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Abstract
Long-term maintenance of the memory T-cell response is the hallmark of immune protection and,
hence, constitutes one of the most important objectives of vaccine-development strategies. Persistent
memory T cells, developed after vaccination or microbial infections, ensure the generation of an
antimicrobial response upon re-exposure to the pathogen through rapid clonal proliferation and
activation of effector functions. However, in the context of many pathogen infections, these memory
T cells fail to persist and die. In this review, we will highlight recent exciting findings in studies of
memory T cells, their generation, their lineage relationships and their survival pathways; indeed,
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survival of memory T cells and maintenance of their functionality are key features of the immune
response in its quest to control disease progression and in the development of vaccines to persistent
microbial infections.

Keywords
differentiation; FOXO3a; memory; signaling; survival; T cell

Generation of memory T cells
The hallmark of the adaptive immune system lies in its ability to develop immune memory
enabling it to quickly react to previously encountered specific antigens (Ags) with higher
potency and efficacy [1]. This protective immune memory persists for several years after the
initia l antigenic exposure. The best example of persistent immune memory is the finding that
Ag-specific CD4 and CD8 responses can still be identified 60 years following vaccination
against smallpox, even though the virus was eliminated and that antigenic re-encounter was
excluded [2]. The immune response to yellow fever vaccine provides further evidence that
immune memory is long lasting [3,4]; herein, immunity to the vaccine was shown to last for
up to 35 years. Several lines of evidence have shown that the induction of memory T cells and
long-lived plasma cells are major components of the success of vaccines, as they can promote
protection against re-infection and the development of infections [5,6].

However, the molecular mechanisms that lead to the generation of memory T cells after
infection or vaccination are poorly understood. Te initial phase of the immune response is
characterized by the expansion of Ag-reacting T cells. This first phase is an activation phase,
where Ag-specific T lymphocytes undergo a clonal expansion and acquire peripheral tissue
homing receptors, cytotoxic activity and upregulate the secretion of effector cytokines. Once
Ag has been cleared, sustained effector function could result in harmful immune inflammation.
Therefore, most effector cells die during the second phase, known as the contraction phase,
which is characterized by a rapid decline in the frequency of Ag-specific cells that die by
apoptosis via activation-induced cell death [7], or by neglect as a consequence of growth factor
withdrawal [8]. Even though the molecular mechanisms involved in this massive contraction
of the response are not totally deciphered, it has been shown that both Bim and Fas are involved
in the CD8 contraction of Ag-specific CD8 T-cell responses after acute viral lymphocytic
choriomeningitis virus infection [9].

In parallel, a small proportion of Ag-specific T cells survive this contraction phase and
constitute the pool of memory T cells that are deemed to persist. Te adaptive immune system,
hence, maintains T-cell oligoclonal specificities that were proven successful in controlling
dissemination of a pathogen. Te third phase is the memory phase, during which designated Ag-
specific cells that survived the second phase develop into immunologic memory cells [10,
11]. These resting memory T cells have several key features that distinguish them from naive
cells. First, they are formed at much higher frequencies than naive T cells that have the same
T-cell receptor (TCR) clonotype [12]. Moreover, they undergo self-renewal as do
hematopoietic stem cells [13]. In addition, they show enhanced ability of Ag-independent self-
renewal [14,15], through homeostatic turnover in response to cytokines such as IL-2, IL-7,
IL-15, and IL-21 [16–22], rapid clonal proliferation and functional activation upon re-
encountering the same pathogen [23,24]. Te enhanced magnitude of the secondary response
to Ag by memory T cells is correlated with the regulation of gene-expression profiles by genetic
changes, such as DNA methylation, histone modification, chromatin structure re-organization
[25,26] or the upregulation of specific transcription factors required for the secondary
activation, such as BCL6b [27].
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Different subsets of memory T cells: TCM & TEM

Human memory T cells, as well as mouse memory T cells, can be subdivided into multiple
subsets based on the expression of different cell surface molecules underlying homing markers
and chemokines as well cytokine receptors [28–32]. In the present paper we will focus on
human memory T cells. Naive T cells are characterized by the expression of CD45RA, CCR7,
the costimulatory receptors CD28 and CD27, and the lack of expression of cytolytic molecules,
such as granzymes, perforin and CD107a. Long-lived central memory T cells (TCM) that home
preferentially to lymph nodes, as they express the lymph node-homing markers CD62L and
CCR7, share several phenotypic properties with naive T cells, except that they do not express
CD45RA. TCM, as opposed to naive T cells, can rapidly differentiate into cells endowed with
effector functions upon exposure to Ag [29]; moreover, they upregulate CD40L to a greater
extent. TCM cells are also characterized by their ability to proliferate and to secrete high levels
of IL-2. TABLE 1 provides an overview of some of the molecules commonly used to dissect
T-cell subsets. Experiments performed in mouse models have suggested that TCM have a better
capacity to reconstitute the memory T-cell pool and to mediate protective immunity when
compared with relatively short-lived effector memory T cells (TEM) [24,33–37] In that context,
it is important to conceive TCM as the stem cells of the Ag-specific immune response, which
will allow its long-term persistence.

