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Abstract
Early detection of person-to-person transmission of emerging infectious diseases such as avian
influenza is crucial for containing pandemics. We developed a simple permutation test and its refined
version for this purpose. A simulation study shows that the refined permutation test is as powerful
as or outcompetes the conventional test built on asymptotic theory, especially when the sample size
is small. In addition, our resampling methods can be applied to a broad range of problems where an
asymptotic test is not available or fails. We also found that decent statistical power could be attained
with just a small number of cases, if the disease is moderately transmissible between humans.
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1. Introduction
Most emerging infectious disease pathogens in humans cross from their natural zoonotic
reservoir to human populations where early mutated, reassorted or recombined forms begin to
spread from person-to-person [Antia et al. (2003)]. Examples include human
immunodeficiency virus, monkey pox, severe acute respiratory syndrome and pandemic
influenza. Currently, a highly pathogenic avian influenza strain (H5N1) has been spreading
from poultry to humans, mostly in Southeast Asia, with possible limited human-to-human
spread through close contact in Indonesia [Butler (2006)]. A concern is that this virus could
cause a large scale pandemic as it becomes more adapted to human-to-human transmission.
Real-time surveillance provides limited information on small clusters of human cases in terms
of symptom onset times and physical location. It is critical to answer two questions in real
time: 1. Is the infectious agent spreading from person to person? and 2. If it is, how transmissible
is it? The first question is novel and, to our knowledge, has not been addressed in the statistical
literature. The second question is an estimation problem, and various statistical methods using
household data are applicable, such as the models based on observed final infection status
[Longini and Koopman (1982), Becker and Hasofer (1997), O'Neill and Roberts (1999)] and
those based on a discrete-time sequence of symptom onset [Rampey et al. (1992), Yang,
Longini and Halloran (2006)]. Our major goal in this paper is to answer the first question, but
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an estimation method is needed for this goal. We base our approach on that in Yang, Longini
and Halloran (2006).

The statistical questions hinge on inference about the transmissibility of the infectious agent.
The basic reproductive number, R0, is the fundamental measure of the transmissibility of an
emerging infectious agent. Given that the emerging infectious agent is transmissible, estimates
of R0 will generally be small and are not very informative. In addition, estimation of some
epidemic characteristics such as secondary attack rates (SAR) and R0 heavily relies on the
specification of a correct transmission model. When there is no person-to-person transmission,
estimates of these characteristics may be nonzero, but are not meaningful. Therefore, a test of
the existence of person-to-person transmission can provide a solid ground for parameter
estimation. Specifically, one would like to test whether the person-to-person transmission
probability, no matter how it is defined, is 0. As a probability always takes values from 0 to 1,
the boundary value 0, which is a nonstandard condition, imposes an immediate challenge,
because the null distribution of standard statistics, based on which tests are performed, are
generally difficult to track. Although statisticians have discussed asymptotic tests for a limited
set of scenarios [Moran (1971), Self and Liang (1987), Feng and McCulloch (1992)], more
often such an asymptotic null distribution is not available for a specific case. Furthermore, the
validity of asymptotic tests depends on relatively large sample sizes, which may compromise
the power of such tests to detect person-to-person transmission if applied to a small sample
size, such as those generated by avian influenza. These challenges motivate our investigation
in exact rather than asymptotic testing methods.

2. Methods
The data structure we usually observe is a sequence of symptom onsets and associated cluster
information, for example, at what time a symptom onset occurred in which household. To
construct a probability model with a reasonable level of complexity from the observed data, it
is necessary to make basic assumptions about the natural history of the disease and the
transmission mechanism. We assume that the incubation period is the same as the latent period,
but other assumptions could be made about the relation of the two periods. We make the
following additional assumptions about the disease. Any newly infected person remains
asymptomatic over a period of δ days (the incubation period) before symptom onset, where
δ is a random quantity with a distribution of g(l) = Pr(δ = 1), l = δmin, δmin + 1, …, δmax. We
denote by δmin and δmax the minimum and maximum durations (in days) of the latent period.
Upon symptom onset, the person becomes and remains infectious over a period of η days
(infectious period), where η is also a random quantity with a distribution f (l) = Pr(η = l), l =
ηmin, ηmin + 1, …, ηmax. Similarly, ηmin and ηmax are the minimum and maximum durations
of the infectious period. In this paper our method requires pre-specifying g(l) and f (l).

