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Purpose: To use first-pass perfusion and delayed-enhanced (DE)
magnetic resonance (MR) imaging for the detection of the
early effects of coronary microembolization on myocardial
perfusion and viability.

Materials and
Methods:

Approval was obtained from the institutional committee
on animal research. A hybrid x-ray and MR imaging sys-
tem was used to guide the endovascular catheter and
quantify the left anterior descending coronary artery
(LAD) perfusion territory before microembolization and
ischemic myocardium and microinfarction after microem-
bolization. The embolic agent was selectively delivered in
the LAD in six pigs. First-pass perfusion MR imaging was
performed 1 hour and 1 week after microembolization.
Microinfarction was measured on DE MR images in beat-
ing and nonbeating hearts (high-spatial-resolution se-
quence) by using extracellular and blood pool MR contrast
media and after death. The Wilcoxon signed rank test and
correlation analysis were used.

Results: The LAD perfusion territory was 35% of left ventricular
(LV) mass � 2 (standard error of the mean). Microembo-
lization caused perfusion deficit in 15.7% of LV mass � 2.6
compared with that of LAD territory (P � .03). At 1 week,
perfusion parameters improved and the extent of hypoper-
fused territory declined (4.6% of LV mass � 1.4, P � .03).
Microinfarction size expanded from 1.4% of LV mass �
0.2 at 1 hour to 7.5% of LV mass � 1.2 at 1 week. In
nonbeating hearts and at triphenyltetrazolium chloride
staining at 1 week, microinfarction size was 7.6% of LV
mass � 1.4 and 7.2% of LV mass � 1.5, respectively.
There was no correlation between the ejection fraction
and the extents of microinfarction or hypoperfused terri-
tory. Histopathologic findings confirmed the presence of
patchy microinfarction.

Conclusion: Coronary microembolization caused persistent decline in
myocardial perfusion at first-pass perfusion imaging. DE
MR imaging has the potential to help reliably quantify
subacute microinfarction. The magnitude of LV dysfunc-
tion is not related to the extents of microinfarction or
hypoperfused territory.
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Coronary microemboli fragmented
from atherosclerotic plaque in
acute coronary syndrome and un-

stable angina (1,2) and after reperfu-
sion at percutaneous coronary interven-
tion (3–7) cause microinfarction and re-
lease of myocardial ischemic markers. It
is difficult to separate the effects of
reperfusion injury (8) from distal micro-
infarction after coronary intervention
because they overlap in an uncontrolled
fashion. Furthermore, invasive physio-
logic studies (9–12) have shown that the
magnitude of left ventricular (LV) dys-
function is not closely related to the
mass of microinfarction. Methodologic
difficulties have hindered the use of non-
invasive techniques in simultaneously
measuring and linking microinfarction
size, perfusion, and LV function.

Magnetic resonance (MR) imaging,
in combination with extracellular and
blood pool MR contrast media (13,14),
has the ability to help noninvasively
measure myocardial perfusion (15–17),
infarction size (18–20), and LV function
(21,22). Differentiation of viable from
nonviable myocardium on contrast ma-
terial–enhanced MR images is based
on the differences in the distribution
volume and kinetics of MR imaging con-
trast media (23,24). Clinical MR imag-
ing studies (2,7,25,26) have demon-
strated microinfarction as hyperen-
hanced regions on delayed-enhanced
(DE) images in patients with an eleva-
tion of myocardial ischemic markers af-

ter percutaneous coronary interven-
tion.

Sato et al (27) illustrated that mi-
croembolization plays a major role in
decreasing coronary flow after percu-
taneous coronary intervention by us-
ing intravascular ultrasonography and
Thrombolysis in Myocardial Infarction
frame count in 60 patients. In another
clinical study, Taylor et al (28) showed
percutaneous coronary intervention–
induced impairment of resting micro-
vascular perfusion in the coronary ar-
tery perfusion territory in patients and
related this to iatrogenic atherosclerotic
plaque rupture. MR and Doppler imag-
ing studies (7,29) showed decreased
myocardial perfusion reserve, but not at
rest, in patients with microinfarction af-
ter coronary intervention.

