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Abstract
This paper estimates the accuracy of hippocampal subfield alignment via shape-based
normalization. Evaluation takes place in post-mortem MRI dataset acquired at 9.4 Tesla with
many averages and approximately 0.01 mm3 voxel resolution. Continuous medial representations
(cm-reps) are used to establish geometrical correspondences between hippocampal formations in
different images; the extent to which these correspondences match up subfields is evaluated and
compared to normalization driven by image forces. Shape-based normalization is shown to
perform only slightly worse than image-based normalization; this is encouraging because the
former is more applicable to in vivo MRI, which typically lacks features that distinguish
hippocampal subfields.

1 Introduction
The hippocampus is arguably one of the most fascinating structures in the brain, and much
remains unknown about its precise role in the memory system [13]. Neurons in the
hippocampus are uniquely susceptible to neurodegenerative disorders, and, in particular,
Alzheimer’s disease (AD) [5]; imaging-based hippocampal volumetry is a reliable early
predictor of AD onset [9,15]. The hippocampus is not a uniform structure: it is formed by
two interlocking folded layers of neurons, the cornu Ammonis (CA) and the dentate gyrus
(DG), which are further divided into subfields and subserve different functional roles. Non-
uniform neuron loss across the hippocampal subfields has been reported in
neurodegenerative disorders [3,4,18], as has a non-uniform rate of neuroplasticity [8,10,14].

Recently, these has been much interest in measuring subfield-level changes associated with
neurodegenerative diseases using MRI. However, it is very difficult to identify the
boundaries of hippocampal layers in clinical MRI modalities, since the dark band separating
these layers, formed by the vestigial hippocampal sulcus (VHS) and strata radiata (SR), is
thinner than the typical voxel resolution. In the absence of MRI acquisitions that specifically
target the hippocampus (e.g., [22]), the labeling of subfields relies primarily on shape cues,
i.e., on the position of the subfields relative to the overall hippocampus shape. The primary
instance of this approach is the Washington University hippocampus atlas [6,16], in which
the hippocampus template was manually labeled with the help of an anatomical reference
[7].

Our group is developing an atlas of the human hippocampus using high-field postmortem
MRI [19]. Imaging at 0.01 mm3 voxel resolution, we are able to separate hippocampal layers
and label the major subfields of the hippocampus. However, one of the main challenges
associated with this atlas is how to effectively apply it to in vivo studies in which there are
few reliable intensity features within the hippocampus. A natural approach is to use shape

NIH Public Access
Author Manuscript
Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2009 May 11.

Published in final edited form as:
Med Image Comput Comput Assist Interv. 2008 ; 11(Pt 1): 510–517.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



cues to map subfields from the atlas to manually or automatically generated segmentations
of the hippocampus from in vivo data; as is typically done for the Washington University
atlas [12,16]. The goal of this paper is to evaluate how accurately shape-based normalization
aligns hippocampal subfields between subjects.

A full evaluation of this kind would require a dataset where in vivo and postmortem images
for the same subjects would be available. In absence of such data, we restrict our attention to
the postmortem dataset, making a somewhat strong assumption that the segmentation of the
overall hippocampus in the post-mortem dataset would be sufficiently similar to the
segmentation in in vivo data. Clearly, both manual and automatic hippocampus segmentation
in in vivo MRI are quite challenging problems in themselves, and whatever subfield
alignment errors we report in this paper would be exacerbated by errors in the segmentation
of the overall hippocampus shape. Nevertheless, given the recent interest in subfield-level
inference in in vivo MRI, we believe that the results reported in the postmortem dataset will
be valuable to the field.

The evaluation experiment compares how well shape-based normalization, which does not
use intensity cues, performs vis-à-vis diffeomorphic image registration driven by intensity.
The latter is treated as a “gold standard”, since it is using all the cues that are available in the
postmortem dataset, and which would not be available in typical in vivo data.

2 Materials and Methods
2.1 Specimens and Imaging

Formalin-fixed brain specimens (≥21 days) from three autopsy cases with no abnormal
neuropathological findings were studied. Hemispheres were separated from the cerebellum
and brain stem, and samples containing the intact hippocampus and not larger than 70mm in
diameter were extracted from each hemisphere by making two incisions: the first,
orthogonal to the midsagittal plane and parallel to the main axis of the hippocampus, passing
through the corpus callosum; the second, parallel to the midsagittal plane, removing the
lateral-most third of the sample. In our observation, the deformation caused to the
hippocampus while cutting the brain was minimal, as the cuts were made a good distance
away from the hippocampus.