We consider the dynamic of a community-based epidemic on a day-by-day basis. We assume
that the whole community is exposed to some external source with a constant level of infectivity
for S days. Such an external common source takes into account all possible channels, such as
exposure to infected animals, through which the disease can be introduced into the community.
Let b be the probability that a susceptible person in the community is infected by the common
source during one day of exposure. The probability of infection by the common source
throughout the S-day exposure period is called the community probability of infection (CPI)
and is given by 1 − (1 − b)S [Longini and Koopman (1982)]. Once the disease is introduced
into the community, transmission between people may occur through contacts. There are
various types of contacts one can define. We define a contact as all possible interactions during
one day that can potentially transmit the disease from an infective person to a susceptible
person. We consider two levels of contacts: close contacts between two persons who live in
the same household and casual contacts between two persons who live in different households
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but may make contact in the community. We denote by p1 the daily probability of transmission
with a close contact, and by p2 with a casual contact.

With the above setting, we can construct a likelihood and obtain the maximum likelihood
estimates (MLEs) for the unknown parameters (b, p1 and p2) as given in the Appendix. Two
quantities related to transmission probabilities that we would also like to estimate are the SAR
and R0. The SAR is defined as the probability of infection if a susceptible is exposed to an
infective during his or her infectious period. Corresponding to the levels of contact, there are
two types of SAR defined as SARk = Σl f (l)(1 − (1 − pk)l), k = 1, 2. SAR1 is the SAR within
households and is of more epidemiological interest than SAR2. The basic reproductive number
refers to the expected number of people a typical infective person can infect among a large
susceptible population. Here we are interested in the expected number of people that an
infective person can infect given that he or she is the first infected person in this community.
We refer to this as the local reproductive number R. Estimates of the local R cannot be
generalized to a broader context because of the potential selection bias. The clusters are often
selected based on a number of cases and may represent higher R0 than in the general population.
For a community of N households with a uniform household size M, we have R = (M − 1) ×
SAR1 + (N − M) × SAR2.

Nonzero estimates of p1 or p2 do not necessarily imply that their true values are nonzero. In
addition, construction of valid 95% confidence intervals for the estimates of transmission
probabilities is difficult when their true values are 0's. Therefore, a valid test of the hypothesis
p1 = p2 = 0 would be of great public health interest. A formal statement of the hypothesis test
is

where ℋ0 is the null hypothesis and ℋ1 is the alternative hypothesis.

A natural choice of test statistic is the likelihood ratio statistic

(1)

where the numerator is the maximum likelihood (ML) when we restrict p1 = p2 = 0, and the
denominator is the ML without such restriction, both conditioning on observed symptom onset
times t̃i (t̃i = ∞ for uninfected individuals). Explicit expression of the likelihoods are given in
the Appendix. The likelihood ratio statistic asymptotically follows a Chi-square distribution
with 2 degrees of freedom when ℋ0 is true, if all regularity conditions hold for this probability
structure [Lehmann (1999)]. However, two nonstandard conditions are present in our case.
One is that the hypothesized parameter values under testing are boundary. As mentioned before,
the asymptotic null distribution is generally difficult to track when boundary values are to be
tested. Self and Liang (1987) discussed asymptotic distributions of the likelihood ratio statistic
for some settings of boundary parameters, but our case is not one of them. The other
nonstandard condition is that the parameters to be tested affect the domain of observable data.
When p1 = p2 = 0, infections are confined to the S days with exposure to the common infective
source. Therefore, no symptom onset can happen after day S + δmax. When p1 ≠ 0 or p2 ≠ 0,
the domain of the observable data is much larger. No valid asymptotic test exists when this
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nonstandard condition is present, unless we only use the data up to day S for testing at the price
of losing some information.

