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Abstract
A new approach for constructing deformable continuous medial models for anatomical structures is
presented. Medial models describe geometrical objects by first specifying the skeleton of the object
and then deriving the boundary surface corresponding to the skeleton. However, an arbitrary
specification of a skeleton will not be “Valid” unless a certain set of sufficient conditions is satisfied.
The most challenging of these is the non-linear equality constraint that must hold along the boundaries
of the manifolds forming the skeleton. The main contribution of this paper is to leverage the
biharmonic partial differential equation as a mapping from a codimension-0 subset of Euclidean
space to the space of skeletons that satisfy the equality constraint. The PDE supports robust numerical
solution on freeform triangular meshes, providing additional flexibility for shape modeling. The
approach is evaluated by generating continuous medial models for a large dataset of hippocampus
shapes. Generalizations to modeling more complex shapes and to representing branching skeletons
are demonstrated.
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1. Introduction
Medial representations (m-reps) (Pizer et al., 2003a; Joshi et al., 2002) and the more recent
continuous medial representations (cm-reps) (Yushkevich et al., 2006; Terriberry and Gerig,
2006) are deformable geometric models that describe anatomical structures by explicitly
defining the topology and shape of a structure’s skeleton and then deriving the geometry of
the structure’s boundary from the skeleton. Models are subsequently deformed to fit target data
by modifying the parameters defining the skeleton. Deformable medial modeling has been used
in a variety of medical imaging analysis applications, including computational neuroanatomy
(Styner et al., 2004, 2003b; Yushkevich et al., 2007, 2008), cardiac modeling (Sun et al.,
2008a), and cancer treatment planning (Stough et al., 2007; Crouch et al., 2007; Pizer et al.,
2005). The primary appeal of medial modeling is that it enables shape features derived from
skeletons to be used in statistical analysis, e.g., for comparing the shape of anatomical structures
between cohorts. Principal among these features is thickness, defined here as the distance
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between the skeleton and and boundary, a feature of great importance in neuromorphometry.
Other features, such as the curvature of the skeleton, can also be highly descriptive of the local
shape properties of an object. Another attractive feature of deformable medial modeling is the
ability to define a natural shape-based coordinate system over the interiors of structures, which
leads to natural applications in structure-specific normalization and statistical mapping
(Yushkevich et al., 2007, 2008).

Medial modeling should be distinguished from skeletonization (Kimia et al., 1995; Ogniewicz
and Kübler, 1995; Näf et al., 1996; Golland et al., 1999; Siddiqi et al., 1999b,a; Thompson et
al., 2003; Bouix et al., 2005), an approach where the skeleton is derived from the boundary
representation deterministically. The difference between skeletonization and medial modeling
is summarized in Fig. 1. Skeletonization has limited utility in morphometric analysis studies
because the number and configuration of the branches in the skeleton (commonly referred to
as branching topology) is highly sensitive to boundary noise. In the case of anatomical
structures, branching topology is likely to vary between subjects, requiring the skeleton to be
simplified (or pruned) prior to performing shape analysis. By contrast, deformable modeling
can assure that the topology of the skeleton representation remains the same for all subjects in
the study. The drawback of this approach is that the deformable medial models can only offer
an approximate representation of the underlying anatomical structures. However, in practice
the representation error is small in comparison to the errors associated with the segmentation
of anatomical structures in medical images (Styner et al., 2003a; Yushkevich et al., 2006).

The premise of continuous medial modeling is that the specification of the skeleton must be
given as a continuous manifold (or a set of manifolds) — or as a discrete mesh that can be
successively refined towards a continuous limit. The boundary derived from the skeleton by
inverse skeletonization should also be a continuous surface (or refinable towards a continuous
limit). Most importantly, the “actual” skeleton of this boundary surface should be the same as
the “synthetic” skeleton specified by the model. This last requirement leads to a set of non-
linear equality constraints than the synthetic skeleton must satisfy along curves that bound its
component manifolds, as well as a set of inequality constraints that the skeleton must satisfy
at every point (Damon, 2003, 2004). In deformable modeling applications these constraints
lead to severely over-constrained optimization problems because the number of points where
they must be satisfied is infinite (or at least, very large), while the number of coefficients (or
control points) defining the skeleton is finite and, preferably, small.