Images of five hippocampus samples (3 right, 2 left) were acquired on a 9.4 Tesla Varian
31cm horizontal bore scanner (Varian Inc, Palo Alto, CA) using a 70mm ID TEM transmit/
receive volume coil (Insight Neuroimaging Systems, Worchester, MA) and a stock multi-
slice spin echo sequence. MRI parameters varied slightly across the samples; typical values
are TR/TE=5000/26ms; voxel size: 0:2mm × 0:3mm × 0:2mm; matrix: 300 × 280; 130
slices; 45 averages; acquisition time around 15 hours.

2.2 Manual Segmentation
The layered structure of the hippocampus is clearly visible in our images (Fig. 1). One of the
authors ([omitted for blind review]) performed the segmentation manually in ITK-SNAP
(itksnap.org), using the Duvernoy atlas [7] as the main reference, and taking as much as 80
hours to label each hippocampus. The segmentation included the following labels: CA1,
CA2+CA3, DG and VHS+SR. The CA4 subfield was also segmented but, following [1], we
treat is a as component of the DG.

2.3 Shape-Based Normalization
Shape-based normalization uses the continuous medial representation (cm-rep) method
[20,21]. A deformable cm-rep model is fitted to each binary segmentation of the
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hippocampus, so as to maximize the overlap between the model and the binary image, while
minimizing distortion across models. As the cm-rep model deforms, the method preserves
the branching topology of the its skeleton, making it possible to leverage medial geometry
for normalization and shape analysis.

A cm-rep model is defined as follows. A triangle mesh is used to represent the skeleton of
the model. Each mesh node consists of a point m ∈ ℝ3 and a positive radius value R. The
mesh is constructed by recursive subdivision of a coarse mesh using Loop subdivision rules
[11]. The boundary of the model consists of two surface patches b+ and b−, one on each side
of the skeleton. These boundary patches are derived from the skeleton mesh using the
inverse skeletonization formula:

(1)

where ∇mR denotes the Riemannian (surface) gradient of R on m and m denotes the unit
normal to m. These first-order properties are computed using finite difference
approximations. Constraints are in place to ensure that the two boundary patches share a
common edge and do not self-intersect, thus forming a boundary of a simple region in ℝ3

[21].

The interior of the cm-rep model is spanned by line segments, called spokes, which extend
from points mi on the skeleton to the corresponding points  and  on the model’s
boundary and which are orthogonal to the boundary. As argued in [20] and illustrated in Fig.
2, the spokes form a shape-based coordinate system on the interior of the cm-rep model.

In order to establish correspondences between cm-rep models fitted to different hippocampi,
we minimize the variance in Euclidean distance between corresponding pairs of points in the
shape-based coordinate system. This is done in an iterative process, to allow each model to
be fitted in parallel. The correspondence energy function for model s at iteration t has the
form

(2)

where N(i) denotes the grid points adjacent to grid point i,  is the Euclidean distance

between grid points i and j in model s at iteration t, and  is the average of this distance
across all models at the previous iteration.

2.4 Deformable Registration
We use a diffeomorphic fluid warping method known as Symmetric Normalization (SyN) [2]
to perform pairwise registration between hippocampus images. Given an image match
metric Π (in our case, normalized cross-correlation), registration of images I and J seeks a
pair of diffeomorphic maps ϕ1; ϕ2 that minimize

(3)
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Symmetric diffeomorphic maps from I to J and from J to I are given, respectively, by
. Binary masks of the hippocampus are incorporated into the

registration because the goal of registration in this experiment is to establish an upper bound
on the performance of shape-based normalization.

2.5 Evaluation of Subfield Alignment
Quantitative evaluation of the alignment of hippocampal subfields via shape-based and
image-based normalization is performed in the leave-one-out frame-work. For a given
hippocampus image Is, a deformation field from each other hippocampus image to Is is
constructed. In the case of image registration, this field is produced by the registration
algorithm; in the case of cm-rep normalization, the field is interpolated from the
correspondences assigned by the coordinate system. The manually generated subfields labels
for every image except Is are deformed into the space of Is using these warp fields, and a
consensus labeling of Is is produced by applying the STAPLE algorithm [17] to the warped
labels. This consensus segmentation of Is is compared to the manual segmentation of Is in
terms of Dice overlap and root mean square boundary distance.