Unlike contiguous infarction, to our
knowledge, no study has addressed the
combined use of first-pass perfusion and
DE MR imaging in the assessment of the
immediate (acute) and delayed (sub-
acute) effects of coronary microemboli-
zation. Both extracellular and blood
pool gadolinium–based MR contrast
agents have been used for the delinea-
tion of acute infarction, but blood pool
agents provide prolonged delineation of
contiguous infarction (30). The ratio-
nale of using a blood pool agent in our
study was that the extracellular agent
washes out quickly from microinfarc-
tion and the intravascular agent pro-
vides longer enhancement because of its
slow washout. Therefore, both extracel-
lular and blood pool MR contrast agents
were tested to help visualize microin-
farction after coronary microemboliza-
tion. The importance of early detection
of the effects of microembolization is
derived from previous clinical studies in

acute coronary syndrome, percutane-
ous coronary intervention, and coro-
nary artery bypass graft surgery (1–7).
The aim of this study was to use first-
pass perfusion and DE MR imaging for
the detection of the early effects of cor-
onary microembolization on myocardial
perfusion and viability.

Materials and Methods

Animals and Study Protocol
The study was performed in concor-
dance with the Guide for the Care and
Use of Laboratory Animals (31), and
approval was obtained from the institu-
tional committee on animal research.
Pigs (n � 8, 34 kg � 1 [standard devi-
ation]) (Pork Power Farms, Turlock,
Calif) were premedicated (1.1 mg per
kilogram of body weight acepromazine
[PromAce; Fort Dodge Animal Health,
Fort Dodge, Iowa] and 30 minutes later
22–33 mg/kg ketamine [Ketaset; Fort
Dodge Animal Health]) and anesthe-
tized (isoflurane [2%–5%] [IsoFlo; Ab-
bott Laboratories, Chicago, Ill] and ox-
ygen [2–3 L/min]).

All studies were performed with a hy-
brid x-ray and MR system suite (Philips
Medical Systems, Best, the Netherlands).
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Advances in Knowledge

� Coronary microembolization
causes acute and subacute hypo-
perfusion that is detectable on
first-pass MR images.

� Delayed-enhanced (DE) MR imag-
ing can help visualize and reliably
quantify subacute, but not acute,
microinfarction.

� The magnitude of left ventricular
(LV) dysfunction after microem-
bolization is not closely related to
the extents of microinfarction or
hypoperfused territory, which
suggests other factors may play a
part in the decline of LV function.

Implication for Patient Care

� The immediate effect of coronary
microembolization on regional
myocardial perfusion can be de-
tected by using first-pass MR per-
fusion imaging, but the immediate
effect of coronary microemboliza-
tion on myocardial viability can-
not be detected by using DE MR
imaging.
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X-ray fluoroscopy (Integris V5000; Philips
Medical Systems) was used for coronary
catheterization (M.W., M.S., and M.C.,
with 10, 20, and 1 year of experience, re-
spectively), and an MR imager (Achieva
I/T; Philips Medical Systems) was used for
visualization and assessment of the effects
of microinfarction (A.J.M., M.S., and
M.C., with 10, 20, and 8 years of experi-
ence in cardiacMR imaging).The studyand
imaging protocols are shown in Figure 1.

After placement of a 6-F sheath
(Avanti; Cordis, Miami, Fla) in the femoral
artery, selective catheterization of the LAD
was performed (6-F catheter, Vistabritetip;
Cordis) by using a 50:50 solution of saline
and iohexol (Omnipaque 300; GE Health-
care, Milwaukee, Wis). A 3-F catheter
(Infusion Catheter; Cook, Chicago, Ill)
was placed distal to the first diagonal,
and the animal was then moved to the
MR imager by using a continuous rail
system. An injection of 10% gadoterate
meglumine (Dotarem; Guerbet, Ville-
pinte, France) through the coronary
catheter followed by DE MR imaging
was used to map the LAD perfusion ter-
ritory (Fig 2). After the delineation of
the LAD perfusion territory (Fig 1), mi-
croinfarction was created with slow in-
jection of an embolic agent (7500 parti-
cles, 100–300 �m in diameter, Embo-
sphere; Biosphere Medical, Rockland,
Mass) through the 3-F coronary cathe-

ter (M.S. and M.C.). The medium-size
particles of the embolic agent used in
this study were based on the range of
microemboli sizes (47–2503 �m in di-
ameter) determined during coronary in-
tervention in patients (32,33). The em-
bolic agent employed in this study is
approved for clinical use in interven-
tional procedures, such as embolization
of tumors and arteriovenous malforma-

tions. One pig died during catheteriza-
tion because of ventricular fibrillation,
and one pig died 4 hours after the pro-
cedure.