Resampling methods have been widely applied to hypothesis testing, especially in the recent
decade because of their easy implementation with modern computational capacity. While
employing less stringent model assumptions, these methods can attain the same level of
statistical power as standard tests [Hoeffding (1952), Box and Andersen (1955)]. Permutation
tests (or randomization tests) have been well developed in the setting of two-sample
comparison and ANOVA [Fisher (1935), Pitman (1937), Welch (1990)]. For the boundary
problem with parameter values specified by ℋ0, the bootstrap was used in combination with
the likelihood ratio statistic to test the number of components in mixture models [McLachlan
(1987), Feng and McCulloch (1996)]. We propose two approaches, a simple permutation test
and a more refined one, for the problem of testing the person-to-person transmission
probability. These resampling-based methods do not suffer from the two nonstandard
conditions mentioned above, as shown by a simulation study. When the observed data are truly
generated from ℋ0, we can reassign all of the observed symptom onset days (and associated
infection status) to a different collection of individuals, and every such rearrangement is equally
likely with the same likelihood L0. The empirical distribution of the test statistic calculated
from permuting symptom onset days across the population can then be used to approximate
the null distribution under ℋ0. This simple permutation test can be refined by varying symptom
onset days of infected individuals in any given permuted data while keeping the likelihood
L0 under the null hypothesis unchanged. The refined permutation test resamples data points
from a much larger sampling space as compared to the simple permutation test. Technical
details concerning development of the two resampling methods can be found in the Appendix.

We first use simulations to verify the validity of the resampling methods by comparing them
to the asymptotic test for a simpler scenario with only b and p1, that is, person-to-person
transmission can only happen within households. For this two-parameter setting, Self and Liang
(1987) showed that λ will asymptotically follow a mixture distribution of  and  with equal
mixing probability. Only data up to day S are used for such comparison with the asymptotic
test. We found that the refined permutation test has the best performance in terms of preserving
type I error at the pre-specified level and yielding higher statistical power when population
size and the number of cases are small. Results and discussion for the simple scenario are
provided in the Appendix as well. Then we use simulations to investigate the performance of
the refined permutation test for the scenario with three parameters: b, p1 and p2.

Computing λ involves calculating likelihoods under two different models, the one with
restriction of parameters conforming to ℋ0 is the null model, and the other one without any
restriction is the full model. For a realized epidemic, one of the two models may not be
admissible (or possible). For example, when the minimum interval between any pair of
consecutive cases is larger than the maximum duration of the latent period, no infection can
be possibly attributed to person-to-person infection; thus, only the null model is admissible.
On the other hand, when there is any case on or after the day S + δmax, where δmax is the
maximum duration of the latent period, only the full model is admissible because the common
source is infective up to day S. When only the null (full) model is admissible, the p-value for
that epidemic is assigned 1 (0). Resampling-based tests are performed only when both models
are admissible. Checking admissibility can help avoid nonconvergence problems when
maximizing likelihoods.

3. Results
For simplicity, we simulate epidemics over a community composed of 100 households, each
of size 5. We let the exposure to external common source last S = 30 days, and let the epidemic
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exhaust itself. We do not introduce initial cases to start the epidemic, but let the common source
initiate infection. Simulation runs with zero infections were discarded. We simulate epidemics

based on , and , and these distribution are correctly specified by
the methods that we evaluate. All p-values presented in this section are obtained by the refined
permutation test, but simulations show that the simple permutation method gives similar results
under the same population and parameter settings as discussed here, except that it tends to be
too conservative about preserving type I error for extremely small b.

As p2 is of limited interest, we fix it at 0.00005 (SAR2 = 0.0002), and vary b from 0.0002 to
0.002 (CPI from 0.006 to 0.058) with a step of 0.0002. We vary p1 from 0.004 to 0.046
(SAR1 from 0.016 to 0.17) with steps chosen specific to b so as to yield power values in the
range of (0.6, 1.0). All tests are performed at the level of 0.05, that is, we intend to have type
I errors of no more than 5% when p1 = p2 = 0. An epidemic curve of a sample run for b = 0.001
(CPI = 0.03) and p1 = 0.014 (SAR1 = 0.055) is displayed in Figure 1, with each block
representing a symptomatic case. Cases from the same household are filled with the same color.
A pattern is evident that cases in the same household tend to cluster together in time. The CPI,
R and SAR given in the figure are based on the true parameters, but they could be estimated
from the data as well. Results based on 2000 simulations and 2000 permutations for each test
are presented in Table 1. The first row where p1 = p2 = 0 gives type I errors for various values
of b, from which it is observed that type I errors are all preserved at the specified level. As
expected, larger p1 yields higher power for fixed b; similarly, larger b also yields higher power
for any given p1. Surprisingly, when there are as few as a total of only seven cases, it is still
possible to have 80% power with a moderate p1 (SAR1 = 0.14), which means that person-to-
person transmission can still be detected even when there is a very limited number of cases.
This finding could be very useful as most avian influenza epidemics in humans in recent years
have a scale of eight total cases or fewer. Of interest as well is that all of the R values are below
1, as seen from the last column of Table 1.

