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Abstract
Objective—Clinicians face numerous information needs during patient care activities and most of
these needs are not met. Infobuttons are information retrieval tools that help clinicians fulfill their
information needs by providing links to on-line health information resources from within an
electronic medical record (EMR) system. The aim of this study was to produce classification models
based on medication infobutton usage data to predict the medication-related content topics (e.g., e.g.,
dose, adverse effects, drug interactions, patient education) that a clinician is most likely to choose
while entering medication orders in a particular clinical context.

Design—We prepared a dataset with 3,078 infobutton sessions and 26 attributes describing
characteristics of the user, the medication, and the patient. In these sessions, users selected one out
of eight content topics. Automatic attribute selection methods were then applied to the dataset to
eliminate redundant and useless attributes. The reduced dataset was used to produce nine
classification models from a set of state-of-the-art machine learning algorithms. Finally, the
performance of the models was measured and compared.

Measurements—Area under the ROC curve (AUC) and agreement (kappa) between the content
topics predicted by the models and those chosen by clinicians in each infobutton session.

Results—The performance of the models ranged from 0.49 to 0.56 (kappa). The AUC of the best
model ranged from 0.73 to 0.99. The best performance was achieved when predicting choice of the
adult dose, pediatric dose, patient education, and pregnancy category content topics.

Conclusion—The results suggest that classification models based on infobutton usage data are a
promising method for the prediction of content topics that a clinician would choose to answer patient
care questions while using an EMR system.
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I. INTRODUCTION
Numerous information needs arise in the course of patient care. It has been estimated that the
frequency of information needs ranges from one to four questions per patient encounter [1],
[2],[3]. A large percentage of these needs are not met, mostly because clinicians fail to find an
answer to their need or because they opt not to pursue an answer [1],[4],[5]. A significant
percentage of these needs are related to gaps in medical knowledge that could be filled by one
of the numerous on-line health information resources that have become available since the
advent of the World Wide Web [6],[7]. However, a number of barriers to the use of information
resources at the point of care preclude a more frequent and effective use of such resources
[4],[5]. These barriers include lack of time, doubt that an answer exists or can be easily found,
and lack of access to resources that can directly answer the question.

It has been suggested that solutions to this problem should facilitate access to information that
reflects the context in which information needs arise [8],[9]. “Infobuttons” are examples of
such solutions [10]. Infobuttons attempt to predict the information needs that a clinician might
have while using an electronic medical record (EMR) system and provide links to relevant
content in an attempt to fulfill these needs (Figure 1) [11].

Infobuttons are typically implemented with a software component called an “Infobutton
Manager” [12]. The core piece of the Infobutton Manager is a knowledge base that contains
rules that map the various instances of context and the information needs that may arise in each
of these instances to information resources [11]. In present Infobutton Manager
implementations, these rules need to be manually designed and coded in the knowledge base.
In previous studies, we have explored the feasibility of machine learning and Web usage mining
techniques to enhance the prediction of information needs [13],[14]. In these studies, we found
that infobutton usage data can be used to create classification models that accurately predict
the information resources that a clinician is most likely to visit in a particular EMR context. In
this present study, we conducted a similar investigation, but focus on prediction of the content
topics that a clinician might find useful to fulfill her information needs.

A. Attribute selection techniques
Machine learning deals with the task of automatically inferring prediction models from data.
Traditionally, the success of a learning method is dependent on its ability to identify a small
subset of highly predictive attributes [15]. More recently, machine learning has been applied
to domains characterized by remarkably high attribute dimensionality (with many of these
attributes being irrelevant or redundant), relatively few training instances, and scarce
availability of expert knowledge [16]. In these domains, the identification of a subset of optimal
predictors almost invariably must be accomplished using automated methods.

Attribute selection is the process of identifying and removing as much of the irrelevant and
redundant information as possible from a dataset. The reduction of dimensionality in a dataset
presents a number of benefits, such as enabling algorithms to operate faster and more
effectively, improving classification accuracy, improving data visualization, and enhancing
understanding of the derived classification models [16].