MR Imaging Protocol
1. A saturation-recovery gradient-echo
sequence was used for assessing re-
gional perfusion, and imaging parame-
ters were as follows: repetition time

Figure 1

Figure 1: Schematic diagram shows study design and imaging protocol. The study was performed with a
hybrid system composed of an x-ray C-arm and MR imager. Black arrows � transfer of the animal with a float-
ing table between the units. DE � delayed-enhanced MR imaging, Gd � gadolinium-based, Gd-DOTA �
gadoterate meglumine, KCl � saturated potassium chloride, LAD � left anterior descending coronary artery,
TTC � triphenyltetrazolium chloride.

Figure 2

Figure 2: Angiogram and DE MR images show the use of an x-ray and MR system for catheter placement with x-ray fluoroscopy in LAD and quantification of the em-
bolized territory with MR imaging. Left: LAD coronary angiogram. Tip of the 3-F coronary catheter is seen distal to the first diagonal (arrow). Right: Selection of DE MR
images (20 images in total covering the LV) obtained after selective injection of 6 mL 10% gadoterate meglumine into LAD. Hyperenhanced territory (arrowheads) dem-
onstrates LAD perfusion territory. Slow delivery of embolic agent was performed 10 minutes after defining the LAD territory.
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msec/echo time msec, 4.5/2.2; flip an-
gle, 20°; section thickness, 10 mm; field
of view, 26 � 26 cm; matrix size, 128 �
128; and acquisition time, two R-R in-
tervals per dynamic acquisition. First-
pass perfusion imaging was performed
starting 5–6 seconds prior to intrave-
nous injection of 0.1 mmol/kg gadolin-
ium-based contrast material and con-
tinuing for approximately 100 seconds
in four short-axis sections spaced to
encompass the embolized territory de-
fined earlier with the intracoronary in-
jection of 10% gadoterate meglumine
(6 mL).

2. DE MR imaging was performed
by using an inversion recovery gradient-
echo sequence in short-axis and long-
axis views encompassing the heart
(18–20 sections) to locate and quantify
the extent of microinfarction. The imag-
ing parameters were as follows: 5/2; flip
angle, 15°; shot interval, two R-R inter-
vals; section thickness, 3 mm; no inter-
section gap; field of view, 26 � 26 cm;
and matrix size, 256 � 162. The inver-
sion time was chosen to null normal
myocardium and was obtained by using
a Look-Locker sequence. An additional
0.05 mmol/kg gadoterate meglumine
was administered, and DE MR imaging
was performed every 2 minutes for 20
minutes after gadoterate meglumine ad-
ministration. Thirty minutes later, 0.026
mmol/kg of intravascular MR contrast
agent P792 (Vistarem; Guerbet, Paris,
France) was injected, and DE MR imag-
ing was repeated at 5, 10, and 20 minutes
after injection.

3. Cine MR images were acquired
by using a steady-state free precession
sequence with the following imaging pa-
rameters: 3.5/1.75; flip angle, 70°; sec-
tion thickness, 10 mm; no intersection
gap; field of view, 25 � 25 cm; matrix
size, 160 � 152; and heart phases, 16.
These images were obtained for mea-
surement of ejection fraction (EF) at
baseline, 1 hour, and 1 week.

Imaging of Nonbeating Heart
At 1 week, the animals were sacrificed
by injecting 40 mL saturated potassium
chloride to arrest the heart at end dias-
tole. A high-spatial-resolution DE MR
imaging sequence was used for imaging

the heart in situ (Fig 1). A simulated
electrocardiogram was set to the same
heart rate as before sacrifice. Imaging
parameters for this sequence were as
follows: 1.7/5.5; flip angle, 15°; ac-
quired voxel section, 1 � 1 � 2 mm
reconstructed to 0.88 � 0.88 � 1.00
mm; turbo field-echo factor, 37; and
number of signals acquired, three. Shot
interval and inversion time were set to
be equivalent to two R-R intervals of the
beating heart, and the resulting imaging
time was 15–20 minutes.

MR Imaging Data Analysis
All MR imaging data were analyzed by
two investigators (M.S. and M.C.) in a
blinded fashion and in consensus by using
freely available software (Segment, ver-
sion 1.6; http://segment.heiberg.se)
(34). Anatomic landmarks such as the
papillary muscles, right ventricular inser-
tion points, and the length from base to
apex enabled the matching of sections be-
tween 1 day after microembolization, 1
week after microembolization, and TTC
staining. The LAD perfusion territory was
quantified on DE MR images. The images
were automatically analyzed by using a
thresholding method of the signal inten-
sity � 3 standard deviations higher than
that of remote myocardium. Threshold-
ing of 2 standard deviations or more has
previously been described for quantifying
hyperenhanced myocardium (35).