Effector memory T cells migrate preferentially to peripheral tissues and do not express
CD45RA or CCR7 and, depending on their state of differentiation, they may or may not express
CD27/CD28 [30]. TEM cells possess immediate effector functions (cytotoxicity and IFN-γ
secretion) but have a reduced ability to proliferate and to secrete IL-2. Another subset termed
‘late’ or ‘terminally’ differentiated TEM, which is mostly found in CD8 T cells, expresses
CD45RA but lacks expression of CCR7, CD27 and CD28. These cells have potent effector
functions but also have limited proliferative capacity and fail to produce IL-2 [29,38]. TEM
cells are, thus, subdivided into two subsets: CD45RA− [30] and CD45RA+ (TEMRA). Gauduin
et al also showed that the presence of the CD4 TEMRA subset is strongly associated with
protection mediated by attenuated SIV [39]. Many other transitory memory subsets in both
CD4 and CD8 compartments have been described. After TCR triggering of naïve and memory
T cells, we have observed two transitory memory subsets, CD45RA−, CCR7−, CD27+ [40] and
CD45RA−, CCR7+, CD27+ (YASSINE-DIAB B, NPUBLISHED DATA). Effector memory CD8+ T cells
(CD45RA−, CCR7−) have been divided into four distinct subpopulations based on the
expression of CD27 and CD28 [41]. Te authors found that effector memory EM1
(CD27+CD28+) and EM2 (CD27− CD28+) cells express low levels of mediators of effector T-
cell function, such as granzyme B and perforin, but high levels of CD127, the IL-7 receptor
(IL-7R)-α. On the other hand, the subsets EM3 (CD27+CD28−) and EM4 (CD27−CD28−)
exhibit more effector functions, such as cytotoxic activity [41]. Moreover, a recent study
characterized 14 different human CD8+ T-cell subsets based on the combination of CCR7,
CD45RA, CD27, CD28, CD11a and CD62L [42]. Te development of an ex vivo differentiation
system and the use of system biology approach should allow a better characterization of
functional memory T-cell subsets.

Differentiation of memory subsets: lineage relationships
Different models have been developed to study the lineage relationship of TCM, TEM and naive
T cells following Ag encounter [11,43]. The first model suggests that naive CD4 T cells upon
activation by cognate Ag–MHC complexes differentiate into effector cells and then into
memory cells [44]. Wherry et al. proposed a lineage relationship in memory CD8 T cells, where
TCM and TEM do not necessarily represent distinct subsets, but are part of a continuum in a
linear naive → effector → TEM → TEM differentiation pathway (FIGURE 1A) [24]. A second
model states that memory T cells are generated directly from naive T cells upon Ag receptor
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triggering, therefore, bypassing an effector stage (FIGURE 1B) [45]. A third model was also
proposed based on progressive differentiation of memory T cells according to signal-strength
during the interaction of an Ag-presenting cell (APC) with a T cell. In this model, TCM
differentiated to TEM upon Ag stimulation (FIGURE 1C) [28]. The differentiation of T cells
was dependent on the concentration of Ag, costimulatory molecules, cytokines and of the ratio
of T cells and APCs [46]. In addition, our unpublished experiments and that of another group
[47] showed that TEM do not differentiate back to TCM. Thus, we showed that stimulation of
highly purifed TEM doe s not gener ate a pool of TCM. However, Schwendemann et al. have
demonstrated that on activation, human CCR7−CD62L− peripheral blood CD8+ and CD4+

TEM cells exhibit a dynamic differentiation, involving transient as well as stable changes to
TCM phenotype and properties [48].

