 and Figure S1). The

fluctuation in the percentage of XiXi cells in time is the

consequence of applying two choice rounds (1 per day) within

one cell division (once every two days for XaXa and XaXi cells).

Because cell division is synchronized in the simulations, XiXi cells

are diluted out after every cell division.

From previous experimental data it appears that the probability

to initiate XCI is lower in the beginning than later during the XCI

process, and our experimental findings indicate that the

probability is dependent on the concentration of XCI-activator

in the nucleus. In our model, the labile XCI-activator is produced

at a rate (va.synthesis) that is proportional to the number of active X

chromosomes. This leads to the following differential equation for

the concentration of the XCI-activator:

d XCI{activator½ �
dt

~va:synthesis tð Þ{kd
: XCI{activator½ � ð1Þ

with:

Va:synthesis tð Þ~ks mactive tð Þ½ � ð2Þ

Here, ks is the rate constant for synthesis (in mMolar per second

per active promoter), and mactive is the number of active X

chromosomes per haploid genome, which can be substituted by

the X:A ratio by renormalizing the rate constant ks. Before XCI,

i.e. at the start of the simulation, all X chromosomes are active,

and whenever the number of active X chromosomes remains

(approximately) constant in time, the above equation integrates

as:

XCI{activator½ � m,tð Þ~ mactive
:ks

kd

: 1{e{kd
:t

� �

~
mactive

:ks

kd

: 1{ 1=2

� �t=t1
=2

� �
ð3Þ

where:

t1=2
~

kd

ln 2ð Þ~1:44:kd ð4Þ

We expect that the decision probability for X inactivation in any

very short time period, is proportional to the concentration [y] of a

number of molecules (or chromosome modifications) y that

effectuate Xist promoter activation. These molecules are being

synthesized through an enzymatic activity that depends on the

concentration of the allosteric XCI-activator through a Hill

relationship, with Vys and Ka, representing rate at maximum

activator concentration and activation constants, respectively. Y is

degraded by another enzymatic process, depending on the

concentration y through a Michaelis Menten relationship, with

Vyd and KMy and maximum rate and Michaelis constants,

respectively. We anticipate that KMy is very small, whereby this

degradation process of Y effectively always has the same rate. Also

we expect that y has a certain constant lability, through a first

order process, with first order rate constant kdy:

dy

dt
~

XCI{activator½ � tð Þ:Vys

Kaz XCI{activator½ � tð Þ{
y:Vyd

KMyzy
{kdy

:y ð5Þ

These molecular processes will reach a quasi steady state.

Equating dy/dt to zero, and assuming that KMy is much smaller

than any relevant concentration of y, the concentration of y is

given by:

y~
XCI{activator½ � tð Þ

Kaz XCI{activator½ � tð Þ
:Vys

kdy

{
Vyd

kdy

� �
, ð6Þ

or y will be zero if this yields a negative number. At the threshold

level, y will be zero, resulting in:

XCI{activator½ � tð Þ~Ka
: Vyd

Vys{Vyd

ð7Þ

Above the threshold level its value will increase with an increase in

[XCI-activator] towards a maximum. By plotting y in time we

generated a probability curve, which in the simulations represents

the integrated probability over a time frame of 1 day. The values

for y at different days from 0–10 were imported in the simulation

program to assign the different Xi’s with a specific probability per

choice round. After XCI has started on one or more X

chromosomes, the concentration of the XCI-activator will drop

fairly quickly, according to the half-life of the XCI-activator

protein (Text S1). For cells that started XCI in one choice round,

the probability will drop according to the m value reached after

that choice round.

Using graded preset values for the parematers, the outcome of

simulations using the above model, was compared with experi-

mental data sets that were obtained by differentiation of diploid

shows the experimental percentages of 4n XXXX cells with a different number of Xi’s throughout EB differentiation. The upper right panel shows the
simulation of XCI using the same parameters as used for the XX diploid simulation (XaXaXaXa = yellow, XaXaXaXi = green, XaXaXiXi = grey,
XaXiXiXi = red, XiXiXiXi, blue). Bottom left panel shows the experimentally determined percentages of 4n XXXY cells with a different number of Xi’s
throughout EB differentiation. Bottom right panel shows the XCI simulation of 4n XXXY cells using the different probabilities in time indicated in the
curve presented in (B) (XaXaXaY = yellow, XaXaXiY = green, XaXiXiY = grey, XiXiXiY = red). D) Curves representing the probability y in time using
equation [6] for cells with a different X:A ratio, ranging from 0,5 to 1,5. E) Left panel shows the experimentally determined percentages of 3n XXY cells
with a different number of Xi’s throughout EB differentiation. Middle panel shows the XCI simulation of 3n XXY cells using different probabilities
indicated in the curve presented in (D) (XaXaY = yellow, XaXiY = green, XiXiY = grey). Right panel shows the simulation of XCI in XXX 2n cells
(XaXaXa = yellow, XaXaXi = green, XiXiXa = grey, XiXiXi, red).
doi:10.1371/journal.pone.0005616.g004
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XX (m = 1) and tetraploid XXXX (m = 1) and XXXY (m = 0.75)