Figure 2 illustrates the information in Table 1, where power levels are shown in different colors
and symbols with b and p1 as the horizontal and vertical axes, respectively. The 80% power
contour curve obtained by Loess smoothing lies between green circles and red downward
triangles. This figure clearly displays the trend of such a contour curve, descending sharply at
b = 0.0002 (CPI = 0.006) and becoming flat around p1 = 0.008 (SAR1 = 0.032) as b increases
to 0.0014 (CPI = 0.041). Let Nidx denote the mean number of index cases and Ntot the mean
total number of cases, averaging over all simulated epidemics. As only the number of cases
are observable in real epidemics, we replace b and p1 with Nidx and Ntot as the axes in Figure
3. Not surprisingly, the underlying 80% power contour curve looks more linear, since roughly
Ntot ≈ (1 + R)Nidx. While R depends on p1, the range of 1 + R is relatively narrow, about [1.2,
1.3] at b ≥ 0.0006, and becomes narrower as b increases. The figure also indicates that the
power to detect person-to-person transmission is jointly determined by Nidx and Ntot, instead
of either alone. We fitted a linear regression between the complementary log–log transformed
power values and selected transformations of Nidx and Ntot, and found the following empirical
formula:

which explains 99% of the variation in power. Figure 4 plots the simulated vs. fitted power
values, where most points fall close to the diagonal line, indicating that the empirical formula
gives decent prediction, except for one point at b = 0.0002 and p1 = 0.03, where the predicted
power, 0.71, is somewhat lower than the simulated power, 0.75. Such an empirical formula
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could be used to predict power levels at various values of Ntot and Nidx for which simulations
are not performed. The coefficients in the empirical formula will likely change for different
parameter settings, and the linearity may not always hold.

To investigate how sensitive the statistical power of the permutation test is to the distribution
of the latent period, we vary the true mean duration from 1.5 to 14 days, while keeping g(l) a
uniform distribution over three days. These distributions of the latent period are correctly
specified in the models. We expect to see an increase in power, because increasing the latent
period is essentially increasing the generation time between successive cases [Fine (2003)].
To look at the trend of changes in power when b is small, medium and large, simulations were
done under three parameter settings: (b = 0.0004 [CPI = 0.012], p1 = 0.014 [SAR1 = 0.055]),
(b = 0.001 [CPI = 0.03], p1 = 0.006 [SAR1 = 0.024]) and (b = 0.002 [CPI = 0.058], p1 = 0.004
[SAR1 = 0.016]). The values of p1 are chosen to ensure that the initial power is below 0.8 and
has the potential of reaching or exceeding 0.8. Results are displayed in Figure 5. Overall, power
increases, and the rate of increment decreases, as the mean duration of the latent period (and
thus the generation time) becomes longer. However, the rate of increment is higher at larger
values of b, which means that the power of the refined permutation test is more sensitive to the
distribution of the latent period when b is large. Such sensitivity does not compromise the
usefulness of the permutation test, since our simulation study is performed under the setting
with the minimum level of power. For avian influenza, the mean latent period may be as long
as 14 days, and the power will very likely be higher than in our simulation setting.

4. Discussion
We have proposed a simple permutation method and its refined version to test the presence of
person-to-person transmission within or between households. Using simulations, we have
shown that the resampling methods are comparable to or outcompete the standard asymptotic
testing method where such asymptotic method is applicable. More importantly, the resampling
methods remain valid in many settings where the asymptotic method is not applicable or not
available yet. We have shown that, for an infectious disease with relatively rare incidence,
person-to-person transmission could still be detected with decent power even if the total
number of cases is as few as seven or eight, given that the transmission probability is high and
the population is relatively large. We have studied the statistical power of the resampling
methods under the model with two levels of contacts: within households and between
households. The methods could be generalized to models with additional clustering groups
such as schools and work places.