A number of solutions to addressing this challenge have been proposed. In (Yushkevich et al.,
2003), the authors adapted the shape of the domain on which the skeleton is defined so as to
force the equality constraints to hold along its boundary. This method is limited to single-
manifold skeletons and also presents difficulties for establishing correspondences between
models fitted to different instances of a structure. In (Yushkevich et al., 2006), skeletons were
defined as solutions of a Poisson partial differential equation (PDE) with a non-linear boundary
condition that incorporates the equality constraint. The advantage of the PDE is that it provides
a bijective mapping from a subset of a vector space to the space of synthetic skeletons satisfying
the equality constraint, allowing linear statistical analysis; but the approach has its limitations:
solving the non-linear Poisson equation is computationally expensive and the idea does not
extend to skeletons with multiple branches. More recently, Terriberry and Gerig (2006) used
a specially modified subdivision surface scheme to force local geometry near the edges of
skeletal manifolds to satisfy the equality constraint. The technique can handle medial
branching. One limitation of this approach is that it requires skeletons to be defined using
meshes with quadrilateral elements. By contrast, the method proposed in this work is
independent of the type of approach used to model skeleton manifolds. The underlying surface
representation can be based on harmonic basis functions, splines or subdivision surfaces with
triangular elements.
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The main contribution of this work is to use the biharmonic PDE Δ2u = f to create a high-
dimensional mapping from a parameter space that is a codimension-0 subset of Euclidean
space to the space of synthetic skeletons satisfying the required equality constraints. Unlike
the Poisson PDE used for this purpose in (Yushkevich et al., 2006), the higher-order biharmonic
equation can incorporate the equality constraints as linear boundary conditions, leading to a
simpler, more robust numerical problem. Furthermore, the mapping defined through the
biharmonic equation is not limited to single-manifold skeletons.

The paper is organized as follows. The necessary background on medial geometry and inverse
skeletonization is given in Sec. 2. The new approach based on the biharmonic equation is
presented in Sec. 3. Sec. 4 presents an evaluation of the method in a large hippocampus dataset
and shows examples of cm-rep models fitted to other brain structures. Sec. 5 includes
discussion and examples of the generalization of the PDE-based model to branching skeletons.

2. Background
This section summarizes some of the main properties of skeletons. Facts from medial geometry
are given without proof, and we refer the reader to Damon’s extensive work for a more
mathematical treatment of the subject (Damon, 2003, 2004, 2005).

2.1. Blum Skeleton Definition
In what follows, we use Blum’s definition of the skeleton (Blum, 1967), which was originally
given in two dimensions but has a three-dimensional equivalent that has been studied
extensively in the recent literature (Nackman, 1982; Vermeer, 1994; Giblin and Kimia, 2003,
2004; Pizer et al., 2003b; Damon, 2003, 2004, 2005).

There are several ways to define the Blum skeleton of an object: as the crest of the distance
transform from the boundary; as the shock set of the Eikonal PDE; or, as we do below, as the
locus formed by the maximal inscribed balls.

Definition 1—A closed bounded set ℴ ⊂ ℝ3 is called a geometric object if it is homeomorphic
to a ball in ℝ3 and if its boundary, denoted ∂ℴ, is a smooth generic surface. Following (Giblin
and Kimia, 2003), the term generic means devoid of singularities that can be removed by
applying a small perturbation to the surface.

Definition 2—A ball ℬ is called a maximal inscribed ball (MIB) in a geometric object ℴ if
ℬ ⊂ ℴ and there exists no ball ℬ′ ≠ ℬ such that ℬ ⊂ ℬ′ ⊂ ℴ.

Definition 3—The skeleton of a geometric object ℴ is the locus of points in ℝ3 × ℝ+ formed
by the centers and radii of all MIBs in ℴ.

The locus formed by the centers of the MIBs in ℝ3 is a Whitney stratified set (Damon, 2005),
i.e. a set formed by one or more manifolds with boundary connected along their boundaries.
We will refer to these manifolds as medial manifolds. We will use the term medial seam to
refer to portions of medial manifold boundaries that are shared by multiple medial manifolds,
and use the term medial edge to refer to the remaining, non-shared portions of medial manifold
boundaries. We will use the term radial scalar field to refer to the field formed by the radii of
the MIBs along the medial manifolds. A simple example of a branching skeleton is shown in
Fig. 2.

Giblin and Kimia (2004) prove that points that generically occur on skeletons of geometric
objects fall into five distinct classes, which are characterized by the order and multiplicity of
contact between the MIB and the object’s boundary: (1) points on the interior of medial
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manifolds, where the MIB is tangent to the object’s boundary at two points; (2) points on medial
edges, where the MIB is tangent to the boundary at one point and has third-order contact with
the boundary; (3) points on medial seams, where the MIB is tangent to the boundary at three
points; (4) points at seam-edge intersections; and (5) points at seam-seam intersections. Giblin
and Kimia (2004) also point out that the geometry of points at edges and seams of medial
manifolds is the limit case of the geometry of points on the interior of medial manifolds. For
example, one walks along the medial manifold towards a point on the medial edge, the points
of tangency between the object’s boundary and the MIB centered at one’s location will get
closer and closer to each other, collapsing to a single point once the medial edge is reached.