cells [10]. This approach enabled us to obtain best-fit values for

the parameters (independent variables). Probability curves for

m = 1 (2n XX and 4n XXXX) and m = 0.75 (4n XXXY) were

derived (Figure S4A, B and C, and Figure 4B) with a Ka of

3.3 mM, equal to the maximum XCI-activator concentration in

diploid XX and tetraploid XXXX cells, and values for ks, kd, kdy,

Vys and Vyd of 2 mM, 0.6 mM, 1.5 mM, 3 mM and 1.15 mM

respectively. These curves resulted in simulated populations with

different Xa’s and Xi’s in time that matched our experimental

data with diploid XX and tetraploid XXXX, XXXY cells

(Figure 4C, and Figure S5A and B and Figure S6). In a different

approach, we used the same probabilities in time for diploid

female XX cells in a mathematical model, and obtained

distributions of different cell populations that supported our

findings with the stochastic simulations (Text S1, and Figure S1B).

To validate the findings, we introduced two different m values

of 0.67 found in XXY triploid cells, and 0.5 found in diploid XY

and tetraploid XXYY cells, keeping all other parameter values

constant. The probability curves obtained with these m values

resulted in a negative probability (is equal to 0) for diploid XY and

tetraploid XXYY cells, as expected (Figure 4D). For XXY cells

with an m = 0.67 we obtained a positive value for y, predicting

initiation of XCI, albeit at an even lower level than found in

XXXY tetraploid cells (Figure 4D). Using the probabilities derived

with m = 0.67 we obtained simulated distributions that match well

with our experimental data (Figure 4E, and Figure S7A). Raising

m to 1.5, as found in females with an 47,XXX aneuploid

karyotype, increases the probability to a maximum of 44% (Figure

S4C and Figure 4D). Simulations using this probability curve

result in a majority of cells that inactivate two X chromosomes

(Figure 4E, and Figure S7B), as reported for 47,XXX human

individuals. Interestingly, simulation of XXX diploid (aneuploid)

cells only resulted in a 26% cell loss. This percentage is well below

the 50% cell loss obtained for human individuals and viable mice

with X:autosome translocations [32,33], and does explain why

mice and humans with one or more additional X chromosomes

are viable. Taken together, the results show that the XCI process

can be simulated using a probability curve representing the

effective XCI-activator concentration in combination with a

threshold level required to initiate XCI.

Allele specific activation levels for the XCI-activator
A stochastic model implies that different X chromosomes within

one nucleus can have different probabilities to be inactivated,

because X chromosome specific thresholds are determined

independently. In inbred mice, the X chromosomes are genetically

identical and XCI will therefore result in two evenly distributed

populations of XiXa cells with one of the parental X chromosomes

inactivated. However, in several F1 hybrid mice, XCI has been

reported to be skewed towards one of the parental alleles. For

mouse, skewing of XCI has been attributed to differences in the X

controlling element (Xce), a region overlapping and extending 39

of Xist [34,35]. In cells where two X chromosomes are present

with different Xce alleles, a strong Xce is associated with a lower

probability to initiate XCI compared to the X chromosome

harboring the weaker Xce. These reported differences in

probabilities could be explained as allele specific thresholds for

the XCI-activator. A more sensitive allele (weak Xce) for the XCI-

activator will result in a higher probability for XCI at a certain

XCI-activator concentration than a less sensitive allele (strong

Xce). As a consequence, one XCI-activator concentration can

result in different probabilities for different alleles in the same

nucleus. Mus musculus castaneus (Cast/Ei) mice harbor a strong Xce

in contrast to Mus musculus 129/SV (129/Sv) mice, which harbor a

weak Xce, and in somatic tissues of Cast/Ei-129/Sv F1 female

mice and differentiated F1 female ES cells, the 129/Sv X

chromosome is inactivated in ,70% of the cells (Figure 5H).

Allele specific sequence differences in Xist, Tsix, and Xite will lead

to different values for Vys and/or Vyd. As indicated above, y may

represent activated XCI-activator molecules or chromatin mod-

ifications (as targets for activated XCI-activator), for which Vys

and Vyd reflect the composition and breakdown, respectively, of

the complex involved in Xist transcriptional activation and/or Xist

RNA mediated silencing. The values for Vys and Vyd will depend

on allelic properties of different X chromosomes, such as SNPs in

the Xce region associated with allelic threshold levels to initiate

XCI. We have investigated both options, using different allele

specific values for Vys or Vyd. By training the stochastic simulation

program, we found best-fit allele specific Vys values for the 129/Sv

X and Cast/Ei X alleles of 3.19 and 2.87, respectively, or Vyd

values for the 129/Sv X and Cast/Ei X alleles of 1.05 and 1.20,

respectively (Figure S4D and E). Keeping all other variables

constant, these obtained values resulted in probability curves that,

in stochastic simulations of XCI, generated a relative distribution

of 129/Sv : Cast/Ei of 70% : 30% (Figure 5A and 5B, and Figure

S8A).