Automated attribute selection methods can be classified into attribute ranking methods and
attribute subset evaluation methods [15],[16]. The former methods assess the merit of
individual variables for prediction independently of other attributes. These methods can be
used as an initial screening to reduce dimensionality in large datasets or merely to produce a
baseline. The latter methods assess the usefulness of subsets of attributes, accounting for
redundancy and interactions among multiple attributes.
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Several attribute ranking and attribute subset evaluation methods have been proposed. In a
recent benchmark study, Hall and Holmes compared many of these methods and identified the
ones that performed best given a range of prediction problems and datasets [15]. The best
performing methods according to this benchmark study were “Information Gain”, “Recursive
Elimination of Features (Relief)” [17], “Correlation-Based Feature Selection (CFS)” [18],
“Consistency-Based Subset Evaluation” [19], and “Wrapper Subset Evaluation”[20]. The first
two are attribute ranking methods and the latter three are attribute subset evaluation methods.
Table 1 summarizes the mechanism, advantages, and disadvantages of each method. The
results of the benchmark study provide guidelines for the choice of attribute selection methods,
but highlight that the method of choice for a particular learning problem depends on factors
such as the characteristics of the dataset, computational processing time restrictions, and
learning algorithm [15]. Therefore, attribute selection methods still need to be evaluated in
light of the prediction problem at hand to determine an optimal choice.

B. Machine learning algorithms
Several types and variations of machine learning algorithms are available. Examples are rules,
decision trees, nearest neighbor, Naïve Bayes, Bayesian networks, Multiple Regression, Neural
Networks, and Support Vector Machines [21]. Each method has its advantages and
disadvantages. For example, decision trees, Naïve Bayes, and rules tend to be faster than
Bayesian networks and Support Vector Machines and perform reasonably well in most
prediction problems. Yet, the latter two algorithms tend to outperform the former in situations
where data are noisy or missing and attributes are not conditionally independent. Although
benchmark studies have revealed some overall winners, the choice of a learning algorithm must
be made in light of the characteristics of a given prediction problem, data source, and prediction
performance metrics [22],[23].

A relatively recent type of learning method known as “ensemble learning” or “meta-learning”
combines the output of multiple models, called “base learners”, to produce a final prediction
[24],[25]. A meta-learning model frequently outperforms any of its individual members. In the
present study, two meta-learning techniques are investigated: “Boosting” [26] and
“Stacking” [27]. Boosting produces multiple base models of the same type in a sequence of
learning iterations. In each iteration, training set cases that were misclassified by the model
generated in the previous iteration are assigned a higher weight for training. Thus, Boosting
allows subsequent models to focus on the examples that are more difficult to predict. Once a
set of models is created, the final prediction for a given case is achieved by aggregating the
predictions of the base models. Boosting works particularly well with base learning methods
that tend to produce unstable models (i.e., models that easily become outdated with minor
changes to the data distributions), such as decision trees and rules. Boosting generally performs
well even when composed of a weak base learner. In the present study, we used an improved
implementation of Boosting called “MultiBoost” [28].

Stacking also combines multiple models but, unlike Boosting, these models can be derived
from a mixed set of learning algorithms. For example, a Stacking classifier may combine a
Naïve Bayes, a decision tree, and a rule-based classifier. Each classifier makes its own
prediction estimating probabilities for each class. The final prediction is then computed using
a meta classifier, such as multiple linear regression, which uses the class probabilities of the
base learners as attributes of the model. Stacking was initially proposed by Wolpert in 1992
[27]. Seewald implemented an enhanced version of Stacking, called StackingC, which
improves the performance of Stacking on multi-class prediction problems [29]. Stacking
generally performs better than the best single base learner contained in the ensemble [23],
[24],[27].
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II. METHODS
The study method consisted of five steps: identification of data sources, data cleaning, data
preparation, automated attribute selection, and classification (training and performance
evaluation). The three latter steps were done in Weka, an open source machine learning tool
that contains Java-based implementations of the algorithms mentioned previously [21].