2.2. Skeleton-Boundary Relationship
The analytic relationship between the skeleton  of an object and its boundary ℬ can be
established on the basis of the mapping between the centers of MIBs and the points of tangency
between the MIBs and ℬ Every point on ℬ is associated with a single point on , since there
can only be one MIB tangent to ℬ at a given point. Conversely, every point on  is associated
with one, two or three points on ℬ, depending whether it lies on the medial edge, medial interior
or medial seam. The bitangency is the generic case, and the other cases are limit cases of the
bitangent MIB geometry.

Let b+ and b− denote the points of tangency between ℬ and a bitangent MIB with center m
and radius R. It can be shown (e.g., (Damon, 2004)) that b± can be expressed analytically in
terms of m and R, as follows:

(1)

where U± are the unit outward normal vectors to ℬ at the points b±. These normals are given
in turn by

(2)

where Nm is the unit normal of the medial manifold at m and ∇m R is the Riemannian gradient
of R on the medial manifold (Fig 3 gives an illustration of this geometry in 2D). Recall that
the centers of bitangent MIBs lie on the interior of medial manifolds in  (i.e., not on the edges
or seams); thus m and R are continuous and differentiate in the neighborhood of a bitangent
MIB.

Let us now consider the limit behavior of (2) as we approach the edges and seams of medial
manifolds. As noted above, the MIBs centered along medial edges are tangent to ℬ at a single
point. For ℬ to be continuous, this requires b− and b+ to collapse to a single point as the medial
edge is approached. That, in turn, requires the coefficient of Nm in (2) to be 0, leading to the
following condition:

(3)

A similar situation occurs at medial seams. The seam is shared by three medial manifolds, so
as we approach a point m on a medial seam, we have m1 → m, m2 → m, and m3 → m. For
the boundary to be continuous, the six MIB tangency points  must collapse to three
points:  and . This requirement can again be expressed in terms of
the gradient of R, as follows:
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(4)

where i = 1,2,3 and ⊕, ⊝ denote addition and subtraction modulo 3.

In addition to the three cases examined above, there are two special situations at seam-edge
and seam-seam intersections that can be treated as limit cases of corresponding conditions.
However, we do not deal with these situations in the current paper.

2.3. Inverse Skeletonization
In deformable medial modeling, models for anatomical structures are formed as follows: first,
a synthetic skeleton is defined as a manifold (or, in the branching case, a collection of manifolds)
with a scalar radius field; second, the boundary of the structure is derived from the synthetic
skeleton using relations (1) and (2); lastly, the parameters defining the synthetic skeleton are
modified to maximize the match between the model and the structure of interest (as Fig. 1
illustrates). Central to this scheme is the problem of inverse skeletonization: under which
conditions does a synthetic skeleton  syn happen to be the geometrical skeleton of some object
ℴ? It is easy to devise examples where inverse skeletonization fails, i.e., of synthetic skeletons
for which (1) and (2) give discontinuous or self-intersecting boundary surfaces (see Fig. 4 in
(Yushkevich et al., 2006)).

For single-manifold synthetic skeletons, the sufficient conditions for inverse skeletonization
are given in (Yushkevich et al., 2006, Theorem 1). These conditions consist of the nonlinear
equality relation (3) and several inequality constraints. From the point of view of continuous
modeling, the equality constraint presents a much greater challenge than the inequality
constraints. If the medial manifold in  syn is defined using a finite set of continuous basis
functions, there are as many degrees of freedom as there are basis functions, while there are
infinitely many points at which the equality constraint (3) must be satisfied. This leads to a
severely over determined system, which is the main challenge of continuous medial modeling.
For skeletons with multiple medial manifolds the situation is similar, with (4) becoming an
equality constraint that must be satisfied along medial seams.

3. Methods
3.1. Fundamental Problem of Continuous Medial Modeling

Continuous medial modeling relies on our ability to generate valid synthetic skeletons (those
satisfying the necessary equality and inequality constraints) and to perform gradient descent
optimization in the space of valid synthetic skeletons. More formally, we pose the fundamental
problem of continuous medial modeling in the following form: find a continuous differentiable
mapping from a co-dimension zero subset of ℝN onto the space of all synthetic skeletons
satisfying equality constraints (3) and (4).