Regional maximum upslope, peak
signal intensity, and time to peak were
obtained at first-pass perfusion MR im-
aging. The region of interest for perfu-
sion analysis included the midmyocar-
dium but excluded the immediate sub-
epicardial and subendocardial regions
to minimize the influence of volume av-
eraging effects and/or susceptibility ar-
tifacts. To compare the first-pass per-
fusion curves between different ani-
mals and different acquisitions, the
images were normalized. Mean signal
intensity from the LV blood before ar-
rival of the contrast agents was used
as a reference signal, and all images
were multiplied by this factor (SIa/
SIrv, where SIa is signal intensity in the
individual animal before arrival of
contrast material, and SIrv is the signal
intensity of reference values before ar-

rival of contrast material). Microin-
farction was quantified on DE MR im-
ages by using the thresholding method
of signal intensity � 3 standard devia-
tions higher than that of remote myo-
cardium within the area at risk and
was expressed as percentage of LV
mass and circumferential extent. Cine
images were used to calculate the EF
by delineation of the endocardium on
all short-axis images at end diastole
and end systole. LV mass was mea-
sured as the difference between epi-
cardial and endocardial volumes mul-
tiplied by 1.05.

Postmortem Analysis
Histopathologic findings were used to
confirm delivery of the embolic agent and
microinfarction. The hearts were excised
after sacrificing the animals, sliced into
10-mm slices, and soaked for 15 minutes
in 2% TTC stain. Digital images of the
TTC-stained slices were obtained and
converted to black and white images
by using software (Adobe Photoshop
CS2; http://www.adobe.com/). Mi-
croinfarcted tissue was automatically
quantified from TTC-stained slices by us-
ing software (ImageJ, version 1.30; Na-
tional Institutes of Health, http://rsb
.info.nih.gov/ij/) and also by thresholding
the pixels (�3 standard deviations higher
than the signal intensity of remote myo-
cardium). Tissue samples were taken
from the embolized region and remote
myocardium, embedded in paraffin,
sliced (5 �m), and stained with hematox-
ylin-eosin and Masson trichrome.

Statistical Analysis
All continuous variables were pre-
sented as means � standard errors of
the mean. Six animals were used for
analysis, and software (Prism, version
5.0; GraphPad Software, San Diego,
Calif) was used for all calculations. The
Wilcoxon signed rank test was used to
determine if variables differed between
time points and myocardial regions.
Correlation analysis was performed be-
tween EF and microinfarction size and
hypoperfused myocardium. Bias was
calculated as the mean difference be-
tween the methods and was presented
as mean difference � standard devia-
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tion of the difference by using the Bland-
Altman test. P values less than .05 were
considered to indicate statistically sig-
nificant differences.

Results

Catheterization and Microembolization
With x-ray fluoroscopy, the LAD was
successfully catheterized in all animals.
After moving the table top from the x-
ray catheterization laboratory to the
MR imager, LAD territory was identi-
fied prior to the delivery of the embolic
agent in all animals by using a first-pass
perfusion sequence after injection of
6–10 mL 10% gadoterate meglumine
into the LAD (Fig 2). The extent of the
LAD perfusion territory was observed
to have a mean equal to 35% of LV
mass � 2 (standard error of the mean).
Injection of the embolic agent induced

ST segment depression and T wave in-
version on the electrocardiogram and
solitary premature ventricular ectopic
beats. One pig died during catheteriza-
tion because of ventricular fibrillation,
and one pig died 4 hours after the pro-
cedure.

Perfusion Results
First-pass perfusion results revealed the
embolized region as hypoenhanced at 1
hour, but the perfusion defect was less
prominent at 1 week (Fig 3). The extent
of the hypoperfused territory 1 hour af-
ter embolization (15.7% of LV mass �
2.6) was smaller than that of the LAD
territory (P � .03). At 1 week, the ex-
tent of the hypoperfused territory de-
clined (4.6% of LV mass � 1.4, P �
.03). Quantitative perfusion parameters
are shown in the Table, and the dynam-
ics of the perfusion for all animals are
shown in Figure 4. At 1 hour, maximum

signal intensity and peak slope were
lower and time to peak was longer in
embolized myocardium than in remote
myocardium (P � .03 for all). At 1
week, there was significant improve-
ment in time to peak and peak slope in
the embolized myocardium (P � .03 for
both) but not for maximum signal inten-
sity (P � .09). However, all perfusion
parameters in the embolized myocar-
dium were still lower than in the remote
myocardium (P � .03). Maximum signal
intensity, time to peak, and peak slope
were not significantly different at 1 hour
and 1 week in the blood pool (P � .56,
.84, and .84, respectively) or in the re-
mote myocardium (P � .69, .31, and
.69, respectively).