A. Study environment
This study was conducted at Intermountain Healthcare, a healthcare delivery network located
in Utah and Southeastern Idaho. Clinicians at Intermountain have access to a web-based EMR
called HELP2 Clinical Desktop [30]. A number of modules in the Clinical Desktop offer
infobuttons, including laboratory results review, problem list, and medication order entry
(Figure 1). Infobuttons are implemented in HELP2 using an Infobutton Manager [11],[31]. In
2007, an average of 885 users clicked on infobuttons at least once every month. These users
conducted an average of approximately 4,000 infobutton sessions per month; 67% of these
originated from the medication order entry module. Although this module is used primarily in
the outpatient setting, clinicians in the inpatient setting have read-only access to infobuttons
in the medication lists that are created in the outpatient environment. More detailed analyses
of the usage and usefulness of infobuttons at Intermountain and other institutions are available
elsewhere [31],[32],[33].

B. Data sources
The data sources used in this study were 1) the Infobutton Manager monitoring log, a database
that keeps a detailed record of every infobutton session; 2) the Intermountain Enterprise Data
Warehouse (EDW), a large repository of clinical and administrative data used for analytical
purposes; and 3) the Intermountain terminology server [30]. From these sources, attributes
considered to be potentially useful predictors were extracted and merged into one single dataset
using SQL queries. The dataset was limited to medication infobutton sessions that occurred
between May 15, 2007 and December 5, 2007. This dataset contains attributes that characterize
the clinical user, the medication associated with the infobutton, the patient, and the topics that
users selected. Since users can view multiple topics in one single session, the first topic that
was accessed in a given session was considered the target class label for prediction. Table 2
contains a complete list of the 26 attributes that were included in the dataset.

C. Data cleaning and preparation
A series of ad-hoc steps were performed to reduce noise from the dataset, especially to remove
sessions that may not have been conducted to fulfill real information needs. As a result, the
following sessions were excluded from the dataset:

1. Sessions associated with test patients or conducted by information systems personnel.

2. Sessions where users clicked on more than four topics. We thought these sessions
were more likely to be motivated by testing, demonstration, or training purposes than
by patient care needs.

3. Sessions where the selected topic accounted for less than 0.5% of the sessions in the
dataset and thus were considered not to have a sufficient number of cases for training
(e.g., contraindications, medication class, dose adjustment, breast feeding).

4. Sessions that had a duration of less than six seconds. After evaluating the minimum
time necessary to display and review infobutton results, it was felt that sessions less
than six seconds represented uninformative interactions, probably user errors in
invoking the infobutton service.
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After these steps were concluded, the dataset contained 3,078 cases. Class labels were
distributed as follows: adult dose (58.6%), patient education (18.6%), adverse effects (11.2%),
pediatric dose (4.8%), pregnancy category (2.2%), drug interactions (1.6%), precautions
(1.6%), and how supplied (1.5%).

To reduce attribute dimensionality and missing data in preparation for the attribute selection
and classification steps, three data transformation processes were applied:

1. Attributes with high dimensionality were transformed to reduce the number of
possible values. For example, the medications associated with infobutton sessions are
represented in the infobutton monitoring log at the clinical drug level (i.e., ingredient,
strength, and presentation). The clinical drugs were transformed into higher drug
classification levels according to a hierarchical knowledge base that is available in
the terminology server1: Parent level 1 (high-level drug class, such as antibiotic and
anti-inflammatory), Parent level 2 (specific drug class, such as aminoglycoside, third
generation cephalosporin, and beta-blocker), Parent level 3 (main drug ingredient,
such as furosemide and warfarin), and a combination of these three levels (merged
parent level). The latter was obtained by identifying the most specific level that had
a minimum number of five cases for training. The goal was to achieve a balance
between amount of information and data sparseness.

2. Attributes that conveyed the same information from different sources were merged
into a third attribute. For example, user discipline and specialty were obtained from
two data sources in the EDW: the HELP2 audit data mart and the human resources
data mart. The former is more complete, though not always accurate, while the latter
is very accurate, but only contains information about employed physicians and
registered nurses. The human resources data mart was used as a master and the HELP2
audit data mart as a source for missing values.