Recently, Chang et al. proposed an asymmetric division model where effector and memory
cells are formed simultaneously upon the first cell division of naive progenitor T cells (FIGURE
1D) [49]. In this model, the daughter cell adjacent to the immunological synapse gave rise to
an effector cytotoxic T lymphocyte, whereas those derived from the distal pole differentiated
into a long-lived memory T cell (FIGURE 2). Hence, effector cells were generated from the
daughter cell that received more Ag and cytokine signals, while the cell at the opposite side of
the synapse kept the capacity to self-renew and to differentiate into effector cells at subsequent
contacts with the Ag [49,50]. Following the contact of a T cell and an APC, a bipolar
segregation of immune receptors, such as CD3, CD4 or CD8 and LFA-1 from one side and
PKCζ from the opposite side, were observed early during mitosis possibly yielding a distinct
phenotype of the proximal and distal daughter cells. Te proximal daughter cell was larger in
size and expressed markers of an effector cell, such as CD69, CD43, CD25, CD44 and low
levels of CD62L. Functionally, the proximal daughter T cell expressed IFN-γ and granzyme
B. On the other hand, the distal daughter was smaller in size and expressed high levels of
CD62L and lower levels of CD69, CD43, CD25 and CD44 and elevated mRNA for IL-7Rα,
being more compatible with TCM. Te relevant difference between these four models could be
due to several reasons, including the use of different species (human versus mice); the use of
different markers to define the memory subsets; and experiments being performed either in
vivo or in vitro. In our view, the asymmetric division is a very interesting model, as it shows
the possibility to generate phenotypic and functionally distinct T-cell lineages from a single
naive CD8 T cell following the contact with an Ag presented by an APC in the context of MHC
molecules. In this regard, whether or not other important cell decisions, such as the CD4 T-
cell differentiation to Th1, Th2, Th17 or Treg cells would ft into this model are still open to
experimental evidence [51,52]. Interestingly, several data have provided evidence for a major
role for Notch during the asymmetric division process. This mechanism was well described in
Drosophila melanogaster, especially during asymmetric division of larval neuroblasts and
sensory organ precursors [53–55]. This process implicates the Numb protein, which is a
negative regulator of Notch signaling. Notch is a highly conserved family of receptors,
constituted by four members (Notch1–4), interacting with theirs ligands (Δ-like1, 2, 4 and
Jagged 1–2). Notch signaling is implicated in the maintenance and the self renewal of
hematopoietic stem cells [56]. Te differential segregation of Numb between the two daughters
of dividing cell regulates the Notch-dependent binary cell fates [57]. The repartition of Numb
in unconjugated T helper cells is predominantly perimembranous, as the conjugation of a T
cell with an APC leads to a rapid polarization of Numb to the immunologic synapse of T cell
(FIGURE 2) [58,59]. Chang et al., however, showed a co-segregation of Numb and CD8 in
the same daughter cell upon T-cell activation [49]. Te asymmetrical division of a memory T
cell provides evidence for the generation and maintenance of T-cell memory and the
differentiation into an effector cell could, hence, imply Numb. Some preliminary data
generated in our laboratory have shown different levels of Numb and its negative regulator
Musashi-1 (MSI-1) into two subpopulations of activated central memory CD4 T cells. This
difference could allow us to discriminate a population enriched in ‘long-term TCM’.
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Our recent unpublished results suggest a model for the development of subsets of memory T
cells that integrates the differentiation of naive T cells into a TCM cell model [28] and the
asymmetric division model (FIGURE 2) [49]. We have used sorted cells (naive
[CD45RA+CCR7+CD27+], TCM [CD45R A− CCR7+CD27+] and TEM cells
[CD45RA−CCR7−CD27−]) co-cultured with dendritic cells (DCs) in the presence of
Staphylococcal enterotoxin B (SEB) for 6 days to define the lineage relationships of memory
cells. The maturation phenotype of proliferating cells (CFSE-low) was followed by staining
with a battery of cell surface markers expressed by memory T cells. Our results showed that
after activation with SEB, naive T cells and TCM differentiated into all subsets of memory T
cells, including transitory stages of differentiation; however, TEM cells did not differentiate
into TCM. Based on these results, we cannot exclude the possibility that naive cells in the
presence of Ag generate simultaneously TCM and effector cells as observed in the asymmetric
division model [49]; indeed, we identified both phenotypes after stimulation of naive cells with
Ag. Additionally, through analysing sjTREC expression on naive T cells and subsets of
memory T cells obtained from healthy donors, we observed, as expected, that the levels of
sjTREC on naive cells are the highest. Of note, TCM also expressed levels of sjTREC almost
comparable to those observed in naive T cells indicating that they underwent a minimal number
of cell divisions upon TCR encounter with peptide–MHC complexes. By contrast, TEM cells
and other memory differentiated phenotypes showed almost undetectable levels of sjTREC,
indicating that these cells have undergone clonal expansion and differentiation. These results
suggest that TCM can be differentiated directly from naive cells and have undergone a smaller
number of cell divisions when compared with TEM. As such, these data do not ft with the
lineage model of T-cell differentiation proposed by Wherry et al. [24]. It should be noted,
however, that our results were predominantly obtained for CD4 cells, while Wherry et al.
predominantly studied CD8 cells.