Completely skewed XCI has been reported in female mice and

ES cells, in which Tsix transcription is abrogated by deletion of

Tsix regulatory elements or a block of Tsix transcription through

insertion of poly-adenylation sequences. These mice and ES cells

show almost completely skewed XCI towards inactivation of the

Tsix mutant X chromosome. We have recently shown that XCI

starts earlier in differentiating Tsix mutant ES cells compared to

wild type female cells, and that by day one of differentiation

already 50% of the mutant cells have initiated XCI, compared to

,10% of the wild type cells. In the stochastic simulation, a raise in

the probability for the 129/Sv X chromosome harboring the Tsix

stop by increasing Vys to 4.60 mM, results in an outcome that

matched the experimental findings (Figure 5C and 5D, and Figure

S4F and Figure S8B). This simulation also shows that in this case

only few cells inactivate both X chromosomes, as we previously

reported [10], because early during differentiation the mutant X

chromosome is subject to a high probability to undergo XCI

compared to the wild type X, meaning that the XCI-activator level

will drop well before the second X might become a target. Using

the same parameters in a simulation of homozygous female Tsix-

stop cells we found a very high number of cells inactivating both X

chromosomes (Figure 5F and Figure S9A), as was reported for

differentiating female ES cells with a homozygous mutation of Tsix

[30]. Interestingly, in Tsix-stop male cells with m = 0.5 we still find

that y can eventually, over a period of time, reach a value above

zero (Figure S4F), suggesting that the single X in these male cells

will still have a probability to undergo initiation of XCI upon

differentiation or development (Figure S9B). Indeed this has been

reported in differentiating male ES cells with this Tsix-stop

mutation and other mutations that abrogate Tsix function [36–39].

Although the thresholds for both Cast/Ei and 129/Sv X

chromosomes are similar in F1 2–1 diploid XX cells and the

triploid XXY cells that we generated for this study, the putative X-

encoded XCI-activator concentration in the nucleus will be

different. In the 3n XXY cells, the XCI-activator concentration

will be lower than in 2n XX cells, related to the larger volume of

the nucleus of triploid cells as compared to diploid cells. Hence,

the allele specific threshold for the strong Xce of the Cast/Ei X

chromosome in 3n XXY cells may be too high to generate a

probability to start XCI (Figure 5G). To test whether this is true,

we differentiated 2n XX and 3n XXY lines for 7 days (in triplo),
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Figure 5. Implementing allele specific thresholds. A, B) XCI skewing can be simulated by attributing different probabilities to the two X
chromosomes in female XX cells. To simulate the 30%:70% skewing of XCI observed in Cast/Ei – 129/Sv F1 mice and differentiating F1 ES cells
different allele specific probabilities were applied. (B) The experimentally obtained XCI data (left panel) with differentiating XX Cast/Ei – 129/Sv F1 ES
cells does not discriminate between inactivation of the Cast/Ei or 129/Sv X chromosome. Right panel shows simulations with allele specific
probability curves presented in (A). C) Almost complete skewing of XCI towards the Tsix-stop containing 129/Sv X chromosome was simulated using
allele specific probabilities for the Cast/Ei and mutated 129/Sv X chromosomes. D) Left panel shows the experimentally obtained XCI data with 2n XX
heterozygous Tsix-stop female cells. In this experiment no discrimination was made between inactivation of the Cast/Ei and 129/Sv X chromosomes.
The right panel shows simulated XCI experiments using the probability y presented in (C). E) Predicted probabilities in time for a Tsix-stop X
chromosome in male and female ES cells. F) Left panel shows simulation experiments with homozygous female Tsix-stop cells. Right panel shows
initiation of XCI occurring in simulation experiments with Tsix-stop male cells. G) Predicted probability curves for Cast/Ei and 129/Sv X chromosomes
in 3n XXY ES cells. H) Schematic presentation of the Xist locus and the localization of the PCR primers used to determine skewing of Xist expression.
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and performed RT-PCR analysis with an Xist specific primer set.

As predicted, we found that skewing of XCI is enhanced towards

the weak Xce of the 129/Sv X chromosome in the 3n XXY cell

lines (Figure 5H). We conclude that the stochastic simulation

studies show that our hypothesis that the probability for an X

chromosome to undergo initiation of XCI is effectuated by an X-

encoded activator of XCI, above a nuclear threshold level, is

feasible, at least when considered in the light of the experimental

information. They also demonstrated that the probability to

initiate XCI may well depend on the number of X chromosomes

per nucleus, the nuclear volume related to ploidy and different

thresholds for specific Xce alleles.

Discussion

We have analyzed XCI in differentiating triploid mouse ES

cells, and found that XXY cells with an X:A ratio of 0.67 initiate

XCI less frequently compared to cells with a higher X:A ratio.

Cells that do initiate XCI (XaXiY) proliferate slightly faster than

XaXaY cells, and slowly accumulate in time. Simulation studies of

XCI, based on a stochastic principle, indicate that XCI counting

and choice can be mimicked when using a probability for an X

chromosome to be inactivated, in which the probability is

dependent on a nuclear XCI-activator concentration acting at

differential threshold levels for X chromosomes with specific Xce

alleles.

Triploid ES cells and the need for speed
In this study, we have generated triploid mouse ES cells by PEG

mediated fusion of diploid ES cells with haploid round spermatids.