This is a very general statement of the problem. It turns out it is sufficient to restrict our attention
to the radial part of the mapping, while allowing the mapping to preserve the medial manifolds.
Thus, in the single-manifold case, the problem becomes the following: given a medial manifold
m ∈ ℝ3, find a mapping from a co-dimension zero subset of ℝN onto the set of all radial fields
R defined over m that satisfy (3). As we show below, this problem has a solution. Furthermore,
the solution can generalize to branching skeletons, as we demonstrate in Sec. 5.3.
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3.2. Medial Modeling via the Biharmonic PDE
Let ∂m denote the boundary of m and let γ(s): [0, L) → ℝ3 be its parametric form, parameterized
by the arclength s, where L is the length of ∂m. Let Tγ(s) be the unit tangent vector along γ and
let ν(s) be the outward unit normal vector along γ (s), i.e., ν ⊥ Nm and ν ⊥ Tγ. Note that

where R,s and R,ν denote the partial derivative of R with respect to s and ν, respectively. This
expression allows us to rewrite the equality constraint (3) as

(5)

where the sign is negative because R increases in the inward direction from the medial edge.
The central idea of this paper is the observation that if we were to be given the value of R along
the edge γ, i.e.,

(6)

then, together, the specification (6) and the constraint (5) have precisely the form of the
Dirichlet boundary condition for a fourth-order PDE. This fact allows us to define R on the
interior of the medial manifold m as a solution of the fourth-order biharmonic PDE.

It turns out more convenient to define such a PDE not in terms of R itself, but in terms of
another function, φ = R2. Let ρ ∈ L2(m) be a two-dimensional scalar field on m and let τ ∈
L2 (∂m) be a one-dimensional scalar field on γ, such that τ > 0 and |dτ/ds| < 1 everywhere on
γ. Then let φ satisfy

(7)

where Δm denotes the Laplace-Beltrami operator (LBO) on the manifold m.

Note that the boundary conditions in this equation are simply the result of substituting
 into (6) and (5), respectively, and carrying out the chain rule. Provided that the solution

φ is non-negative everywhere on m, it is easy to verify that  satisfies the equality
constraint (3) on ∂m.1 Ensuring that φ > 0 is non-trivial: while the maximum principle for the

1Indeed, taking the square of the second boundary condition in (7), substituting  for τ and noting that

we get |∇mφ|2 = 4φ and, by the chain rule, |∇mR|2 = 1.
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biharmonic operator can give us a sufficient condition, this condition is too restrictive to use
in practice because it excludes a wide range of positive solutions. In practice, however, there
is no difficulty staying in the range of positive solutions in the course of deformable modeling.

The PDE (7) is a linear operator

The existence, uniqueness and stability of the first biharmonic equation (Glowinski and
Pironneau, 1979) ensure that the mapping φ = Ψ(ρ,τ) is defined everywhere on its domain, is
one-to-one, and is differentiable. Conveniently, the operator Ψ maps zeros to zero, i.e., if ρ =
0 everywhere on m and τ(s) = 0 everywhere on γ, then φ,ν vanishes on ∂m and φ = 0 is the
solution of the PDE (7). Interestingly, we define the PDE in terms of φ = R rather than φ =
R2, we would lose this attractive property. Another attractive reason for choosing φ = R2 is that
for an ellipsoid, the simplest 3D object with a single-manifold medial axis, Δφ is constant on
Ω and Δ2φ = 0. This is not the case for φ = R.

3.3. Numerical Solution
Implementing medial modeling based on the biharmonic PDE involves choosing an appropriate
representation for the manifolds composing the medial model and then defining a finite
differences scheme that allows us to solve the PDE numerically as a sparse linear system.

3.3.1. Numerical Representation of Medial Models—Our choice of representation for
the medial manifolds is Loop subdivision surfaces (Loop, 1987). This representation is simple,
can be defined on an arbitrary domain and, with a small modification, can be used to represent
multi-manifold medial models. In the Loop scheme, a coarse-level triangular mesh is
successively subdivided, converging to a continuous limit surface. Subdivision involves
splitting triangles into four by inserting a new vertex in every edge. The coordinates of the new
vertices, as well as the coordinates of the vertices retained from the previous level, are computed
at each iteration using simple arithmetic rules (Loop, 1987). Edges in the mesh can be
designated as crease edges, and special rules are used at these edges to generate a crease in the
limit surface (Biermann et al., 2000).