Myocardial Microinfarction
At 1 hour after microembolization, discrete
microinfarction with fuzzy borders was vi-
sualized in three animals onDEMR images.

Figure 3

Figure 3: Multisection first-pass perfusion and DE MR images (DE-MRI) at 1 hour (left) and 1 week (right) demonstrate the effects of microembolization. Perfusion is
decreased in embolized region (black arrowheads). DE MR images show fuzzy scattered hyperenhancement at 1 hour. At 1 week, perfusion defect was less pronounced
(black arrows), but microinfarction was well defined as patchy hyperenhanced regions on DE MR images (white arrowheads).
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By using the automated thresholding
method, the extent of microinfarction was
1.4% of LV mass � 0.2 (Fig 3). Therefore,
we concluded that DE MR imaging is not a
reliable technique for measurement of final
microinfarction size at this time. However,
at 1 week, all animals showed larger micro-
infarction in the embolized region on DE
MR images in the beating heart and on
high-spatial-resolution DE MR images in
the arrested heart than at 1 hour. At 1
week, the extent of microinfarction did
not differ (P � .56) between DE MR im-
ages in the beating heart (7.5% of LV

mass � 1.2, P � .03 vs beating heart at 1
hour) and DE MR images in the arrested
heart (7.6% of LV mass � 1.4, P � .03 vs
beating heart at 1 hour) (Fig 5). Further-
more, the circumferential extent of the
microinfarcted territory was 23% of LV
mass � 1.

Microinfarctions caused by microem-
bolization were patchy and distributed in
the entire transmural extent of the emboli-
zed myocardium, rather than being limited
to the endocardium. The microinfarction
showed a striped pattern from the endocar-
dium to the epicardium, which was differ-

ent from contiguous infarction after occlu-
sion of an epicardial artery (Figs 3, 6). The
ratio of signal intensity between microin-
farction and remote myocardium was high-
est (4.2 � 2.8) at 6 minutes � 4 (standard
deviation) after contrast material injection.
The hyperenhanced regions on DE MR im-
ages after blood pool contrast medium in-
jection at 1 hour (0.7% of LV mass � 0.3)
were smaller than those after extracellular
MR contrast material injection (P � .03).

Global LV Function
The EF declined from 49% � 1 at
baseline to 29% � 1 at 1 hour (P �
.02) and 36% � 1 at 1 week after
microembolization (P � .03). The EF
did not correlate with the extent of
enhanced microinfarction calculated
at DE MR imaging (r � 0.20) at 1 hour
or at MR imaging (r � 0.54) and TTC
staining (r � 0.04) at 1 week. In addi-
tion, there was no correlation be-
tween EF and circumferential extent
of microinfarction (r � 0.19) or the
extent of hypoperfused myocardium at
first-pass perfusion imaging at 1 hour
(r � 0.27) or 1 week (r � 0.39) (P �
not significant for all).

Histopathologic Results
TTC staining results confirmed MR imaging
findings with patchy microinfarction in all

Figure 4

Figure 4: The passage of MR contrast media in LV blood pool, remote myocardium, and embolized myocardium 1 hour (left) and 1 week (right) after microemboliza-
tion. Note marked reduction in perfusion in embolized territory compared with that in remote myocardium at 1 hour and the partial recovery after 1 week. au � arbitrary
units, SI � signal intensity.

Perfusion Parameters Measured in Myocardial Regions 1 Hour and 1 Week after
Coronary Microembolization

Parameter

1 Hour after Microembolization 1 Week after Microembolization

Blood
Remote
Myocardium

Embolized
Myocardium Blood

Remote
Myocardium

Embolized
Myocardium

Maximum upslope
(sec�1) 1382 � 100 175 � 23 88 � 10* 1564 � 232 191 � 30 138 � 16*†

Maximum signal
intensity 7486 � 442 2703 � 244 1530 � 149* 7668 � 369 2604 � 119 2039 � 127*

Time to peak (sec) 5.4 � 0.4 14.5 � 0.9 21.8 � 2.1* 5.2 � 0.6 12.3 � 0.6 17.2 � 1.8*†

Note.—Data are means � standard errors of the mean. Mean heart rate 1 hour after microembolization was 76 beats per
minute � 4, and mean heart rate 1 week after microembolization was 92 beats per minute � 3.