3 Results
Fig. 3 illustrates cm-rep models fitted to binary hippocampus segmentations. A
checkerboard map is used to illustrate the correspondence between different models. The
cm-rep models do not fit the binary segmentations with complete accuracy. This is caused
by the fact that the cm-rep model is constrained to have a skeleton of predefined branching
topology, as well as by the contribution of the correspondence term. The average Dice
overlap between the fitted models and the segmentations is 0.93. The greatest mismatch
occurs in the head of the hippocampus, which has complex folding features. These features
are not typically seen in hippocampus segmentations in in vivo data, for which the accuracy
of cm-rep fitting is somewhat higher (0.95) [20].

Fig. 4 compares the labeling of hippocampal subfields in some of the cross-validation
experiments. For each experiment, the labeling achieved by image-based registration, cm-
rep normalization and the target manual segmentation are shown. The average over all five
samples of the overlap between the manual segmentation of the subfields in each
hippocampus and the segmentation generated by cm-rep normalization is plotted in Fig. 5
for each subfield, compared to the same overlap computed for image-based normalization.
These overlaps are also compared to the average overlap between repeated manual
segmentations by the same rater (these reliability measurements were computed only on a
sub-set of slices). A similar comparison of root mean square distance is also shown in Fig. 5.

4 Discussion and Conclusions
The results of our evaluation experiment are encouraging but also open to interpretation.
The fact that shape-based normalization, which does not use any intensity information,
performs only slightly worse than image registration for subfield labeling is significant. It
suggests that it may be possible to use subfield maps in the analysis of low resolution in vivo
datasets where intensity information inside of the hippocampus is not informative for
subfield differentiation. On the other hand, it has to be recognized that the overall error
associated with subfield labeling, whether manual, image-based or shape-based, is
substantial, even in this high-resolution postmortem dataset. It is likely that additional
improvements to the segmentation protocol and the computational techniques used in this
paper would result in greater consistency. Nevertheless, subfield mapping in in vivo datasets,
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which is exacerbated by the difficulty of segmenting the hippocampus itself, will likely be of
limited accuracy for years to come.

Limitations of this paper include the fact that evaluation was performed on postmortem data,
thus the results we report may not be representative of performance in in vivo datasets.
There may be nonuniform shape changes introduced across the hippocampus by the
preparation of brain samples after autopsy. Also, the current postmortem dataset is small and
does not include pathology. We are working to address these limitations, by acquiring
additional data, as well as by incorporating more advanced hippocampus-specific in vivo
imaging techniques (e.g. [22]) into our analysis. Despite the limitations, we believe that the
proposed technique, as well as the postmortem hippocampus atlas on which is is based, will
be of value to morphometric studies of aging and dementia. Perhaps the ‘safest’ way to
apply the technique is in a longitudinal study, where fluid registration can be used to derive
a subject-specific atlas image, and shape-based subfield labeling would be applied to the
atlas.
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Fig. 1.
Sagittal and coronal views of one of the postmortem hippocampus MRIs.
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Fig. 2.
A conceptual 2D illustration of shape-based normalization via the cm-rep co-ordinate
system. The central curve is the skeleton m; the radial lines from the skeleton to the
boundary are the spokes; the shape-based mapping between the two models is given by the
locations of corresponding grid vertices.
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Fig. 3.
Examples of cm-rep model fitting. The models’ skeletons are shown in the top row, with
color representing the radius field R (red: thicker, blue: thinner). The boundary is plotted in
the middle row, with the checkerboard pattern showing the correspondence between models.
The last row superimposes in semi-transparent blue the boundaries binary segmentations to
which these models were fitted.
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Fig. 4.
Comparison of subfield labeling in two leave-one-out experiments (top row shows sample
3L in sagittal plane; second row shows sample 2R in coronal plane). Shown are the manual
segmentation of the subfields, the labeling using shape-based normalization (via cm-reps)
and the labeling using image registration.
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Fig. 5.
Average Dice overlap (left) and average root mean square boundary distance (right) between
cm-rep based subfield labeling and the manual segmentation, compared to registration-based
labeling. The overlap plot also includes overlap between repeated manual segmentations by
the same rater as a reference.
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