In deformable modeling, the model must be defined by a set of coefficients which can be
modified in order to deform the model (Fig 1). In our Loop-based scheme, the coefficients are
used to specify the coarse-most mesh (  0,  0), where  denotes the vertices and  are the
triangles. Each vertex i is a tuple of coefficients: , where , and  and

 are scalars, corresponding to the boundary conditions of (7). Although we are only interested
in the values of τ along γ (s), i.e., at the edges of the medial manifolds, it is more convenient
to define  at each vertex and to ignore its values an non-edge vertices. 2

While the mesh (  0,  0) serves as the specification of the deformable model’s coefficients,
the model itself, in theory, is given by the limit surface of Loop subdivision. In practice,
however, we approximate this limit surface by applying a finite number of subdivisions, i.e.,
using the mesh (  k,  k) as a digital representation of the skeleton m and scalar field ρ and
τ. The level of subdivision k is chosen empirically. During model fitting, k is usually between

2In the Loop subdivision scheme, the vertices computed along the edges of a child-level surface only depend on the edge vertices in the
parent-level surface, so having dummy τ-values denned at non-edge vertices has no effect on the PDE solution.
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1 and 3, depending on the density of (  0,  0). Once the model has been fitted to the target
object, k may be increased to generate a high-quality model.

3.3.2. Spectral Deformation for Medial Manifolds—In practice, when fitting models to
anatomical data, we do not always want to optimize directly over the vertices of the coarse-
level mesh (  0,  0). In our experiments, the control mesh will typically have around 100
vertices, which is too many parameters to optimize in the early stages of model fitting. Instead,
we leverage spectral decomposition of the control mesh to allow greater global control, leading
to a more efficient coarse-to-fine strategy.

Spectral decomposition involves defining an orthogonal basis on the control mesh (  0,  0),
so that the mesh can be deformed smoothly by modifying the coefficients of a small number
of basis functions rather than the vertices of the control mesh. The natural approach to defining
an orthogonal basis on an arbitrary 3D mesh is to use the eigenfunctions of the Laplace
operator, which is the generalization of the Fourier basis on the plane (as well as the the
spherical harmonics basis on the sphere). The Laplace eigenfunction basis has become a
popular tool for mesh compression and deformable modeling (Karni and Gotsman, 2000;
Rustamov, 2007), and has found applications in computational neuroanatomy (Thompson et
al., 2004; Chung et al., 2005; Qiu et al., 2006).

Our implementation of the Laplace eigenfunction basis follows the approach prescribed in
(Belkin and Niyogi, 2003), using a variant the authors call “simple-minded”, where the Laplace
operator is defined based on mesh topology rather than using mesh coordinates. Specifically,
the Laplace operator for a function ψ on the mesh is estimated at the vertex i as

where N1(i) denotes the one-ring of i, i.e., the set of vertices adjacent to i by an edge. The
alternative is to take the eigenfunctions of the Laplace-Beltrami operator on the mesh, as we
do in (10) below for solving the biharmonic PDE. However, the advantage of the “simple-
minded” approach is that the basis does not change as the model deforms, making it
unnecessary to solve a large sparse eigensystem at every iteration of deformable modeling. In
practice we have found the current approach to work well, so we took advantage of it’s relative
inexpensiveness.

3.3.3. Numerical Solution of Biharmonic PDE Using Finite Differences—
Glowinski and Pironneau (1979) show that the biharmonic equation on a domain in ℝ2 can be
reduced to a system of harmonic equations by introducing a new unknown variable ω = Δmφ
and simultaneously solving for φ and ω By the same token, the biharmonic equation on the
medial manifold (7) can be written as a system of two harmonic equations:

(8)

Using the finite difference method, this equation reduces to a (2n × 2n) sparse linear system,
where n is the number of vertices in the finite difference mesh. Glowinski and Pironneau
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(1979) further reduce this system to an (n × n) sparse linear system and a (k × k) dense linear
system, where k < n is the number of vertices at the boundary of the domain. In our
implementation we found that solving the (2n × 2n) sparse linear system is sufficiently fast not
to require further reduction.

The solution of (8) using the finite difference method is complicated by the fact that the
Laplace-Beltrami operator (LBO) is defined on an simplicial surface in ℝ3 rather than on a
planar grid. Many approximations of the LBO have been proposed in the literature. Wardetzky
et al. (2007) point out that diversity of proposed operators is due to the fact that no “ideal”
digital LBO may be found, i.e., no digital operator may at once satisfy the desirable properties
of “symmetry”, “locality”, “linear precision” and “positive weights”. Our solution follows the
framework established by Pinkall and Polthier (1993) with robustness modifications by
Bobenko and Springborn (2007). This approach satisfies all of the four desired properties
except locality (Wardetzky et al., 2007). Since our aim is to get as good an approximation of
the solution as possible, the locality property is the easiest to sacrifice.

