Table I.
Table of rotamer probabilities4 for valine dipeptides with α-helical phi and psi.
| psi (degrees), rotamer | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| -50 | -40 | -30 | -20 | |||||||||||
| M | T | P | M | T | P | M | T | P | M | T | P | |||
| phi (degrees), method | -70 | CHARMM1 | 23 | 14 | 63 | 49 | 19 | 32 | 74 | 14 | 12 | 89 | 8 | 3 |
| HF2 | 9 | 13 | 78 | 30 | 20 | 50 | 57 | 26 | 17 | 77 | 20 | 4 | ||
| DUN3 | 1 | 1 | 99 | 4 | 4 | 93 | 19 | 17 | 64 | 52 | 30 | 18 | ||
| -60 | CHARMM | 27 | 15 | 58 | 55 | 16 | 29 | 77 | 13 | 9 | 91 | 7 | 2 | |
| HF | 11 | 16 | 73 | 32 | 23 | 45 | 57 | 28 | 15 | 79 | 18 | 3 | ||
| DUN | 1 | 1 | 98 | 3 | 5 | 92 | 16 | 22 | 62 | 45 | 39 | 16 | ||
| -50 | CHARMM | 30 | 16 | 54 | 59 | 16 | 25 | 82 | 11 | 7 | 94 | 5 | 2 | |
| HF | 12 | 20 | 68 | 34 | 27 | 40 | 59 | 29 | 12 | 81 | 17 | 2 | ||
| DUN | 1 | 3 | 97 | 3 | 11 | 87 | 13 | 38 | 50 | 28 | 58 | 15 | ||
| -40 | CHARMM | 36 | 15 | 50 | 64 | 15 | 21 | 85 | 9 | 6 | 95 | 4 | 1 | |
| HF | 15 | 24 | 62 | 36 | 31 | 33 | 63 | 29 | 8 | 82 | 17 | 1 | ||
| DUN | 3 | 7 | 89 | 8 | 29 | 63 | 15 | 61 | 24 | 39 | 29 | 33 | ||
Rotamer probabilities for valine dipeptides as calculated with the CHARMM22 energy function.
Rotamer probabilities for valine dipeptides as calculated with Hartree-Fock, 6-31G(d), Gaussian Inc.
Rotamer probabilities in Dunbrack's backbone dependent rotamer library.
For both QM and MM methods, log probabilities were calculated from the energy of the rotamer that had the phi and psi angle shown and the chi angle that had the minimum energy for that rotamer bin and then normalized to 1 (P = exp(-E/RT)).