3. Numeric attributes, such as years of clinical practice, were discretized with the
Fayyad and Irani algorithm [34]. The patient age attribute was also discretized
according to age categories in the MeSH (Medical Subject Headings) code system2.

After the data cleaning and preparation steps were completed, the final dataset was exported
to a comma delimited file and then converted to Weka’s file format.

D. Attribute selection
In this step, we followed a similar process to the one proposed by Hall and Holmes [15]. First,
attribute ranking algorithms (Information gain and Relief) were executed to obtain a baseline
and exclude attributes that were clearly useless. Second, three attribute subset evaluation
algorithms (CFS, Consistency, and Wrapper) were executed to obtain optimal attribute subsets.
Next, the attribute subsets were used as inputs for training classification models based on nine
learning algorithms. Finally, the performance of the attribute sets was compared with a baseline
that contained all attributes in the original data source. The performance in this step was
measured by 10-fold cross-validation using two thirds of the original dataset. When no
statistical difference was found between two or more algorithms, the method that produced the
smallest attribute set was selected as the optimal choice for a given learning method.

E. Classification
Nine learning methods were used in this study: Naïve Bayes, rules (PART algorithm [35]),
decision tree (C4.5 algorithm [36]), boosted Naïve Bayes, boosted rules, boosted decision tree,

1 National Drug Data FileTM, First Data Bank, Inc., San Bruno, CA,http://www.firstdatabank.com
2Medical Subject Headings. National Library of Medicine, Bethesda, MD, http://www.nlm.nih.gov/mesh/
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Bayesian network, Support Vector Machine (SVM) (Platt’s sequential minimal optimization
algorithm [37]), and Stacking (StackingC algorithm [29]). The MultiBoost algorithm
developed by Webb was used for Boosting [28]. These methods were chosen for being state-
of-the-art examples that encompass a variety of machine learning techniques [21]. Boosting
was not coupled with Bayesian network and SVM because these two techniques tend to produce
stable models that are not benefited by Boosting. For the StackingC model, we used a variety
of base learning methods that demonstrated good performance in ad-hoc experiments
conducted prior to this study: Naïve Bayes, boosted rules, boosted decision tree, SVM, and
Bayesian network.

Classification models were trained with two thirds of the original dataset. The remaining one
third of the original data set was set aside for testing. Ten test sets were then obtained from
this original test set by randomly sampling cases with replacement (bootstrap) until each new
test set was 80% of the size of the original test set.

F. Measurements
Performance in the attribute selection and classification experiments was measured in terms
of agreement (kappa) between the output of each classifier and the topics that the users had
actually selected. Classification performances by topic were measured in terms of the area
under the ROC curve (AUC). Statistical differences among multiple algorithms were verified
using the Friedman’s test. If a significant difference was found, multiple pair wise comparisons
were made. The Nemenyi post-hoc test was used for adjustment of multiple comparisons as
recommended by Demšar [38].

III. RESULTS
A. Attribute selection

Attribute ranking indicated that the five strongest individual predictors were avg reads, orders
entered, avg writes, patient age, and parent level 3. The interaction count attribute was ranked
last by both attribute ranking methods. Table 3 lists the individual attribute scores according
to the information gain and Relief attribute ranking algorithms. None of the attribute subset
evaluation methods significantly improved the performance of the classifiers over the baseline.
However, CFS was considered the optimal method in most cases because it produced the
smallest attribute subset (six attributes; best in five learning methods), followed by Consistency
(10 attributes; best in three learning methods), and Wrapper (average of 13 attributes; best in
one learning method). Table 4 lists the attributes that each of the three attribute subset
evaluation methods identified. Table 5 lists the best attribute subset evaluation methods by
learning algorithm.

