Skip to main content
. Author manuscript; available in PMC: 2009 May 11.
Published in final edited form as: Proteins. 2008 Jun;71(4):1637–1646. doi: 10.1002/prot.21845

Table I.

Table of rotamer probabilities4 for valine dipeptides with α-helical phi and psi.

psi (degrees), rotamer

-50 -40 -30 -20

M T P M T P M T P M T P

phi (degrees), method -70 CHARMM1 23 14 63 49 19 32 74 14 12 89 8 3
HF2 9 13 78 30 20 50 57 26 17 77 20 4
DUN3 1 1 99 4 4 93 19 17 64 52 30 18

-60 CHARMM 27 15 58 55 16 29 77 13 9 91 7 2
HF 11 16 73 32 23 45 57 28 15 79 18 3
DUN 1 1 98 3 5 92 16 22 62 45 39 16

-50 CHARMM 30 16 54 59 16 25 82 11 7 94 5 2
HF 12 20 68 34 27 40 59 29 12 81 17 2
DUN 1 3 97 3 11 87 13 38 50 28 58 15

-40 CHARMM 36 15 50 64 15 21 85 9 6 95 4 1
HF 15 24 62 36 31 33 63 29 8 82 17 1
DUN 3 7 89 8 29 63 15 61 24 39 29 33
1

Rotamer probabilities for valine dipeptides as calculated with the CHARMM22 energy function.

2

Rotamer probabilities for valine dipeptides as calculated with Hartree-Fock, 6-31G(d), Gaussian Inc.

3

Rotamer probabilities in Dunbrack's backbone dependent rotamer library.

4

For both QM and MM methods, log probabilities were calculated from the energy of the rotamer that had the phi and psi angle shown and the chi angle that had the minimum energy for that rotamer bin and then normalized to 1 (P = exp(-E/RT)).