Interestingly, we could only generate triploid ES cells with a XXY

karyotype, in which the Y chromosome was donated by the round

spermatid. The fact that we could not generate an ES cell line with

the same XXY karyotype by fusion of a male ES cell with a round

spermatid donating an X chromosome indicates that the presence

of a spermatid derived X chromosome results in a triploid cell that

is not viable. This difference could be the consequence of

epigenetic interference with transcription of the X chromosome

from spermatids, which hampered the viability of our triploid cells.

However, such an effect has never been reported in mice [40].

Epigenetic modification of the X in spermatids might be a

consequence of meiotic sex chromosome inactivation (MSCI) [25],

that is overcome in normal sperm development and fertilization,

but cannot be reversed by the ES cell. Indeed, fusion experiments

with round spermatids harboring an X-linked GFP transgene

indicate that the spermatidal X chromosome is not reactivated by

the ES cell. In contrast, fusion of ES cells with somatic XaXi

diploid cells results in proper reactivation of the inactive X

chromosome [27]. Therefore, the apparent absence of spermatidal

X reactivation in our triploid XXY and XXX ES cells indicates

the presence of epigenetic differences laid down on an Xi during

the MSCI and the XCI processes. The Y chromosome is also

subject to MSCI, but fusion of XX diploid ES cells with a round

spermatid containing a Y chromosome does result in viable 3n ES

cell lines. This shows that the spermatidal autosomes do not affect

the viability. The Y chromosome has little gene content, compared

to the large X chromosome, such that possible epigenetic

modification of the Y chromosomes by MSCI may not impact

on the outcome of the fusion process.

The absence of triploid XYY ES cells can be attributed to these

cells having an X:A ratio of 0.33, which is probably lower than

required for normal viability and growth for ES cells. Lethality due

to an elevated level of Y chromosome transcripts is not likely, in

view of the viability of 47,XYY aneuploid male individuals.

Although XYY triploid embryos have been observed to occur in

mouse and human, the observed frequencies are much lower than

expected [41,42]. Interestingly, for differentiating mouse triploid

XXY ES cells we find many cells with a single Xa, indicating that

an X chromosome under-dosage problem, of one active X per

triploid genome, plays a role in particular in undifferentiated ES

cells or during early embryonic development. Moreover, after 10

days of EB differentiation of these XXY triploid ES cells, we found

an increase in the relative number of XaXiY cells, making up 41%

of the total cell population. This indicates that XaXiY is the

inactivation pattern that results in a cell with the preferred dosage

of X-linked genes. This observation is supported by previous in vivo

experiments, examining XCI in mouse XXY and XXX triploid 10

dpc (days post coitum) embryos, which showed that 83% of the cells

were XaXiY, and 92% of the cells were XaXiXi, respectively [21].

Therefore, we conclude that mouse triploid cells preferably keep

only one of their X chromosomes active.

The present observation that after three days of ES cell

differentiation 3–4% of XXY triploid ES cells have started XCI,

provides additional evidence for the hypothesis that the X:A ratio

indeed determines the probability to initiate XCI. Our studies also

show that the XCI initiation rate for the differentiating XXY

triploid ES cells is too low to allow all cells to inactivate one X

chromosome within the time span where XCI can be initiated.

These cells cannot meet the need for speed.

XCI counting and initiation
The finding that the probability to initiate XCI is proportional

to the X:A ratio suggests the presence of an X-linked gene

encoding an XCI-activator, which itself is transcriptionally

inactivated during the XCI process. During differentiation or

development, the nuclear concentration of this XCI-activator will

increase and reach a threshold level required to generate a

probability to initiate XCI. In cells with a relatively high X:A ratio,

the XCI-activator concentration will reach the threshold level at

an earlier time point and will plateau at a higher level, and

therefore generate a higher probability, compared to cells with a

lower X:A.

Silencing of one of the XCI-activator genes in female cells will

lead to a drop in the XCI-activator level equal to that found in

male cells, which is not sufficient to initiate XCI on the remaining

X. Nevertheless, Xist remains expressed on the Xi because its

negative regulator Tsix is also silenced in cis, allowing a lower XCI-

activator concentration to maintain Xist expression. Persistent

expression of Tsix on the Xa results in silencing of Xist on that

chromosome. In female mice and cell lines with only one

functional copy of Xist, XCI will only be initiated on the wild

type X chromosome. If Tsix is intact on the other X chromosome

the non functional Xist gene is silenced in cis [43]. However, in

female cell lines heterozygous for a single allelic region containing

both a non-functional Xist and Tsix gene, the Xist promoter of the

mutated allele will not be silenced. This explains the reported

persistent expression of non-functional Xist from the Xa, and the

finding that this mutant Xist promoter adopts the same chromatin

RT PCR was performed with cDNA of 7 day differentiated 2n XX cells and 3n XXY cells, with Xist primers spanning intron 6, amplifying a length
polymorphism present in exon 7. The average percentage, and standard deviation, of Xist emanating from the Cast/Ei X chromosomes relative to the
total amount of Xist is shown in the right graph.
doi:10.1371/journal.pone.0005616.g005
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configuration as found for the wild type Xist promoter on the Xi

[44].