B. Classifier performance
The performance of the classifiers showed an overall moderate level of agreement, with average
kappa scores ranging between 0.47 (rules) and 0.56 (Stacking). Table 6 lists the performance
of the nine learning methods overall (kappa) and at predicting individual topics (AUC). Table
7 shows pair wise comparisons between the nine learning methods in terms of kappa. Stacking,
SVM, and Bayesian network were the best methods overall. Although there was no statistical
difference among the Stacking, Bayesian network, and SVM classifiers, Stacking
outperformed the other two competitors in all 10 bootstrapped test sets. With the exception of
Naïve Bayes, the boosted algorithms were slightly superior to their non-boosted counterparts,
but the difference was not statistically significant.

The learning methods showed varied performance levels regarding the prediction of each
individual class. Overall, the AUC for pediatric dose, patient education, pregnancy
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category, and adult dose was high. Conversely, the AUC for drug interactions, adverse
effects, how supplied, and precautions was not as good, but still acceptable. Stacking ranked
among the highest methods at predicting every one of the topics.

IV. DISCUSSION
This study supplements previous work related to the construction of classification models based
on usage data to predict clinicians’ information needs [13],[14]. The proposed method can be
used to develop classification models that can be integrated into existing Infobutton Manager
implementations, potentially improving the effectiveness of infobuttons. For example, users
could be taken automatically to the content topic that a classification model predicts to be the
most relevant in a particular context. Information needs prediction models will also enable
different approaches to the delivery of context-sensitive information in EMR systems. For
example, succinct information on candidate topics (i.e., the ones that the models predict to be
the most relevant in a given context) can be more easily accessible via a keyboard shortcut or
dynamically displayed in a sidebar as medication orders are entered, reviewed, or refilled. In
all these alternatives, the goal is to present the minimal amount of information to support quick
decisions, reducing unnecessary navigation steps and exposure to irrelevant information [39].

A. Attribute selection
The attribute ranking algorithms were, in general, consistent with the conclusions of the
attribute subset evaluation algorithms. For example, the five strongest attributes according to
the Relief and Information Gain algorithms (i.e., avg reads, orders entered, avg writes, patient
age, and parent level 3) were also among the subsets identified by the CFS, Consistency, and
Wrapper attribute subset evaluation algorithms. This confirms that attribute ranking methods
may provide a useful baseline ranking to guide the next steps in the attribute selection process,
for example allowing the elimination of useless attributes.

Unlike the benchmark study conducted by Hall and Holmes [15], in our study none of the
attribute subset evaluation methods significantly improved the performance of the models over
the baseline (i.e., all attributes). A potential explanation for the lack of detectable differences
is that the attributes used in our study were hand selected based on domain knowledge, so that
the initial attribute set was already close to optimal. Conversely, Hall and Holmes used datasets
available in the University of California Irvine repository, which is a standard for machine
learning benchmark studies [15]. Despite the lack of significant performance improvement,
attribute subset evaluation methods, notably CFS, eliminated redundant and useless attributes,
producing more compact models.

CFS was the best attribute subset evaluation algorithm overall, contradicting the Hall and
Holmes study where Wrapper was the best method. CFS is particularly good at removing
redundant attributes, and our dataset included several attributes that tried to capture the same
type of information using different data sources or semantic levels (e.g., discipline, specialty,
multiple drug parent levels). Therefore, CFS may have been able to identify the strongest
among each set of redundant attributes. Our study confirmed other known advantages of CFS:
it generally produces more compact models, it is much faster to execute, and its results are
independent of the target learning method [15]. Nevertheless, Consistency was the best method
for rules, boosted rules and boosted decision tree, and Wrapper was best for decision tree.
Therefore, a comparison of attribute subset evaluation methods is important in future
experiments or applications that deal with different learning algorithms and infobutton usage
data from other sources.

The CFS method identified a combination of strong predictors that characterize the user (i.e.,
avg reads, avg writes, orders entered), the patient (i.e., age), and the medication associated
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with the infobutton (i.e., parent level 3). This confirms the belief that context influences
information needs and shows that context can be portrayed in multiple dimensions.