In general, the LBO is defined on a mesh as a weighted sum

(9)

where wij is a weight assigned to each edge in the mesh. Pinkall and Polthier (1993) and later
Desbrun et al. (1999) proposed the widely-used cotan formula for wij:

(10)

where Ai is the sum of the areas of the triangles that share the vertex i, and αij-, βij are the two
angles opposite to the edge (i,j). This expression has been widely used for Laplacian mesh
smoothing, minimum surfaces computation and many other applications. However, the weights
wij can be negative on arbitrary meshes leading to the violation of the maximum principle and
other problems (Wardetzky et al., 2007). Bobenko and Springborn (2007) propose an elegant
solution to this problem by applying intrinsic Delaunay triangulation to the mesh before
computing LBO using the cotan formula. This approach also ensures that the PDE solution is
intrinsic: dependent only on the vertices of the mesh and not on its triangulation. Intrinsic
Delaunay triangulation can be performed using an efficient intrinsic edge flipping algorithm
(Glickenstein, 2005; Fisher et al., 2006), which terminates in finite time and has a unique
solution (Bobenko and Springborn, 2007). Our implementation of the finite difference method
includes the edge flip algorithm.

In addition to the LBO, to solve (8), we require finite difference approximations of φ,ν and
dτ/ds at vertices that lie at the edges of the medial mesh, where the boundary conditions are
defined. We also require an approximation of the Riemannian gradient ∇m φ for the inverse
skeletonization expression (2).

To estimate intrinsic first-derivative quantities of some function f on the mesh m, we start with
expressions for tangents to the Loop subdivision surfaces given by Loop (1987). A pair of
tangent vectors m,1, m,2 to the limit surface m at vertex i is given by expressions of the form
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(11)

The weights wij,d can be found in the review by Zorin et al. (2000, p.71). Given these tangent
vectors, one can compute at each vertex the covariant metric tensor gpq = m,p · m,q and the
contravariant metric tensor gpq, given by the Einstein notation expression . The
derivatives of f in directions of m,1 and m,2 are similarly given by

(12)

where the weights wij,d are the same in both expressions. We can obtain the Riemannian
gradient of f as

and its squared magnitude as

Notice that this expression is non-linear in f, so it is unsuitable for finite difference modeling.
However, the gradient magnitude, although part of the constraint (3), does not appear in the
PDE (8) and this non-linearity does not pose a problem for solving the PDE.

At the vertices along the boundaries and creases of the Loop subdivision surface, m,1 is parallel
to γ, the curve that forms the boundary of the subdivision surface and, thus, perpendicular to
the outward normal, ν. Therefore, f,S, where s is the uniform arc length parameterization of γ,
is given by

and the normal derivative is given by

Plugging in (12) for f,1 and f,2 in the above two expressions, we get finite difference expressions
for f,S and f,ν,. Finally, substituting τ and φ for f, we obtain the finite difference expressions for
all of the terms appearing in the PDE (8).

With the help of finite difference expressions for Δm φ, Δmω, φ,ν and τ,s, the PDE (8) reduces
to the linear system
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(13)

where A is a sparse matrix. However, the matrix A may not be of full rank. The reason this
happens is that φ is fixed at the boundary nodes by the Dirichlet boundary conditions, so the
boundary condition involving φ,ν imposes constraints on the values of φ “just inside” of the
boundary. If there are fewer values to satisfy these constraints than there are constraints, the
problem will not have a solution. To avoid this problem, we ensure that the meshes used to
represent medial manifolds have more vertices just inside of the boundary than there are
boundary vertices. To solve the sparse linear system, we use the direct solver PARDISO
(Schenk and Gärtner, 2004).

3.4. Medial Coordinate System
A key property of cm-rep medial models is the ability to parameterize the entire interior of the
model using a shape-based coordinate system. First, suppose that the medial manifold m is
parameterized by a vector u = (u1, u2). Recall from Sec. 2.3 that every point m(u) on the medial
manifold is mapped by inverse skeletonization (1) to a pair of points b+(u) and b−(u), which
coincide if m(u) is at an edge of the medial manifold. We refer to the line segments S+(u) =
{m(u),b+(u)} and S−(u) = {m(u),b−(u)} as spokes. When the sufficient constraints of inverse
skeletonization are met, the spokes span the interior of the model, i.e., every point in the region
enclosed by the surface b−∪b+ belongs to exactly one spoke, except for the obvious case of
spokes originating at medial manifold edges, where S+(u) = S−(u). Let us use the coordinate
ξ ∈ [−1,1] to describe a location along a spoke (when ξ > 0, it references the spoke S+, and
when ξ < 0, it references the spoke S−). Then every point x on the model’s interior can be
assigned a set of coordinates (u, ξ), as follows:

(14)

This assignment is unique, except at manifold edges, as noted above.