A stochastic model for XCI, involving an X-encoded XCI-

activator, assumes that the nuclear volume is directly proportional

to the ploidy, which in mice is indeed the case [45,46]. We found

that triploid XXY ES cells, and tetraploid XXXY and XXXX ES

cells showed a significant difference in the number of cells that

initiated XCI after three days of differentiation, supporting the

presence of an XCI-activator. Moreover, tetraploid XXXX cells

have initiated XCI after three days of differentiation more

effectively than diploid XX cells, despite a similar XCI-activator

concentration (number of X chromosomes per nuclear volume).

We attribute this difference to the different number of X

chromosomes, that each have a probability to initiate XCI. This

is supported by our simulations, that also show a faster increase of

tetraploid XXXX cells with one or more Xi’s than the rate of

appearance of diploid XX cells with an Xi.

The counting and initiation phase of XCI has also been

explained by the presence of an autosomally encoded blocking

factor or nuclear entity, of which one dose or one functional unit is

present in the diploid nucleus, preventing inactivation of one X

chromosome. We advocate that our current and previous findings

do not support a blocking factor model for the XCI counting and

initiation process. Examination of XCI after a 3-day differentia-

tion period of the different tetraploid cell lines showed that XCI

counting works properly in XXYY tetraploid cells, which only

sporadically initiate XCI. Nevertheless, for the XXXY and

XXXX tetraploid cell lines, we found many cells that initiated

XCI on the wrong number of X chromosomes, more than one in

XXXY and more than two in XXXX tetraploid cells [10]. A

blocking factor model cannot explain these results because the two

functional units of blocking factor (present in tetraploid cells) that

properly block XCI on both X chromosomes in XXYY cells

should have done the same in XXXY and XXXX cells, which is

not the case. Nevertheless, the actual results could be explained if

the blocking factor is assembled out of a limiting amount of

molecules as predicted by the symmetry-breaking model [47],

which is used up with an increasing number of X chromosomes,

but a comparison of our results of diploid XX cells with triploid

XXY cells argues against this possibility. We found a much lower

number of triploid XXY cells compared to diploid XX cells that

initiated XCI at day 3, despite the fact that the concentration of

the molecules making up the blocking factor would be the same in

both cell lines.

Cellular population dynamics of XCI
The present simulation studies of XCI indicate that the XCI

counting and initiation process can be simulated by inclusion of

relatively few variable parameters. First, there is a probability to

initiate XCI for any individual X chromosome. Second, specific

Xce alleles respond to different nuclear threshold levels of an XCI-

activator. This is all that is required to explain the initiation of

XCI. The simulations only tested whether a stochastic model for

XCI could explain the available and new experimental data.

Other models explaining the initiation phase of XCI, including the

blocking factor, symmetry breaking, and transvection models,

hypothesize that XCI is directed by a mutual exclusive choice

process [48]. Unfortunately, this situation could not be simulated

in our program. Nevertheless, the simulations based on a

stochastic model make predictions, some of which we have

thoroughly tested and other predictions that await further analysis.

In the computer simulations, we have used ten XCI choice

rounds over a 10 day differentiation period. However, in vivo the

number of choice rounds may be less than ten, resulting in more

cells with too many Xa’s, which would be selected against. This is

supported by observations made in female embryos that show a

significant number of cells with two Xa’s after completion of the X

inactivation process [21,49]. Our simulations also predict less cells

with too many Xi’s than we detected in vivo, especially for the 4n

XXXX and XXXY cells. This can be explained, if initiation of

XCI on the right number of X chromosomes does not result in an

immediate drop of the XCI-activator level below the threshold, so

that XCI can still be initiated on additional chromosomes until

turnover of the XCI-activator has resulted in a drop below the

threshold level. We have not incorporated this possibility in our

simulation program.

With regard to embryo development, it is interesting that

simulations with 2n XX ES cells indicate that the cell number in

female diploid XX embryos will be significantly reduced by about

12% when compared to male diploid XY embryos (Figure S5,

blue box). This is in the range of reported size differences between

female and male embryos around the time XCI has been

completed, and before hormonal cues start to influence growth

of the embryo [50]. Therefore, this reported in vivo size difference

could be explained by female specific cell loss as a by-product of

the X inactivation process. Furthermore, for female homozygous

Tsix-stop cells, our simulation showed that almost all the cells are

lost during the XCI process. In male ES cells the reduction in

expected cell number is 88%. This may explain the reported sex-

ratio distortion in homozygous DCpG Tsix knockout mice [51].

However, the high loss of cells in our simulations of male and

female embryos with a homo/hemizygous Tsix-stop mutation

indicates that these mice will most likely not be viable.

Interestingly, viable mice, albeit at a lower mendalian ratio, have

been reported with a homo/hemizygous DCpG Tsix knockout

allele suggesting that the probability to initiate XCI for this allele is

lower than for the Tsix–stop allele used in our simulations [51].

This indicates that the DCpG Tsix allele is a partial knockout of

Tsix, which is supported by in vivo studies showing that a

hemizygous Tsix-stop allele results in a non-viable phenotype, in

contrast to the hemizygous DCpG Tsix mice that are viable and

breed [51,52]. Also, other mutations of Tsix result in activation of

Xist in male cells upon ES cell differentiation, in contrast to male

cells with a DCpG Tsix mutation that do not show initiation of

XCI [36–39].