We have assumed that the latent and incubation periods are identical and that the distributions
of the latent and infectious periods are known. Other assumptions about the relation between
the latent and incubation periods could be made, but may lead to different inference procedures
and conclusions. As the presence of the infectious period implies nonzero transmission
probabilities, the actual alternative hypothesis we are testing is p1 > 0 or p2 > 0 and η ∼ f (l),
that is, f (l) is a part of the parameters, but we fix it rather than estimate it. Estimating g(l) and
f (l) solely from a sequence of symptom onsets is an ongoing research topic and is only practical
for a relatively large number of cases [Wallinga (2004), Cauchemez (2006)]. To use our method
in real epidemics, one could choose a range of plausible settings of g(l) and f (l), and any setting
yielding a significant p-value is a warning sign of transmission between human beings.
Appropriate adjustment for multiple testing could be used, but one should be aware that these
tests are highly correlated as they are essentially based on the same data set, and a Bonferroni-
type adjustment is likely to be over-conservative.

In our simulation study the likelihood is calculated up to day T − δmax for subjects who do not
show symptoms up to day T, an incomplete adjustment for right-censoring of infection status.
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A complete adjustment should take into account that infection might have occurred after T −
δmax and the latent period extends over T. Complete adjustments may be important for real-
time analysis, especially when T ≫ δmax does not hold. In our simulation setting, T ≫ δmax
approximately holds, and the bias in parameter estimates induced by right-censoring is minimal
according to the simulation results in Yang, Longini and Halloran (2006).

When conducting the test, maximum likelihood estimates of b, p1 and p2 are obtained. From
these, estimates of other quantities such as the local reproductive number R and SAR can be
derived. We note that, fixed at a value as small as 0.00005 (SAR2 = 0.0002), p2 is generally
underestimated due to limited information and, consequently, R is also biased downward.
Based on simulation results (not shown), the bias decreases as the true value of p2 or size of
the data increases.

We have assumed that each susceptible individual is exposed to an external common infectious
source up to day S. One may argue that such exposure may only be reasonable for a subset of
the population in some situations. Our model can be applied to such situations as well, but only
when there is no infected case in the subpopulation which is not exposed to the common source;
otherwise, person-to-person transmission exists for sure. In addition, the exposure level to the
common source can be assumed as varying from household to household, but permutation
should be restricted within households and inference must be supported with sufficient data.

In real epidemics, statistical inference may be very sensitive to the specification of S.
Particularly, mis-specifying a smaller value for S will likely increase the type I error, as cases
that appear after S + δmax must be accounted for by intensive person-to-person transmission.
If no relevant information is available for determining S, assuming S ≥ T will yield the most
conservative p-value. Changing the value of S may affect the admissibility of models,
depending on the specification of g(l) and f (l). To apply our methods, it is necessary to ensure
that both the null and the alternative models are admissible under these assumptions.
Additionally, it may be difficult to identify a clear cut point for the common source exposure,
and how to impose the censoring mechanism on S without compromising the test performance
is open to further research.

Early detection of person-to-person transmission from limited data is crucial in containing
pandemics of emerging infectious diseases such as avian influenza, and our work provides an
effective tool for such evaluation. Our method requires not only a time sequence of symptom
onsets, but also data on membership of households, whether or not they have cases. We believe
that such data requirements are reasonable, and that the information could be collected by local
health authorities. When only households with cases are available, selection bias needs to be
addressed to make the test valid, which is a topic for further investigation.

Appendix

A.1. Statistical model
Assume that the epidemic starts on day 1 and stops by day T in a population of size N. Let t̃i
be the symptom onset day for an infected person i. The probability that an infective family
member j infects subject i on day t, given that subject i is not infected up through day t − 1, is
expressed as

(2)
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where I (·) is the indicator function (1: true, 0: false), Hi is the set of people in the same
household with person i, and f (l) is the distribution of the infectious period. The probability
that subject i escapes infection from all infective sources on day t, conditioning on that subject
i is not infected up through day t − 1, is then given by

(3)

Because the exact infection date is unobservable, we assume that the duration of the latent
period δ is distributed as g(l) = Pr(δ = l), l = δmin, δmin + 1, …, δmax, so that we can construct
a likelihood for person i as the following:

(4)

The overall likelihood L(b, p1, p2|t̃i, i = 1, …, N) = ∏i Li (b, p1, p2|t̃j, j = 1, …, N) for the full
model is maximized with respect to b, p1 and p2 to obtain the MLEs of the three parameters,
and from these, the estimates of CPI, SARs and R. For notational convenience, we suppress
the information about household membership that should appear behind the condition symbol
in L. When there is no person-to-person transmission, that is, p1 = p2 = 0, (3) reduces to

Let L0(b|t̃i, i = 1, …, N) denote the likelihood for the null model. The test statistic is defined
as in (1).