Although the results do not imply causal relationships among attributes and the topics that
clinicians decide to view, potential explanations for the associations found can be proposed.
The avg reads, avg writes, and orders entered attributes are indicators of the volume and nature
of EMR use. Intermountain clinicians are more likely to use the HELP2 Clinical Desktop in
the outpatient than in the inpatient setting. Therefore, it is expected that outpatient clinicians
have higher values for avg reads and avg writes. The nature of the care process, patient
characteristics, and EMR use in the outpatient setting differs from the inpatient; as a result, it
is likely that different information needs will arise in these two settings as well. In addition,
clinicians who enter medication orders have higher values for the orders entered variable than
those who only read data from the EMR. The medication order entry process probably leads
to different information needs than read-only consultation about medications that have been
ordered in the past. In summary, the volume of EMR write and read activity might serve as a
surrogate for the types of activities and roles that a clinician routinely performs. This surrogate
seems to be more accurate and specific than other attributes that describe users, such as
specialty and discipline.

Patient age is likely to be a strong determinant of the type of dose information that is requested.
In fact, further inspection of the dataset revealed that the majority of the infobutton sessions
associated with pediatric patients were related to pediatric dose, while other topics were seldom
viewed.

Finally, it is reasonable to assume that the characteristics of a medication influence the nature
of information needs. For example, medications that are frequently prescribed may lead to
different questions than those that are rarely used. Similarly, medications that are associated
with various adverse effects may be more likely to raise questions about adverse effects. Parent
level 3 was the most specific drug classification level that was available in the dataset. Other
less specific levels were not as useful in predicting the types of information needs associated
with the medication.

B. Classifier performance
The prediction performance of the learning methods evaluated in this study was overall very
good. In general, topics that had more cases available for training were associated with better
performance. According to the AUC metric, the best performance was achieved with the adult
dose, pediatric dose, patient education, and pregnancy category topics. Moderate levels were
obtained with adverse effects and drug interactions. Precautions and how supplied, which
accounted for the minority of the cases in the training set, had the worst performance among
the possible topics. Further research is necessary, perhaps using a larger dataset, to improve
the prediction performance of these least frequent topics. As more usage data become available,
models could also enable the prediction of topics that were not included in the study dataset,
such as drug class, breast feeding category, and contraindications. Nevertheless, models that
predict the topics that are most frequently viewed are likely to be sufficient for integration with
an operational environment.

Stacking, SVM, and Bayesian network were the best methods overall in terms of agreement
with the users’ actual needs. Nevertheless, Stacking provided more uniform results, always
ranking among the top three methods (with regard to AUC) for each topic. This is consistent
with previous studies where Stacking overcame the individual performance of its base
classifiers [23],[27]. Boosted algorithms did not significantly improve the performance of their
non-boosted counterparts, perhaps because the base algorithms used in this study (i.e., Naïve
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Bayes, C4.5, and PART) are strong learners themselves, unlike the ones used in previous
comparisons [23],[26].

C. Limitations
Due to specific characteristics of the environment, the EMR system, and the data available at
our institution, it is possible that the attribute sets and classification models developed in this
study will not generalize to other institutions. However, this study provides a guide to other
institutions regarding the subset of attributes and learning methods that can be evaluated and
used in their settings.

D. Future studies
Classification models might improve the ability of infobuttons to present the most relevant
information to clinicians, potentially resulting in time savings, less cognitive effort, and higher
success at meeting information needs. Nevertheless, further research is warranted to improve
the prediction performance of content topics that are less commonly viewed. Alternatives to
be pursued include capturing larger training datasets, investigation of attributes that were not
used in this study (e.g., care setting, a more detailed description of the task being performed),
and the assessment of other more recent meta-learning techniques that have shown potential
to outperform Stacking [40].

This study focused on medication-related infobutton sessions. Further research is necessary to
develop classification models to predict content topics that are needed in different EMR
contexts, such as problem lists, laboratory results, and clinical notes.

As a next step, we are now incorporating classification models in the Infobutton Manager
component at Intermountain Healthcare. This process is raising new research questions, such
as usability issues and long term updating and evaluation of the model.