The XCI-activator has not been identified yet. However, several

lines of evidence indicate that it acts through Xist, and could be a

protein or RNA involved in activation and/or stabilization of Xist

[10]. Studies with different Tsix mutant cell lines suggest that, in

mice, Tsix plays a crucial role in determining the XCI-activator

level required for generating a probability to initiate XCI by

suppression of Xist. In addition, chromatin modifications of the

Xist promoter may also play a role in determining the threshold,

which might be even more relevant in human were the presence

and function of TSIX are still speculative. Identification and

characterization of the XCI-activator, and factors involved in

setting up the threshold, will be of crucial importance for a better

understanding of the initiation phase of XCI.

Materials and Methods

Culture and differentiation of ES cells
ES cells were cultured in DMEM supplemented with 15% heat

inactivated foetal calf serum, 100 U ml21 penicillin, 100 mg ml21

streptomycin, non-essential amino acids, 1000 U/ml leukaemia

inhibitory factor (LIF) and 0,1 mM b-mercaptoethanol. ES cells

were grown on a layer of male mouse embryonic fibroblast (MEF)

feeder cells. To induce differentiation into EBs, ES cells were pre-
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plated for 60 minutes and non-adherent ES cells were transferred

to non-gelatinized bacterial culture dishes without feeder cells in

differentiation medium, IMDM Glutamax, 15% heat inactivated

foetal calf serum, 50 mg/ml ascorbic acid, 100 U ml21 penicillin,

100 mg ml21 streptomycin, 37.8 ml/l monothioglycerol.

Mice and staput isolation of round spermatids
All animals were treated in accordance with guidelines of the

Erasmus MC, Rotterdam, the Netherlands. Testes from two Ube2a

homozygous mutant mice and two Ube2b heterozygous mutant

mice were excised and decapsulated to remove the tunica

albuginea. Decapsulated testes were pooled in 20 ml PBS

(140 mM NaCL, 3 mM KCl, 1.5 mM KH2PO, 8 mM

NaH2PO4)/1.1 mM Ca2+/0.5 mM Mg2+/12 mM lactate (Sig-

ma-Aldrich) of 34uC, containing 10 mg hyaluronidase (from ovine

testes, Roche-Diagnostics), 20 mg trypsin (from bovine pancreas,

Roche-Diagnostics) and 20 mg collagenase A (Roche-Diagnostics).

Testes were shaken for 20 minutes at 90 rpm with 10 mm

amplitude to release seminiferous tubuli from interstitial cells.

Tubuli were collected by centrifugation for 3 minutes at 2000 rpm

and resuspended in 34uC PBS/12 mM lactate. After shaking

10 minutes at 120 rpm with 10 mm amplitude to release germinal

cells from the tubuli, tubuli remnants were removed. Germinal

cells were collected by centrifugation and resuspended in 34uC
PBS/1.1 mM Ca2+/0.5 mM Mg2+/12 mM lactate. The cell

suspension was filtrated using a 60 mm filtration cloth. Germinal

cells were collected by centrifugation and resuspended in 50 ml

PBS/1.1 mM Ca2+/0.5 mM Mg2+/12 mM lactate/0.5% w/v

BSA. Cells were separated by sedimentation velocity at unit

gravity in a 1–4% w/v BSA gradient at room temperature. First

20 ml PBS/1,1 mM Ca2+/0.5 mM Mg2+/12 mM lactate was

bottom-loaded in a chamber, followed by 50 ml cell suspension. A

BSA gradient was created by loading a total of 500 ml of 1%, 2%

and 4% w/v BSA in PBS. Cells were allowed to sediment for

2 hours. The chamber was emptied in 8 ml fractions using a

fraction collector, and fractions containing peak amounts of cells

were identified using a 340 nm UV light source. Fractions

containing round spermatids were pooled, collected by centrifu-

gation and resuspended in PBS/1.1 mM Ca2+/0.5 mM Mg2+/

12 mM lactate. Purity of round spermatid preparations derived by

this procedure were shown to be .90%, as determined by

microscopic analysis of an aliquot of purified cells fixed in Bouins’

fixative on glass slides [53].

Fusion experiments
Mus musculus castaneus/129/Sv F1 (F1-2 1) female and C57Bl6/

129/Sv (V6.5) male ES cell-lines were separated from MEF feeder

cells by trypsinizing and preplating for 45 minutes on uncoated

culture dishes. PEG1500 fusion was performed according to the

manufacturer’s instructions (Invitrogen). Briefly, 4?106 cells were

combined with 4?106 round spermatids in DMEM. After

centrifugation cells were resuspended in 300 ml 50% v/v

PEG1500 and incubated for 2 minutes at 37uC under continuous

stirring. The mixture was gradually diluted with serum containing

medium and plated on drug-resistant MEF feeder cells. After

24 hours medium was replaced with medium containing 0.3 mg/

ml neomycin and 2 mg/ml puromycin. After nine days, individual

ES cell colonies were picked, trypsinized and plated on individual

culture dishes in neomycin and puromycin containing medium.

Cell cycle block
ES cells were EB differentiated for one or two days and then

blocked in the cell cycle by adding 0.75 mM mimosine, 12 ml/ml

colcemid (KaryoMax, Gibco) or 2100centiGray c-irradiation.

Cells were fixed one day after applying the cell cycle block.