A.2. Null distribution
A.2.1. Resampling distribution

Consider the observed data set as a sample point from the space of all possible infection status
and symptom onset times that could occur based on the given population and parameter setting.
There exists a class of sample points, which we refer to as the likelihood equivalence class,
that have the same likelihood L0(b|t̃i, i = 1, …, N) as the observed data under the null hypothesis
ℋ0 : p1 = p2 = 0. If the null hypothesis is true, each sample point in the class occurs with equal
probability. That is, if such a class is identifiable, we can obtain the null distribution of the test
statistic by resampling sample points from the class with equal probability. Clearly, sample
points obtained by permuting the observed infection status and associated symptom onset dates
across the population belong to the likelihood equivalence class. Generally, the whole
likelihood equivalence class is difficult to identify, and the use of permuted samples is

straightforward and fruitful. Let  be the kth permuted sample of (t̃1, t̃2, …,
t̃N), and let λ[k] be the corresponding test statistic, k = 1, …, M. Then the empirical distribution
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of λ[k] over all k can serve as the null distribution of λ, and the p-value is given by

.

In our situation, however, it is possible to identify a subset of the likelihood equivalence class
which is much larger than and that contains the permuted samples. The idea is more clearly
illustrated in the situation without the latent period. Suppose that infection times are observable,
and let t̃i denote the infection time instead of the symptom onset time for now. Then, the
likelihood for the null model is given by

(5)

where D is the set of Ñ infected subjects and D ̅ the set of uninfected subjects. Therefore, one
can randomly re-arrange the infection status and infection times while keeping the likelihood
value unchanged, as long as the sum of infection times (Σi∈D t̃i) and the number of infections
(Ñ) remain the same. Each re-arrangement is a sample point in the likelihood equivalence class.
To keep Ñ unchanged, a permutation of the infection and associated symptom status across the
population would suffice, and we refer to it as the initial stage of the resampling procedure.
The next stage, which we call the refinement stage, is to draw a sample point with equal
probability from all possible distinct re-arrangements of infection times, given the infected
cases are fixed. If the refinement stage is not carefully planned, the principle of equal
probability can be easily violated, and the consequence is incorrect type I error and/or
insufficient statistical power. The problem can be re-stated as sampling with equal probability
from all distinct arrangements of n balls (sum of infection times) into m boxes (infected cases),
each box with a fixed volume of v (S). Let W(n, m, v) be the number of all possible distinct
arrangements for such condition. This is a recursive system that can be solved by

(6)

with the stopping rules W(n, 0, v) = 0, W(0, m, v) = 1 and W(n, 1, v) = I (n ≤ v). An arrangement
can be sampled with equal probability through the following procedure:

1. Start with the box labeled i = 1, and there are N1 = n balls to be distributed.

2. In step i, let Ni be the number of balls not distributed yet. Randomly choose an integer
ni from (0, 1, …, r) according to the weights W(Ni − k, m − i, v), k = 0, 1, …, r, where
r = min(Ni, v), and assign ni balls to box i. Let Ni+1 = Ni − ni, and go to box i + 1.

3. In the last step, distribute all the remaining Nm balls to box m.

Nm will not exceed v for sure, because in step m − 1 any arrangement resulting in Nm > v has
a weight of 0 and thus is excluded from sampling. Hence, this sampling procedure has the
advantage of looping over all boxes only once.