Differential T-cell receptor signaling in naive, effector & memory T cells
Memory T cells can persist at relatively constant numbers after infection or vaccination [60].
A characteristic of memory T cells is their ability to undergo Ag-independent homeostatic
turnover and, thus, to maintain a stable pool of Ag-specific memory T cells [60]. Survival and
death are balanced in this homeostatic proliferation, resulting in stable numbers of memory T
cells [61]. Studies have demonstrated that TCR-mediated signals are required for memory T-
cell survival [62–64], while others have shown that, once generated, memory T cells become
independent of further TCR triggering [65,66]. However, some studies have shown that
memory T cells that survive in the absence of MHC engagement become nonfunctional [67].

The proper development of functional memory T cells requires signaling not only through the
TCR, but also via costimulatory molecules such as CD28. Moreover, signaling through CD27,
CD40, 4-1BB or an inducible costimulatory molecule has also been shown to promote
continued expansion, survival or memory differentiation of CD8 T cells [68].

The interaction of the α,β-TCR with cognate peptide–MHC complexes leads to the immediate
phosphorylation of the TCR-associated CD3 chains on tyrosine residues in specific
immunoreceptor tyrosine-based activation motif (ITAM) sequences by Src family kinase
members, such as Lck and Fyn. Phosphorylation of CD3 molecules triggers the recruitment
and activation of the ZAP-70 kinase to the CD3ζ signaling subunit [69]. ZAP-70 subsequently
phosphorylates linker/adapter molecules SLP-76 [70] and LAT [71], which serve as molecular
scaffolds to couple proximal phosphorylation to distal signaling events. LAT couples TCR to
the Ras pathway and Ca2+ flux [71], while SLP-76 binds several adaptors including LAT,
leading to Ca2+ flux and activation of the MAPK, and the guanine nucleotide exchange factor
Vav, resulting in actin reorganization [72]. Activated MAPKs, in turn, phosphorylate and
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activate transcription factors, such as jun and nuclear factor of activated T cells (NFAT), for
translocation into the nucleus [73].

Analysis of purified naive, effector and memory T cells allow us to detect specific alterations
in TCR signaling in both human and mouse memory T-cell subsets [74–77]. In general, naive
CD4 T cells follow the generalized signaling scheme identified in T-cell lines and clones, and
exhibit a low level of tyrosine phosphorylation at the resting state [75,77]. On the other hand,
effector CD4 T cells generated upon the activation and differentiation of resting CD4 T cells
show profound amplifications in signaling, with overall increases in total intracellular tyrosine
phosphorylation when analyzed directly or upon stimulation by TCR/CD3 crosslinking [78,
75]. Tese signaling amplifications occur at the linker/adapter and MAP kinase levels, as
detected by the enhanced phosphorylation of SLP-76, LAT and Erk1/2 (FIGURE 2) [76], with
a concomitant alteration in the proximal TCR configuration and kinase activation [74]. In
contrast to effector cells, human memory T cells are characterized by a profound dampening
of TCR-coupled signaling, manifested by lower levels of tyrosine phosphorylation both at the
resting and activated states [76–78] and by a decrease in the activation of the proximal ZAP-70
kinase (FIGURE 2) [77]. Relative to naive CD4 T cells, mouse memory CD4 T cells exhibit
a profound decrease in the expression of the linker/adapter molecule SLP-76, while effector
CD4 T cells express normal to elevated levels of SLP-76 [76]. Tese effector CD4 T cells show
increased associations of SLP-76 to phosphorylated linkers and, downstream,
hyperphosphorylate Erk1/2 MAPK [76].

These findings lead to a model in which signaling changes drive the differentiation of effector
and memory T cells. Tus, the amplification of signaling at the linker/adapter and distal levels
drives effector T-cell differentiation, and dampening of signals, possibly by Numb, may
determine whether activated T cells persist as memory T cells.

Survival pathways in memory T cells: the role of FOXO3a, cytokines,
chemokines, IGF, TGF-β & osteopontin; do they converge to FOXO3a?