Karyotyping
ES cells were blocked in metaphase by incubation in medium

containing 0.12 mg/ml colcemid for 1 hour. Cells were trypsinized

and resuspended in 5 ml 0.075 M KCl at 37uC, collected and

resuspended in 0.0625M KCl/12.5% methanol/4.17% acetic

acid. Cells were fixed by washing three times in 75% methanol/

25% acetic acid and stored in 200 ml at 4uC. The fixed cell

suspension was spotted on ethanol cleaned slides and air dried. For

determining the total number of chromosomes slides were

mounted with 20 ml Dapi vectashield.

To determine the number of X chromosomes, slides were

denatured by a three minute incubation at 80uC in 100 ml 50%

formamide/26SSC/10 mM phosphate buffer. Subsequently

slides were dehydrated, and hybridized overnight at 37uC with a

Cy3 labelled X-paint probe (Cambio). After hybridization, slides

were washed once with 26SSC at 45uC, three times with 26SSC/

50% formamide at 45uC and two times with PBS. Slides were

dehydrated through ethanol steps (70%, 90% and 100%) air-dried

and mounted with 20 ml dapi vectashield. For determining the

number of Y chromosomes, Y-chromosome paint (Cambio) was

applied, following the same protocol as for the X chromosome

paint.

RNA FISH analysis
One day prior to fixation, non-adherent EBs were trypsinized

and differentiated ES cells were grown on gelatin-coated cover

slips. Cells were rinsed once with PBS and permeabilized by

successive incubation in cytoskeletal buffer (100 mM NaCl,

300 mM sucrose, 3 mM MgCl2, 10 mM PIPES pH 6.8 in H2O)

for 30 seconds, cytoskeletal buffer containing detergent (0.5%

triton X-100, 100 mM NaCl, 300 mM sucrose, 3 mM MgCl2,

10 mM PIPES pH 6.8 in H2O) for 2 minutes and cytoskeletal

buffer for 30 seconds. Cells were fixed in 4% paraformaldehyde/

PBS for 10 minutes, rinsed three times with 70% ethanol and

stored in 70% ethanol at 4uC.

The Xist probe was a digoxygenin labelled 5.5 kb cDNA

sequence [10]. To suppress repetitive sequences 25 mg/ml mouse

Cot1 DNA was added and probe mixture was incubated at 95uC
for 5 minutes and at 37uC for 45 minutes. After overnight

hybridization at 37uC, slides were washed in 26SSC at 37uC for

5 minutes, and three times in 50% formamide/26SSC at 37uC
for 10 minutes. Probe detection was performed at room

temperature. Detection was with a sheep anti-digoxigenin

antibody (Roche diagnosics), followed by a FITC labelled rabbit

anti-sheep antibody (Jackson labs) and a FITC labelled goat anti-

rabbit antibody (Jackson labs), each for 30 minutes, in 100 mM

Tris pH 7.5/saline/Tween, BSA. After detection cover slips were

dehydrated and mounted on a slide in Vectashield and DAPI to

counter stain DNA. To determine the number of inactive X

chromosomes in a cell, a non-overlapped intact nucleus was

selected, and the number of Xist clouds were scored.

BrdU analysis
For BrdU analysis, differentiated ES cells of trypsinized non-

adherent EBs were grown on gelatin-coated cover slips in the

presence of 20 mM BrdU, and fixed as described in the RNA

FISH section. Cover slips were dehydrated, air-dried and

denatured in 70% formamid/26SSC/50 mM phosphate for

3 minutes at 85uC. Coverslips were washed in ice cold 70%

ethanol and through 70%, 90% and 100% ethanol washes and air

dried after which the Xist probe was applied. Detection of Xist
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RNA was as described in the previous section, detection of BrdU

was performed with a mouse monoclonal BrdU antibody

(DAKO), followed by a rhodamin labelled donkey anti-mouse

antibody (Jackson labs), 30 minutes incubation each.

To determine the number of BrdU labelled cells for the XaXaY

and XaXiY cell populations, first a microscope field was selected,

containing one or more intact nuclei with an Xist cloud. Within

this field, the number of cells containing an Xist cloud with

negative or positive BrdU staining was determined. Subsequently

this was also done for all cells without an Xist cloud in the same

microscopic field.

DNA FISH analysis
For DNA FISH, cells were fixed as for RNA FISH, and

pretreated for 4 min with 0.5% pepsin in 10 mM HCl at 37uC,

post fixed for 5 minutes in 4% paraformaldehyde/PBS, washed

twice with PBS, and dehydrated prior to denaturation. Denatur-

ation of target sequences was as described in the BrdU analysis

section. Cover slips were incubated with a combination of two

biotin-labelled BACs (CT7-155J2 and CT7-474E4) at 37uC
overnight. BACs were detected using mouse anti-biotin (Roche

diagnostics) and donkey anti-mouse antibodies (Jackson labs) as

described for RNA FISH. To determine the number of X

chromosomes, non-overlapping nuclei were selected and the

number of signals per nucleus was determined.