Fig. 4 illustrates the concept of this coordinate system in two dimensions. This parametrization
of the cm-rep model interior is a powerful tool. In image matching applications, it allows image
data to be sampled over the interior of a model in an efficient and natural way, without having
to worry about sampling the same point in image space twice. When matching binary objects,
this ability allows us to optimize overlap between the model and the target object, something
that is not as straightforward for boundary-based deformable models. The coordinate system
also makes it possible to establish volumetric shape-based correspondences between different
instances of an anatomical structure and serves as the basis of shape-based normalization
(Yushkevich et al., 2007).

3.5. Deformable Modeling
In most applications, cm-rep deformable modeling involves maximizing the overlap between
the deforming model and a binary segmentation of the given target structure. Although there
has been plenty of work on using medial representations to segment anatomical structures
directly in medical images (Stough et al., 2007; Pizer et al., 2005; Rao et al., 2005; Pizer et al.,
2003a), segmentation is not the focus of our paper. Other applications of continuous medial
models include shape-based normalization (Yushkevich et al., 2007), shape analysis (Sun et
al., 2008b) and data dimensionality reduction (Yushkevich et al., 2008). For these applications,

Yushkevich Page 11

Neuroimage. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



we typically start with a given segmentation of the structure of interest and require to fit a
medial model to it.

The problem of fitting cm-rep models to anatomical structures is described in earlier work
(Yushkevich et al., 2006, Sec. III-F). There are essentially no differences in terms of the
objective function between the biharmonic cm-rep model and the earlier Poisson-based model.
Model fitting involves numerical optimization, where the objective function consists of an
image match term (Dice overlap), a regularization prior, and penalties terms used to ensure
that the inequality constraints required for inverse skeletonization are met. These constraints
include requiring that the solution φ of the biharmonic PDE be positive (since ), that |
∇ m R| ≤ 1, and that the surface b+ ∪b− not self-intersect. The latter can typically be satisfied
locally by imposing a penalty on the Jacobian of the U vector field in (2). Regularization priors
are used to maintain geometrical correspondence when models are fitted to multiple instances
of an anatomical structure. A simple regularization prior is penalizes the gradient magnitude
of the determinant of the metric tensor the mapping between the deforming model and a target
model. Optimization uses the Gay (1983) model/trust region based approach.

4. Experiments and Results
The aims of this experimental section are (1) to illustrate the ability of cm-rep models to
accurately represent natural variability in the shape of anatomical structures; (2) to demonstrate
the capacity to perform linear statistical analysis in the space of cm-rep models.

The motivation for the first aim is that cm-rep models are, by construction, a lossy
representation for anatomical structures. The branching topology of the skeleton of a cm-rep
model is maintained during deformable modeling. Since real-world variability in the topology
of the skeletons of anatomical structures is vast, cm-reps can only fit target anatomy
approximately. However, it has been found, both in the case of discrete (Styner et al., 2003a)
and continuous medial models (Yushkevich et al., 2006, 2008; Sun et al., 2008a), that for some
structures, such as the hippocampus, the approximation error is quite small, especially when
compared with errors associated with manually or automatically segmenting these structures
from anatomical images. In this paper, we again carry out fitting accuracy analysis to ensure
that cm-rep models based on the biharmonic PDE perform as well or better than earlier
approaches.

The second experimental aim shows off the particular advantages of PDE-based medial
modeling. It takes advantage of the fact that the PDE creates a diffeomorphic mapping from a
parameter space that is a codimension-0 subset of ℝN to the space of “valid” cm-rep models.
This mapping allows us to apply linear operations, such as principal component analysis (PCA),
linear discrimination, or shape interpolation to cm-rep parameters and to generate new “valid”
cm-rep instances. Without the PDE, linear combination of cm-rep models would lead to
“invalid” instances, because nonlinear equality constraints (3) and (4) would be violated.

4.1. Hippocampus
4.1.1. Subjects, Imaging and Data Processing—The dataset used in this experiment
was graciously provided to us by Prof. Guido Gerig (Department of Computer Science,
University of Utah) and Prof. Sarang Joshi (Departments of Biomedical Engineering and
Bioengineering, University of Utah). The data includes 1.5 Tesla T1-weighted SPGR MRI
scans (0.9375 × 0.9375 × 1.5mm3 voxel size) for 87 subjects from a previously published
schizophrenia study (Chakos et al., 2005); the subjects included patients with early illness and
chronic disease, as well as controls matched by age and gender. The dataset also includes left
and right hippocampus segmentations, obtained automatically using the Joshi et al. (1997)
large deformation diffeomorphic registration method that incorporates expert-placed anatomic
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landmarks. This segmentation approach is used extensively in brain morphometry (Csernansky
et al., 1998) and was shown to have greater interrater reliability than manual segmentation
(Haller et al., 1997). This data has been analyzed previously using statistical features derived
from boundary and discrete medial representations, and differences in the shape and size of
the hippocampus between schizophrenia patients and controls were detected (Styner et al.,
2003b; Gerig et al., 2002, 2003).