The memory T-cell pool functions as a repository of heterogeneous long-lived T cells that had
been previously in contact with an Ag. The understanding of how the pool of memory T cells
can be maintained during the lifetime of an individual is fundamental to the development of
vaccines. To date, no mediator has been described as a unique inducer of memory T-cell
survival. As such, it is possible that multiple signals with redundant or partially overlapping
functions could be involved to ensure the optimal survival of memory T cells. The identification
of these mechanisms is also fundamental to decipher the dysfunction of memory cells, which
is often observed in several chronic diseases, including viral infections or tumors. They also
pave the way for the development of strategies aimed at restoring the functionality of these
signal transduction cascades, through the generation of immunotherapeutics and adjuvants that
target these pathways, thereby promoting the establishment of a long-lived memory T-cell
pool.

Role of FOXO3a in the generation & persistence of memory T cells
Recently, our group has shown that the long-term survival of TCM is critically dependent on
the phosphorylation status of FOXO3a, a transcription factor that regulates proliferation and
cell death [40]. Interestingly, we have shown that the persistence of TCM cells from elite
controller subjects is a direct consequence of the inactivation of the FOXO3a pathway [79].
Upon TCR and cytokine receptor engagement in TCM cells, FOXO3a is highly phosphorylated
by the kinases AKT and IKK at multiple residues, including S253, S315 and T32. The
unphosphorylated, transcriptionally active form of FOXO3a translocates to the nucleus and
induces the transcription of genes encoding proapoptotic and antiproliferative proteins, such
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as FasL, Bim and p130 (FIGURE 3) [79]. In addition, three different phosphorylation sites
(S294, S344 and S425) have been newly described [80]. Phosphorylation of FOXO3a at the
latter residues is ERK mediated, and promoted physical interaction of FOXO3a with MDM2
and its subsequent ubiquitination and proteasomal degradation; this consequently enhanced
cell proliferation and led to tumorigenesis. On the other hand, we have shown that, in healthy
subjects, ex vivo TCM express higher levels of the transcriptionally inactive phosphorylated
forms of FOXO3a compared with TEM and concomitantly lower levels of the pro-apoptotic
FOXO3a target Bim, Fas-L and PUMA. Experiments aimed at blocking the phosphorylation
of FOXO3a by Akt and IKK-β phosphorylation confirmed the role of this phosphoprotein in
protecting TCM from apoptosis. For the first time in humans, these results provided an insight
into the molecular mechanisms that could be responsible for the longevity and persistence of
CD4 TCM [40]. Other important players in the long-term survival of TCM include cytokines,
chemokines, IGF, TGF-β and osteopontins (OPNs) (FIGURE 3). However, there is a paucity
of data to show their direct link to FOXO3a and their direct role in the maintenance of the
memory T-cell pool.

Role of cytokines in the maintenance of memory T cells
Several studies have emphasized the role of cytokines that signal through the common γ-chain
receptor (IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21) in the survival and homeostatic proliferation
of lymphocyte populations (FIGURE 3) [62,81,82]. The involvement of IL-7 and IL-15 in the
survival of memory CD8 T cells has been shown by several groups [21,83–85]. However, the
requirement of these cytokines in the persistence of CD4 memory T cells remains controversial
[62–64]. IL-15 is known to mediate T-cell turnover, while IL-7 provides a signal to rescue
survival by increasing the levels of the Bcl-2 and Bcl-XL anti-apoptotic molecules through
STAT5a phosphorylation [19,86] and also by phosphorylating FOXO3a at T32 [40]. IL-2 has
also been shown to mediate a critical role in the maintenance of memory T cells, as shown by
Blattman et al. [87]. Indeed, when compared with naive CD8 T cells, mouse memory CD8 T
cells were found to upregulate survival genes, such as Bcl-2, intracellular signaling molecules,
such as MAPKs, and specific transcription factors involved in cell-cycle regulation, such as
the forkhead transcription factor (FKHR) [88,89] upon engagement of γc cytokine receptor
with its ligand. Engagement of TCRs and the γc cytokines IL-2 and IL-7 induces specific
FOXO3a phosphorylation at distinct sites, S315 and T32, respectively, suggesting that the
convergence of both signals is required to induce optimal FOXO3a phosphorylation
(quantitatively and qualitatively) and the subsequent inhibition of its transcriptional
upregulation of the proapoptotic machinery.

