Skip to main content
. Author manuscript; available in PMC: 2010 Feb 1.
Published in final edited form as: J Biomed Inform. 2008 Jul 13;42(1):82–89. doi: 10.1016/j.jbi.2008.07.00

Table 6.

Overall performance of learning algorithms (kappa) and by topic (AUC).

Kappa AD PD PE PC AE DI HS PR
NB 0.50 0.83 0.99 0.95 0.94 0.79 0.80 0.64 0.73
Rules 0.47 0.8 0.89 0.86 0.73 0.70 0.74 0.48 0.61
Tree 0.50 0.8 0.97 0.90 0.88 0.72 0.78 0.61 0.68
NB+ 0.51 0.81 0.99 0.91 0.85 0.71 0.69 0.60 0.70
Rules+ 0.49 0.81 0.97 0.91 0.68 0.70 0.68 0.74 0.57
Tree+ 0.50 0.81 0.98 0.91 0.75 0.70 0.65 0.59 0.60
BN 0.52 0.86 0.99 0.96 0.91 0.78 0.83 0.58 0.75
SVM 0.54 0.76 0.99 0.92 0.92 0.79 0.71 0.72 0.71
Stacking 0.56 0.85 0.99 0.95 0.93 0.78 0.79 0.73 0.75

Legend: NB = Naïve Bayes; NB+ = Boosted Naïve Bayes; Rules+ = Boosted rules; Tree+ = Boosted decision tree; BN = Bayesian network; SVM = Support Vector Machine; AD = adult dose; PD = pediatric dose; PE = patient education; PC = pregnancy category; AE = adverse effects; DI = drug interactions; HS = how supplied; PR = precautions.