V. CONCLUSION
This study supports the hypothesis that prediction models based on infobutton usage data are
a promising solution for predicting the information needs that a clinician might have in a
particular context while using an EMR system. The information needs are strongly affected by
the characteristics of users, patients, and medications. The models here evaluated had a good
overall performance, especially at predicting the adult dose, pediatric dose, patient
education, and pregnancy category topics. Further research is warranted to improve the
performance of other topics that are less commonly viewed. Stacking was the best method
overall, but other methods, such as SVM, Bayesian network, and Naïve Bayes also performed
well. Finally, the proposed method consists of a sound alternative for the enhancement of
Infobutton Managers, helping clinicians fulfill their information needs at the point of care.
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Figure 1.
A screen shot of the medication order entry module in the HELP2 Clinical Desktop system
(above). Infobuttons are available next to each of the medications in the patient’s medications
list. When an infobutton is clicked, an infobutton navigation panel and a content page are
displayed (below). The navigation panel offers a list of relevant content topics (e.g, adult dose,
adverse effects, patient education) and resources that users can choose from (lower left).
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Table 1
Automated attribute selection methods used in the machine learning experiments.

Algorithm Description Advantages Disadvantages

Information gain Each attribute in a dataset is assigned a
score based on the additional information
that an attribute provides regarding a
class in terms of entropy reduction.

Simple and fast. Good for
prediction problems where
the high dimensionality
limits the application of
more sophisticated
methods.

Does not account for
redundancy and
interactions among
attributes.

Relief [17] Randomly samples an instance from the
data and then locates its nearest neighbor
from the same and opposite class. The
values of the attributes of the nearest
neighbors are compared to the sampled
instance and used to update relevance
scores for each attribute.

Same as information gain. Same as information gain.

Correlation- based
feature selection (CFS)
[18]

Merit of a given attribute is calculated
taking into account the correlation of the
attribute with the target class as well as
the correlation of the attribute with other
attributes in the dataset. Attributes with
stronger correlation with the target class
and weaker correlation with other
attributes are ranked higher.

Fast and independent of the
target learning method.
Accounts for redundancy.

Does not account for
potential interactions
between attributes.

Consistency- based [19] Identifies attribute sets whose values
divide the data into subsets containing a
strong single class majority.

Independent of the target
learning method. Accounts
for redundancy and
interactions among
attributes.

Slower than correlation-
based feature selection.

Wrappers[20] Uses a target learning algorithm to
estimate the worth of attribute subsets. A
search algorithm is used to test as many
combinations of attributes as possible
and find an optimal solution.

Accounts for redundancy
and interactions among
attributes. Generally give
better results than other
techniques because
candidate solutions are
evaluated using the target
learning algorithm.

Specific to the learning
algorithm that is used to
evaluate the worth of the
subsets (has to be rerun for
each learning algorithm).
Slower than the other
methods, precluding its
application to datasets with
high dimensionality and
slow learning algorithms.
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Table 2
Attributes used in the machine learning experiments.

Attribute name Description Source

User

Avg reads Average number of data read events requested monthly from the
HELP2 clinical data repository.

EDW (HELP2 audit data mart)

Avg writes Average number of data write events requested monthly from HELP2
clinical data repository.

EDW (HELP2 audit data mart)

Orders entered Average number of medication orders entered monthly in the HELP2
clinical data repository.

EDW (HELP2 audit data mart)

HELP2 discipline User’s discipline (e.g., physician, registered nurse) according to the
HELP2 audit data mart.

EDW (HELP2 audit data mart)

HELP2 specialty User’s specialty (e.g., pediatrics, internal medicine) according to the
HELP2 audit data mart.

EDW (HELP2 audit data mart)

HR discipline User’s discipline (e.g., physician, registered nurse) according to the
human resources data mart.

EDW (human resources data mart)

HR specialty User’s specialty (e.g., pediatrics, internal medicine) according to the
human resources data mart.

EDW (human resources data mart)

Merged discipline A combination of HELP2 discipline and HR discipline. HR
discipline’s missing values completed with HELP2 discipline’s data.

EDW (HELP2 audit and human
resources data marts)

Merged specialty A combination of HELP2 specialty and HR specialty. HR
specialty’s missing values completed with HELP2 specialty’s data.