Role of chemokines in the generation & maintenance of memory T cells
The human chemokine superfamily currently includes at least 46 ligands, which bind to 18
functionally signaling G-protein-coupled receptors, such as C-C chemokine receptor (CCR)5
and CCR7. They are critical mediators of cell migration during routine immune surveillance,
inflammation, and development. By binding to G-protein coupled receptors, chemokines cause
conformational changes that trigger intracellular signaling pathways involved in cell
movement and activation [90]. Recently, it has been shown that CCR5 plays a crucial role in
the early memory CD8+ T-cell response to respiratory virus infections by accelerating the
recruitment of memory CD8 T cells to the lung airways [91]. CCR5 mediates its effect by
activating different MAPKs, such as ERK, p38 and JNK [92]. CCR7, another chemokine
receptor, is the essential chemokine receptor responsible for lymphocyte and DC homing to
secondary lymphoid organs, where they receive and/or provide the signals critical for the
maintenance of T-cell memory. In addition to its well-established role in chemotaxis, recent
published data have shown that CCR7 also induces antiapoptotic signaling in mature DCs
through activation of the AKT pathway [93]. Although there is no direct evidence for a role of
CCR7 on memory T cell survival, Ziegler et al. have shown that CCR7 signaling inhibits T-
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cell proliferation through delayed degradation of the cyclin-dependent kinase (CDK) inhibitor
p27(Kip1) and the downregulation of CDK1 [94]. This shows that CCR7 signaling can be
linked to cell cycle control and that sustained engagement of CCR7, either by high
concentrations of soluble ligands or by high density of immobilized ligands, is capable of
inducing cell cycle arrest in TCR-stimulated cells [94]. Recently, a group described a critical
role of FOXO3a in chemokine-induced B-chronic lymphocytic leukemia (B-CLL) cell survival
[95]. Their data support the notion that homeostatic chemokines contribute to the resistance of
B-CLL cells to cell death through inactivation of the transcription factor FOXO3a.
Chemokines, therefore, also appear to regulate the survival of many T cells. Whether they are
critical for the maintenance of long-term memory remains to be addressed.

Role of IGF in memory T-cell survival
IGF is synthesized in response to growth hormone and it induces the activation of Akt in
promoting T-lymphocyte survival [96]; however, no role for IGF has been described in the
development and persistence of the memory T-cell pool. Nevertheless, low IGF concentrations
were associated with low TCM counts, low CD4 lymphocyte counts, low naive T-lymphocyte
counts and a smaller thymus [97]. Different studies showed that FOXO3a is downstream of
IGF, although none of these studies were performed on lymphocytes [98].

Role of TGF-β in memory T-cell survival
TGF-β, a member of the TGF-β superfamily, which includes activins and inhibins, and is an
important factor involved in the homeostasis of several cellular functions, such as proliferation,
cell differentiation, apoptosis, cell motility and cell adhesion [99]. One of the critical functions
of TGF-β is to maintain immunotolerance [100,101]. Along with the regulation of chemotaxis,
activation and survival of lymphocytes, TGF-β inhibits the inflammatory response [102]. TGF-
β signals through Smad-dependent and-independent pathways. TGF-β blocks the proliferation
of T cells by triggering Smad3 to inhibit IL-2 production and by downregulating expression
of cyclin D2, CDK4 and c-myc. On the other hand, TGF-β inhibits the differentiation of T
helper and CTL cells by suppressing T-bet/Stat4 and GATA-3/NFAT signaling. In addition,
TGF-β is also involved in the activation of MAPK and PI3K pathways. Smad7, one of the
targets of TGF-β, acts as a negative feedback mechanism for TGF-β activation, by competing
with Smad2-and Smad3-mediated signaling [103]. Unpublished data from our laboratory
shows that the differentiation of human CD4+ TCM to TEM is inhibited by TGF-β. This
inhibition can be partially rescued by IL-2. Recently, it has been demonstrated that TGF-β
inhibits effector/memory peripheral blood T lymphoblast proliferation and IL-2 production.
TGF-β priming resulted in ERK 1/2-independent p21 induction and decreased cyclin D1
expression, leading to accumulation of T cells in G0/G1 phases, as well as cell cycle arrest
[104]. Interestingly, the impact of TGF-β on the TCR signaling pathway was not generalized
to cytokine (IL-2, IL-7 and IL-15) signaling [104]. Other reports have also shown an inhibitory
effect of TGF-β on IL-12 and IL-2 induced activities that are unlikely to be due to inhibition
of JAK or STAT activation [105]. Recently, TGF-β-activated pathways, which are FOXO3a
dependent, have been shown to impact the regulation of the hematopoietic progenitor cycle
status [106]. Therefore, rather than blocking signal transduction, TGF-β might act through an
undefined pathway to redirect functional TCR signal transduction. This altered signal
transduction could indirectly impact memory T-cell survival.