Genotyping and RT PCR analysis
For genotyping the mutant Ube2b allele was amplified

with primers CTTTACGGTATCGCCGCTCCCGAT,

TTGAAATCCCGCATGAGC, and CGGAGGGAGACGT-

CATTG. For RT-PCR RNA was isolated with Trizol reagent,

treated with RNAse free DNAse and reverse transcribed (all

Invitrogen). Xist RNA was amplified with primers

ACTGGGTCTTCAGCGTGA, and GGGAATAGGTAAGA-

CACACTG spanning intron 6, which amplify a length polymor-

phism in exon 7 (129/Sv fragment is 888 bp, Cast/Ei fragment is

845 bp).

Stochastic simulations
Stochastic simulations were performed in a SQL based program

(the source code can be found in the Text S1), using 10 Z-stacks,

and 100 starting cells. The program allows the use of different

probabilities in time, a different number of X chromosomes per

cell, and a different rate of cell division depending on the number

of Xi’s.

Supporting Information

Text S1

Found at: doi:10.1371/journal.pone.0005616.s001 (0.12 MB

DOC)

Figure S1 Mathematical computation of cell populations A) The

panels show the mathematical computation the XaXa, XaXi and

XiXi populations with a 5%, 10%, 20%, 30%, and 40% fixed

probability per X chromosome. The different bar-graphs show the

relative distribution of the three different cell types (XaXa = green,

XiXa = red, XiXi = blue), in a 22 day differentiation experiment.

B) This panel shows the mathematical computation the XaXa,

XaXi and XiXi populations with a changing probability for m = 1

presented in figure 4B.

Found at: doi:10.1371/journal.pone.0005616.s002 (3.11 MB TIF)

Figure S2 Stochastic simulations with a fixed probability

ranging from 5% to 30% A, B and C) Results of the stochastic

simulations using a fixed probability ranging from 5% to 20%.

The average of five independent runs is highlighted in green. The

expected number of XiXa cells and the experimentally obtained

number of XiXa cells is highlighted in blue.

Found at: doi:10.1371/journal.pone.0005616.s003 (3.71 MB TIF)

Figure S3 Stochastic simulations with a fixed probability

ranging from 30% to 50% A, B and C) Results of the stochastic

simulations using a fixed probability ranging from 30% to 50%.

The average of five independent runs is highlighted in green. The

expected number of XiXa cells and the experimentally obtained

number of XiXa cells is highlighted in blue.

Found at: doi:10.1371/journal.pone.0005616.s004 (3.62 MB TIF)

Figure S4 Calculation of the probability y A, B) This figure

shows (B) the XCI-activator concentration in a nucleus with a

different X:A ratio (m), based on values for the different variables

given in (A). (C) The probability y was determined for cells with a

different number of sex chromosomes and/or ploidy. D, E, F)

Show the allele specific probability y in time with different Vyd or

Vys values in wild type (D, E) and Tsix-stop cells (F), used in our

simulation experiments.

Found at: doi:10.1371/journal.pone.0005616.s005 (1.84 MB TIF)

Figure S5 Stochastic simulation of XCI in diploid XX and

tetraploid XXXX cells A, B) Results of the stochastic simulations

using the probability curves shown in Figure 4B for diploid XX (A)

and tetraploid XXXX cells (B). The average of five independent

runs is highlighted in green. The expected number of XiXa and

XiXiXaXa cells and the experimentally obtained number of XiXa

and XiXiXaXa cells from the diploid and tetraploid cells

respectively are highlighted in blue.

Found at: doi:10.1371/journal.pone.0005616.s006 (3.07 MB TIF)

Figure S6 Stochastic simulation of XCI in tetraploid XXXY

cells Results of the stochastic simulations using the probability

curves shown in Figure 4B for tetraploid XXXY cells. The average

of five independent runs is highlighted in green. The expected and

obtained number of tetraploid XiXaXaY cells are highlighted in

blue.

Found at: doi:10.1371/journal.pone.0005616.s007 (1.77 MB TIF)

Figure S7 Stochastic simulation of XCI in triploid XXY and

diploid XXX cells Results of the stochastic simulations using

different probability curves presented in Figure 4D for triploid

XXY cells (A) and diploid XXX cells (B). The average of five

independent runs is highlighted in green. Except for the triploid

XXY cells, the expected and obtained number of viable cells is

highlighted in blue.

Found at: doi:10.1371/journal.pone.0005616.s008 (2.70 MB TIF)

Figure S8 Stochastic simulation of XCI in diploid cells with allele

specific probabilities A, B) Results of stochastic simulations using the

X:A ratio of 1, and allele specific probabilities indicated in Figure 5A

(A) and 5C (B). (A) shows the simulation of F1 female Cast/Ei 129/

Sv cells, (B) heterozygous female Tsix-stop cells. The average of five

independent runs is highlighted in green. The expected and

obtained number of viable cells are highlighted in blue.

Found at: doi:10.1371/journal.pone.0005616.s009 (2.68 MB TIF)

Figure S9 Stochastic simulation of XCI in female and male cells

with a Tsix-stop allele A, B) Results of stochastic simulations using

the X:A ratio of 1, and allele specific probabilities indicated in

Figure 5E. Simulation experiments with homozygous female (A)

and hemizygous male (B) Tsix-stop alleles. The average of five

independent runs is highlighted in green. The expected and

obtained number of viable cells are highlighted in blue.

Found at: doi:10.1371/journal.pone.0005616.s010 (2.46 MB TIF)
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