*P � .05 for the comparison of remote to embolized myocardium.
†P � .05 for the comparison of 1 hour to 1 week.
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animals (Fig 6). The extent of microinfarc-
tion quantified with TTC staining (7.2% of
LV mass � 1.5) did not differ significantly
from the extent determined by using DE
MR imaging of the beating heart at 1 week
(7.5% of LV mass � 1.2, P � .84) or by
using DE MR imaging of the nonbeating
heart (7.6% of LV mass � 1.4, P � .75)
(Fig 5). The high correlation between TTC
staining and DE MR imaging in beating and
nonbeating hearts (r � 0.71, y � 0.92x �
0.23 and r � 0.88, y � 0.99x � 0.35, re-
spectively) and low bias (0.4% � 2.5 and
0.4% � 1.8) (Fig 7) indicated that DE MR
imaging after administration of extracellu-
lar MR contrast agent is an accurate
method for the quantification of microin-
farction.

Microscopic examination results
showed partially healed microinfarction
in stripes from the epicardium to the en-
docardium (Fig 8), with inflammatory
cells in the healing infarcted tissue. The
embolic agent was present in various
sizes of coronary arterioles and was clus-
tered within the vascular lumen, and the
obstructed vessels showed evidence of in-
flammation and thrombi formation.

Discussion

The main findings of this experimental
study were (a) coronary microembolization
causes acute and subacute hypoperfusion
detectable on first-pass perfusion MR im-
ages after coronary intervention; (b) DE
MR imaging can help visualize and reliably
quantify subacute, but not acute, microin-
farction; (c) the magnitude of LV dysfunc-

tion after microembolization is not closely
related to the extents of microinfarction or
hypoperfused territory; and (d) a blood
pool contrast agent did not help detect
acute microinfarction on DE MR images.
To our knowledge, this study was the first
to evaluate the capability of the combina-
tion of first-pass perfusion and DE MR im-
aging in the detection and quantification of
the extent of microinfarction caused by cor-
onary microembolization.

Several clinical studies (1–7,26)
showed the importance and the high in-
cidence of microinfarction in patients
undergoing coronary intervention. A re-
cent study (36) showed that thrombus
aspiration during percutaneous coro-
nary intervention reduced microemboli-
zation and hence microinfarction. The
rationale for performing imaging imme-
diately after microembolization in our

Figure 5

Figure 5: Microinfarction size in percent-
age of the LV mass measured on DE MR
images after injection of blood pool contrast
medium (CM) (green bar) and after injection
of extracellular contrast medium at 1 hour
(teal bar) and 1 week (red bar), on high-
spatial-resolution MR images in nonbeating
hearts (blue bar), and at TTC staining (or-
ange bar). The LAD perfusion territory in
percentage of the LV (purple bar) is shown
for comparison. There was no significant
difference between MR imaging measure-
ments at 1 week in the beating heart and
MR imaging measurements in the nonbeating
heart or measurements at TTC staining. � �
P � .05 compared with 1 hour. † � P �
.03 compared with the extent after adminis-
tration of blood pool contrast medium. Error
bars � standard errors of the mean.

Figure 6

Figure 6: DE MR images (beating and nonbeating hearts) and TTC-stained excised hearts show different
patterns of patchy microinfarction in three animals. The microinfarction is patchy with stripes from the endo-
cardium to the epicardium, as shown on MR images (arrows) and at TTC staining (arrowheads).
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study was to examine the potential of
first-pass perfusion and DE MR imaging
in the detection of the early effects of
coronary microembolization. The find-
ings suggest that coronary microemboli-
zation observed after acute coronary
syndrome, percutaneous coronary in-
tervention, and coronary artery bypass
graft surgery can be detected with the
combined use of first-pass perfusion and
DE MR imaging.