Role of osteopontin
Osteopontin, a secreted glycophosphoprotein, acts on a variety of cellular processes, including
bone resorption, extracellular matrix remodeling, immune cell activation and inhibition of
apoptosis. OPN is expressed by several immune cell types, particularly in pathological
situations. These include macrophages, T cells, B cells, natural killer cells and platelets
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[107]. In addition, OPN is involved in the enhanchment of Th1 cytokine (IFN-γ and TNF)
levels and the inhibition of Th2 cytokine (IL-4 and IL-10) levels [108]. Moreover, OPN has
been shown to promote the survival of activated T cells by inhibiting the transcription factor
Foxo3a [109]. However, a role for OPN in memory T-cell maintenance has yet to be defined.

Programmed death-1 role in memory T-cell exhaustion
During chronic viral infections or in the presence of persisting Ag, Ag-specific CD8+ T cells
initially acquire effector functions but gradually become less functional as the infection
progresses. This loss of function, known as ‘exhaustion’, consists of a decreased capacity to
proliferate and produce effector cytokines [110], and an increased sensitivity to apoptosis.
Thus, early control of chronic infections may allow the development of highly functional and
self-renewing memory T cells, while a prolonged exposure to Ag-specific stimulation may
prevent optimal memory T-cell differentiation [110]. It is currently unclear whether these
defective memory T cells arise from functionally exhausted T cells or whether they emerge
through a different pathway [110].

Sustained negative signaling pathways during chronic infection have been proposed as one of
the major factors for T-cell exhaustion [111]. Moreover, studies to elucidate the cause of
impaired T-cell function have pointed to seven distinct inhibitory receptors [112], signaling
primarily through programmed death (PD)-1 [111]. We and others have recently demonstrated
that upregulation of PD-1 on HIV-specific CD8 T cells leads to an exhaustion status that is
reversible by PD-1 blockade [113–115]. Shin and Wherry have suggested that
immunoregulatory pathways, such as PD-1, may alter memory CD8 T-cell differentiation, as
well as suppressing effector function [110]. Of note, during chronic viral infections, the
expression of CD127 and CD62L markers of normal memory CD8+ T cell differentiation
remained low [112], which could suggest that these cells do not receive the proper survival
signals as their CD127 (IL-7R) levels are low, or these cells do not migrate to the lymph node
where they interact with DCs that can also supply survival signals.

Expert commentary & five-year view
Understanding the mechanisms involved in the generation and survival of memory T cells is
of fundamental importance for the development of successful vaccines. The well-succeeded
vaccines stimulate long-term T-and B-cell responses and their maintenance is dependent on
the preservation of long-lived memory T and B cells. In chronic infection, such as HCV and
HIV the correlates of protection are not fully known, but there is no doubt that memory T cells
constitute a major mechanism in controlling disease progression. Badr et al. have indicated
that the preservation of long-lived memory T cells could correlate with a better protection
against HCV infection [116]. In addition, Esser et al. have proposed that understanding the
mechanisms by which long-lived cellular immune responses are generated following
vaccination should facilitate the development of safe and effective vaccines against emerging
diseases, such as malaria, TB, HIV and HCV [117]. Moreover, in the context of HIV infection,
elite controllers as well as long-term nonprogressors exhibit a sustained protection against HIV
disease progression because their TCM cells are capable of self-renewing and of differentiating
into efficient TEM cells. In this regard, it is of high importance to develop a strategy to increase
the expression of the survival factors enumerated previously, such as p-Foxo3a, IGF and
osteopontin, and cytokines, such as IL-7 and IL-15. Moreover, the triggering of survival
pathways as for AKT pathway [118] and Wnt [119] should also be considered as a strategy to
enhance memory T cells. Along with increasing survival signals, it is essential to decrease or
dampen factors that are involved in cell death or dysfunction in HIV infection, such as PD-1
receptor, Bim [120] and CTLA-4 [121]. Therefore, administration of a cocktail of molecules
including adjuvants that trigger signal transduction pathways upstream of FOXO3a and/or
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siRNA that block ex vivo the inhibitory signals of survival seems to be the promising challenge
in the future, in order to slow down HIV disease progression and improve the development of
human vaccines for chronic infections and tumors.

Key issues
• Long-term maintenance of the memory T-cell response is the hallmark of immune

protection.
• Upon contact with cognate MHC–peptide complexes on antigen-presenting cells,

the daughter cell adjacent to the immunological synapse gives rise to an effector
cytotoxic T lymphocyte; whereas, that derived from the distal pole differentiates
into a long-lived memory T cell.

• Naive T cells and central memory T cells differentiate into all subsets of memory
T cells, including transitory stages of differentiation; however, effector memory
T cells do not differentiate into central memory T cells.