This sampling scheme can be adapted to situations with a latent period, but symptom onset
times instead of infection times are subject to re-arrangements. The main deviation from the
above ideal situation is that, because some cases may have special exposure history, re-
arrangement of their symptom onset times will likely change the whole likelihood, and thus,
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they should be excluded from the refinement stage. One example is seen in simulations, where
we let the exposure to a common source of infection last from day 1 to day S, and let the latent
period vary from δmin to δmax days. For any case i with symptom onset time t̃i > δmax, there
are δmax − δmin + 1 days in which infection could happen, that is, any day between t̃i − δmax
and t̃i − δmin. Symptom onset time of case i could be re-arranged from day δmax + 1 to day S
+ δmin without changing the likelihood of the null model, as long as the sum of symptom onset
times are not changed. However, there may be cases with symptom onset between day δmin +
1 and day δmax, for whom the number of days in which infection could happen is less than
δmax − δmin + 1. Re-arrangement of symptom onset times of these cases will very likely change
the likelihood because the number of potential infection days will also change. Similarly, cases
with symptom onset after day S + δmin should be excluded from the refinement stage as well.

A.2.2. Asymptotic distribution
While the asymptotic null distribution of λ is not readily available for testing ℋ0 : p1 = p2 =
0, it is available for testing ℋ0 : p1 = 0 if we fix p2 = 0, that is, infection is only possible by
the common source or within-household contacts. In this two-parameter setting, the escape
probability for person i on day t given the existence of person-to-person transmission is

and the test statistic is

(7)

Self and Liang (1987) showed that  under ℋ0 : p1 = 0 in such a model, where
 is constant 0 and  is a Chi-square random variable with one degree of freedom.

A.3. Simulation study in the two-parameter setting
We compare the resampling test to the asymptotic test via a simulation study for the two-
parameter setting. Only data observed up to day S, the last day of exposure to the common
infective source, are used for testing to make the comparison fair, because the asymptotic test
cannot handle data beyond day S + δmax. The resampling method has two variations, one
involving only the initial permutation stage, and the other having both stages. The former is
referred to as the simple permutation test, which is widely applied to many problems; and the
latter is called the refined permutation test in this paper to make a distinction between these
two variations. We shall show through simulations that the refined permutation test has some
advantages over both the simple permutation test and the asymptotic test for small sample sizes,
and that the three tests tend to be equivalent for large sample sizes. By large sample size, we
mean both a relatively large population and a large number of cases of the disease.

We first present simulation results in Table 2 for a small population composed of 4 households,
each of size 5. Values of b and p1 are chosen to cover a full range of statistical power levels.
When p1 = 0, the reported values are type I errors. Clearly, the refined permutation test
preserves type I error at the specified level of 0.05 for all settings of b. The asymptotic test is
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the most conservative in rejecting the true null hypothesis by having the smallest type I errors
when there are 10 or fewer cases. Surprisingly, the simple permutation test is also conservative
when there are only few cases, but less so than the asymptotic test. When b is as large as 0.03
(CPI = 0.6), all methods preserve type I error equally well. In terms of statistical power, the
refined permutation test is superior to both of the other two methods. The simple permutation
test, however, has the lowest power when there is a fair number of secondary (nonindex) cases,
especially when both b and p1 are large.

In Table 3 the population size is increased to 500 with 100 households. Similar to Table 3, we
observe that the asymptotic test is conservative with the type I errors much lower than 0.05.
When p1 is relatively small, that is, at the second row for each level of b, the asymptotic test
is not as powerful as the resampling methods. The three methods tend to have the same
performance when p1 increases. Again, the refined permutation method seems to be the best
choice in these circumstances.
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Fig. 1.
A sample epidemic curve for b = 0.001, p1 = 0.014 and p2 = 0.00005. Cases from the same
household have the same color.
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Fig. 2.
Power to detect person-to-person transmission for different settings of b and p1, with p2 fixed
at 0.00005. Results are based on 2000 simulations. 2000 permuted samples were drawn for
each permutation test. The dashed line is the 80% power contour line obtained from Loess
smoothing.
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Fig. 3.
Power to detect person-to-person transmission plotted by the number of index cases versus the
total number of cases. Results are based on 2000 simulations. 2000 permuted samples were
drawn for each permutation test. The dashed line is the 80% power contour line obtained from
Loess smoothing. The solid line is the lower bound (0) of power, where the number of index
cases equals the total number of cases.
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Fig. 4.
Plot of simulated and fitted values of power from the empirical formula

. A good formula should have all
the points falling close to the diagonal line.
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Fig. 5.
Trend of changes in power as mean duration of the latent period increases for different settings
of b and p1. Distributions of the latent period are uniform over three days and correctly specified
in the models. Results are based on 2000 simulations. 2000 permuted samples were drawn for
each permutation test.
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