First-Pass Perfusion Imaging in
Embolized Myocardium
Coronary catheterization and terri-
tory mapping have been previously ad-
dressed with an MR imaging–guided
technique (37). In our study, we dem-
onstrated the applicability of an x-ray
and MR imaging system in mapping
the spatial extent of LAD territory at
baseline and after delivery of an em-

bolic agent, as well as microinfarction
size. Nuclear medicine has also been
used in assessing myocardial perfu-
sion after coronary intervention (38).
Unlike detection with contrast-en-
hanced MR imaging, detection of myo-
cardial perfusion by using a techne-
tium 99m tracer requires both flow
and cellular metabolic activity. Con-
trast-enhanced MR imaging does not
require cellular uptake of contrast ma-
terial and can help evaluate resting
perfusion in occlusive and reperfused
infarction (28).

The persistent decline in perfusion of
the embolized territory was detected on
first-pass MR images at 1 hour and at 1
week and was most likely related to micro-
vascular obstruction by the embolic agent
and interstitial edema. The improvement in
perfusion at 1 week may be related to
edema resorption associated with acute mi-

croinfarction. A study (35) in an open-chest
dog model showed that microembolization
causes immediate increase in coronary
blood flow after delivery of embolic agents
withparticles less than300 �mindiameter.
This acute effect was probably due to the
hyperemia of nonoccluded vessels in the
adjacent area of ischemic foci caused by
adenosine release from the ischemic myo-
cardium (9,39). Other explanations for the
difference in perfusion response could be
related to the size and number of particles
of the embolic agent and/or species varia-
tion (39–41). The decreased perfusion in
our MR imaging study confirms previous
acute electron-beam computed tomo-
graphic (CT) measurements after the deliv-
ery of an embolic agent with 100-�m-
diameter particles in swine (40). Humans
and pigs have poor collateral circulation
compared with dogs (40,42), which may be
crucial to the response to microembolic
events.

DE MR Imaging of Microinfarction
Clinical studies (2,7,25,26) have previously
involved DE MR imaging to help visualize
discrete microinfarction in patients who ex-
hibit elevation of myocardial ischemic
markers after percutaneous coronary in-
tervention. In our experimental study, the
appearance of microinfarction on DE MR
images was similar to that observed in
these studies but differed from contiguous
large infarction. Microinfarction was ob-
served as patchy and striped hyperen-
hanced regions on DE MR images in
beating and nonbeating hearts. It varied
in size and was distributed throughout
the transmural extent of the embolized
territory. This patchy pattern was de-
scribed with histopathologic findings af-
ter delivery of a 100-�m-particle em-
bolic agent in swine (40). The striped
microinfarction pattern is in line with
the architecture of coronary arteries
seen in humans (43) and dogs (44). Pos-
sible causes of the variability of the mi-
croinfarction sizes are (a) clustering of
the injected embolic agent as seen with
histopathologic results, (b) asymmetri-
cal branching geometry of the coronary
vessels, and (c) adjacent arterioles be-
ing occluded by the embolic agents.

The present study involved the com-
parison of DE MR imaging in beating

Figure 7

Figure 7: (a) Graph shows correlation between extent of microinfarction measured at MR imaging and TTC
staining in beating hearts in six animals. (b) Bland-Altman plot shows bias between MR imaging and TTC
staining in beating hearts in six animals. (c) Graph shows correlation between extent of microinfarction mea-
sured at MR imaging and TTC staining in nonbeating hearts in six animals. (d) Bland-Altman plot shows bias
between MR imaging and TTC staining in nonbeating hearts in six animals. Dotted lines in b and d represent 2
standard deviations above and below the mean.
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hearts, high-spatial-resolution DE MR im-
aging in nonbeating hearts, and TTC stain-
ing for quantification of microinfarction at 1
week. Close correlation and low bias be-
tween the techniques were shown with re-
gression analysis and the Bland-Altman
test. These findings indicate that DE MR
imaging can depict and reliably help quan-
tify the extent of microinfarction at 1 week,
but not at 1 hour, after coronary interven-
tion. The patchy hyperenhanced microin-
farction at 1 hour was smaller than that at 1
week on DE MR images, which suggests
that injured myocytes maintained their in-
tegrity at 1 hour. Klein et al (45) found that
ischemic cell death in swine starts in the
jeopardized LV after about 30 minutes of

ischemia. After 75 minutes of ischemia,
most of the myocytes at risk were irre-
versibly injured. Infarctions reached their
final extent after 90–120 minutes of ische-
mia. Interestingly, our study showed that
first-pass perfusion MR imaging can de-
pict the perfusion deficit caused by micro-
embolization, even at this early stage.
Our findings are also in line with those of
a preliminary report (46), in which DE
MR images did not show microinfarction
2 hours after microembolization. How-
ever, expansion of microinfarction cannot
be excluded in our study (8).