• It is of high importance to develop strategies to increase the expression of survival
factors, such as p-Foxo3a, IGF and osteopontin, and cytokines, such as IL-7
and-15, in order to overcome T-cell death in the context of HIV infection.
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Figure 1. Suggested models for memory T-cell differentiation lineages
(A) Dedifferentiation model. Upon contact with cognate MHC–peptide complexes on APCs,
naive T cells become effector cells that are highly functional. These effector cells can
differentiate into TEM and later into TCM. (B) Progressive differentiation model. After antigen
activation, T cells differentiate directly into TCM then acquire a TEM phenotype. (C) Signal
strength model. This model is based on the strength of the signal generated upon the interaction
between naive T cells and APCs. The strength of the signal is represented by the thickness of
the arrows. The cross represents the cells that die by neglect (single cross) or by activation-
induced cell death (double cross) upon triggering with a very strong signal. (D) Asymmetric
division model. In this model the daughter cell adjacent to the immunological synapse gives
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rise to an effector cytotoxic T lymphocyte, whereas that derived from the distal pole
differentiates into a long-lived memory cell. APC: Antigen-presenting cell; E: Effector cell;
TCM: Central memory cell; TEM: Effector memory cell; Transitory: Intermediate transitory
stages of memory cell.
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Figure 2. Schematic model for TCR-coupled signaling during asymmetric division
The first two daughter T cells display phenotypic and functional indicators of being
differentially fated toward effector and memory lineages. The numbers of arrows indicate
levels of expression.
APC: Antigen-presenting cell; TCR: T-cell receptor.
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Figure 3. TCR and cytokine signaling leads to FOXO3a phosphorylation and drives the survival
of CD4+ central memory T cells
T-cell receptor and γ cytokine (IL-2 and IL-7) signaling induces FOXO3a phosphorylation,
thereby preventing the transcription of proapoptotic molecules, such as FasL and Bim;
moreover, γ-c cytokines allow the activation of STAT5a and the concomitant induction of
several antiapoptotic molecules (Bcl-2, PIM-1 and PIM-2). IGF, TCR and osteopontin mediate
their cellular effects by activating AKT; whereas, the chemokine receptor CCR5 mediates its
effect through the MAPKs ERK, p38 and JNK. TGF-β induces translocation of SMAD-4 and
SMAD2/3 proteins to the nucleus where they interact with FOXO3a to induce its transcription
activity.
TCR: T-cell receptor.
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Table 1
Enrichment markers for human memory T-cell subsets.

Marker Expression enriched
in subsets of:

Protein
superfamily

Ref.

Cluster of differentiation others molecules

CD11a (LFA-1) TEM, TCM Integrin [122]

CD11b* E Integrin [123]

IL-15Ra TCM, TEM, E [46,124]

CD25 (IL-2Ra) E [1,46]

IL-2/15Rb N, TCM, TEM [38,125]

CD27 N, TCM TNF receptor [123]

CD28 N, TCM Immunoglobulin like [123]

CD44* E, M Cartilage link protein [1,126,127]

CD45RA‡ N, E PTP receptor [1,123]

CD45RO‡ E, TCM, TEM PTP receptor [1]

CD49d* E, TEM Integrin [98,123]

CD56 E, M Immunoglobulin like [128,129]

CD57 E [123]

CD62L N, TCM C-type lectin [1,127]

CD69 E C-type lectin [1]

CD95 (Fas) E, TCM, TEM TNF receptor [123,130]

CD95L (FasL) E, TCM, TEM TNF [123,130]

CD127 (IL_7Ra) TCM, TEM [124]

CD137 (4–1BB) E TNF receptor [131]

CD154 (CD40L) E TNF [132]

CD134 (OX-40) E TNF receptor [133]

CD152 (CTLA-4) E Immunoglobulin like [134]

Chemokine receptors

CCR3 TEM GPCR [28–31,135]

CCR5 TEM, E GPCR [1,28–31,135–138]

CCR6 E, TCM GPCR [1]

CCR7 N, TCM GPCR [1]

CCR8 M GPCR [135]

CXCR3 E, M GPCR [1,135,138]

CXCR4 N, M GPCR [1,136]

Others

ICOS E Immunoglobulin like [139]
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Marker Expression enriched
in subsets of:

Protein
superfamily

Ref.

Ly6c M [1]

PD-1 TCM, TEM [113,140]

PNA ligand* E, M O-glycan [141]

1B11 ligand* E O-glycan [142]

*
Markers established for murine T cells only.

‡
CD45RA and CD45RO are isoforms of the CD45 molecule.

E: Effector cell; GPCR: G protein-coupled receptor; M: Memory phenotype cells; N: Naive; PTP: Protein tyrosine phosphatase; TCM: Central memory
T cell; TEM: Effector memory T cell.
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