EDW (HELP2 audit and human
resources data marts)

Years of practice Number of years of clinical practice. A measurement of a clinician’s
experience.

Search concept

Parent level 1 High level medication class (e.g., antibiotics, hypotensives,
psychoactive drugs).

Terminology server (First Data Bank)

Parent level 2 Specific medication class (e.g., third generation cephalosporins, beta-
blockers, selective serotonin reuptake inhibitors).

Terminology server (First Data Bank)

Parent level 3 Main drug ingredient (e.g., ceftriaxone, propranolol, sertraline). Terminology server (First Data Bank)

Merged parent level A combination of the different parent levels seeking a trade off
between amount of information (parent level 3 contains more
information) and data sparseness(parent level 1 is the least sparse).
(see Section II. C.: Data Cleaning and Preparation for details)

Terminology server (First Data Bank)

DEA class code Degree of potential abuse and federal control of a drug. First Data Bank

Drug class code Availability of a drug to the consumer(over the counter vs.
prescription required).

First Data Bank

AHFS class Primary drug therapeutic class according to the American Hospital
Formulary Service, which is maintained by the American Society of
Health System Pharmacists (ASHP).

First Data Bank

Maintenance drug A flag indicating whether a drug is used chronically or not. First Data Bank

Interaction count Number of severe drug interaction rules that a given drug participates
on. Provides a measurement of the likelihood that a given drug will
interact with others.

First Data Bank

Patient

Age Numeric patient age. Clinical data repository data mart

Age group Age according to Medical Subject Headings (MeSH). Clinical data repository data mart

Gender Patient’s gender. Clinical data repository data mart

Medications Number of active medications in the patient’s medications list. Clinical data repository data mart

Problems Number of active problems in the patient’s problems list. Clinical data repository data mart

Other
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Attribute name Description Source

Task Action that the user performs in HELP2 when decided to click on an
infobutton. Possible values are “medication order entry” and
“medications list.”

Infobutton Manager log

Topic First content topic that the user selected to view in a given infobutton
session. The dataset contained eight possible topics that users could
have selected in an infobutton session: adult dose, pediatric dose, drug
interactions, adverse effects, patient education, pregnancy category,
how supplied, and precautions.

Infobutton Manager log
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Table 3
Attribute ranking scores according to the information gain and Relief individual attribute ranking algorithms. The lower
the score, the stronger the attribute.

Information gain Relief

Avg reads 3 1.3

Orders entered 4.1 1.9

Avg writes 5.5 2.8

Age 10 4

Parent level 3 1 15.7

Merged parent level 5.4 10.5

Parent level 2 7 9.4

HR specialty 12 5

Age group 11 6.4

AHFS class 8 13.1

Parent level 1 13 10.7

Years of practice 17 7

HR discipline 14.9 11.3

HELP2 discipline 16 14.6

Merged specialty 14.1 17

Merged discipline 18.1 18.9

HELP2 specialty 19.4 18.5

Medications 19.5 21.4

Problems 22.7 19.6

Maintenance drug 21.9 21.6

Gender 21.4 23

DEA class code 24 24

Drug class code 25 26

Task 26 25
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Table 4
Attributes selected by each of the attribute subset evaluation algorithms. Attributes that are not listed were not included
in any of the optimal attribute subsets.

Attribute CFS Consistency Wrapper (decision tree)

Avg reads X X X

Avg writes X X X

Orders entered X

HELP2 discipline X

HELP2 specialty X

HR specialty X

Parent level 3 X X

DEA class code X

Drug class code X

AHFS class X

Maintenance drug X X

Age X X

Age group X X X

Gender X X

Medications X X

Problems X

Task X
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Table 5
Optimal attribute selection method per learning algorithm.

Attribute selection method Number of attributes

Naïve Bayes CFS 6

Rules CFS 6

Decision tree Consistency 10

Boosted Naïve Consistency 10

Boosted rules Wrapper 7

Boosted tree Consistency 10

Bayesian network CFS 6

SVM CFS 6

Stacking CFS 6
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