Microinfarction was most likely the
cause of the persistent decline in EF. How-
ever, there was no correlation between the

EF and the extents of patchy hyperen-
hanced myocardium or hypoperfused terri-
tory. Other investigators (47) also found a
lack of correlation between regional func-
tion, by using electron-beam CT in beating
hearts, and microinfarction volume, by us-
ing micro-CT in the excised hearts. This
mismatch was attributed to the presence of
inflammation, mediated by tumor necrosis
factor–� around the microinfarcted region
(periinfarction zone) (9,10,48–50).

Analysis of Histopathologic Results
Histopathologic examination findings re-
vealed that embolic agents caused micro-
infarction by mechanical occlusion of mi-
crovessels. The patchy and striped pat-

Figure 8

Figure 8: (a–d) Histologic slices obtained from the microinfarcted territory show microinfarction (I) surrounded by viable myocardium (V) and embolic agents (ar-
rows) obstructing microvessels. (a) Several embolic agents are shown inside a vessel surrounded by microinfarction. (b) Stripes of infarcted tissue with inflammatory
cells from the epicardium (left bottom corner) to the endocardium (out of field at right). (c) A thin stripe of healing microinfarction extends from epicardial surface (top
right) to endocardium (bottom left) where the microinfarction is broader. (d) A longitudinally cut vessel with two embolic agents is surrounded by fibrin and organizing
tissue, which are signs of inflammatory reaction within the vessel. Scale bars � 400 �m. (a and b, hematoxylin-eosin stain; original magnification, �25.) (c and d,
Masson trichrome stain; original magnification, �100 for c and �400 for d.)
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tern of hyperenhancement seen on DE
MR images was confirmed at histochem-
ical and histopathologic staining. The
combination of inflammatory cells and
thrombi inside the blood vessels in sub-
acute microinfarction may contribute to
LV dysfunction (9,10,48–50). The pattern
of microinfarction crossing the LV wall
was similar to that observed at autopsy in
patients with coronary microemboliza-
tion (43,51). Therefore, this animal
model may be suitable for assessing the
effects of gene and stem cell therapy.

Study Limitations
Higher spatial resolution was needed to de-
lineate individual microinfarction caused by
obstruction of a single microvessel. The
number of animals was relatively limited
(n � 6), which may explain a lack of corre-
lation between the extent of microinfarc-
tion and decrease in EF. The sizes of par-
ticles of the embolic agent were be-
tween 100 and 300 �m to obstruct
medium-size blood vessels. Synthetic
embolic agents, not biological particles,
were used in this study, which may pro-
vide different inflammatory responses
in the myocardium. The long-term ef-
fect of microinfarction on perfusion and
LV function was not addressed and
needs further investigation by using dif-
ferent particle sizes of embolic agents.
Another limitation of this study was the
use of blood pool contrast agent only for
DE MR imaging and not for first-pass
perfusion imaging.

Clinical Implications
The complementary use of perfusion
and DE MR imaging may be helpful in
early documentation of coronary mi-
croembolization in patients after acute
coronary syndrome, percutaneous
coronary intervention, and coronary
artery bypass graft surgery. This non-
invasive diagnostic method can also be
used to evaluate newly developed
stents and therapies designed to pre-
vent the formation of microinfarction.

In conclusion, coronary microemboli-
zation caused persistent decline in myocar-
dial perfusion measured on first-pass perfu-
sion imaging. DE MR imaging has the po-
tential to help reliably quantify subacute
microinfarction. The magnitude of LV dys-

function was not related to the extents of
microinfarction or hypoperfused territory.
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required to process your order.  Please reference journal name 
and reprint number or manuscript number on any
correspondence.  You may use the reverse side of this form as a 
proforma invoice.  Please return your order form and 
prepayment to:

Cadmus Reprints
P.O. Box 751903
Charlotte, NC  28275-1903

Note:  Do not send express packages to this location, PO Box.
FEIN #:541274108

Please direct all inquiries to:

Rose A. Baynard
800-407-9190 (toll free number)
410-819-3966 (direct number)
410-820-9765 (FAX number)
baynardr@cadmus.com (e-mail)

Reprint Order Forms 
and purchase order 
or prepayments must 
be received 72 hours 
after receipt of form.
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