Hippocampus segmentations were provided in the form of high-resolution boundary surface
meshes. We scan-converted and flood-filled these meshes to generate binary masks with the
voxel size 0.33mm3. An initial medial model was constructed using a skeletonization and
flattening based procedure described in an earlier paper (Yushkevich et al., 2008, Sec. 3.4.1).
The model has 6336 triangles and 3289 vertices. Model fitting followed a multi-resolution
schedule, with the first level performing affine alignment, and the next three levels performing
deformable modeling using 10, 40 and 120 Laplace eigenfunctions (see Sec. 3.3.2).

4.1.2. CM-Rep Fitting Accuracy—Fitting accuracy was evaluated in terms of overlap and
distance between the model’s boundary and target structure’s boundary. Overlap between a
fitted cm-rep model and the target hippocampus mask was measured using Dice similarity
coefficient (Dice, 1945), a symmetric overlap measure frequently used to compare agreement
between segmentations (e.g., (Zou et al., 2004)). Boundary-based criteria describe the average
(as well as maximal) distance from the fitted cm-rep models to the corresponding hippocampus
meshes and, vice versa, from the hippocampus meshes to the fitted cm-rep models (average
and maximal mesh-to-mesh distance is asymmetrical). The means of these maximal and
average distances over all subjects are reported in Table 1, with earlier results on the same
dataset from (Yushkevich et al., 2006) listed for comparison. These earlier results were
generated using the previous generation cm-rep approach, where the Poisson PDE with non-
linear boundary conditions was used instead of the bi-harmonic PDE and the medial model
was defined on a rectangular grid rather than on an arbitrary triangle mesh. The newer
generation cm-rep model performs markedly better than the old model. Particularly
encouraging is the improvement in maximal distance between the cm-rep model and the target
boundary, which decreased by about 0.2mm with the new cm-rep model. The improvement
over earlier work is most likely attributable to freeform triangular meshing used in the current
approach (we were unsuccessful in implementing the non-linear Poisson-based approach on
triangular meshes due to convergence failures).

4.1.3. Vector Space Statistical Analysis—To illustrate the ability to perform linear
statistical analysis on cm-rep models satisfying the equality constraint (3), we perform principal
component analysis using models fitted to the left hippocampus in all 89 subjects following
alignment by generalized Procrustes algorithm (Gower, 1975). PCA is computed in a
straightforward manner, combining the values of m, ρ and τ at each vertex into a single
coefficient vector. In practical applications, ρ and τ should be treated differently from m, but
we believe that for a proof of concept demonstration, the current approach suffices. Fig. 6
shows the cm-rep models corresponding to the mean of the coefficient vectors and to the first
3 principal components. Although all cm-rep models generated by the PDE satisfy the equality
constraint (3) at the boundary, other inequality constraints may be violated by the generated
models. For example, the model sampled at −3 standard deviations along the first principal
component has φ < 0 at some vertices, leading to an invalid cm-rep model.

4.1.4. Convergence—We use the hippocampus dataset to demonstrate that cm-rep models
converge to a continuous limit. Using data from the first 15 subjects, we start with a model
containing 853 vertices in the medial manifold mesh, and apply Loop subdivision three times,
resulting in a model with over 50000 vertices. Table 2 reports differences in φ, R, |∇mR| and
b between models at the three coarser scales and the finest scale model. The convergence is
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slightly better than linear with respect to edge length, which goes down by the factor of two at
each subdivision.

4.2. White Matter Structures
CM-reps have applications beyond modeling subcortical structures. In an recent paper
(Yushkevich et al., 2008), we used cm-rep models to represent white matter fasciculi with more
complex shapes, including the corpus callosum and the corticospinal tract. The structures were
segmented by performing fiber tractography (Mori et al., 2002) in a white matter atlas generated
using deformable registration of diffusion tensor images (Zhang et al., 2007) from a
chromosome DS22q11.2 deletion study (Simon et al., 2008). The cm-rep approach we
previously used to model these structures does not use a PDE; instead we simply admitted
skeleton meshes that slightly violated the equality constraint and corrected these solutions by
local adjustment. The advantage of the PDE-based approach is that it allows linear operations
on cm-rep models, such as the PCA illustrated in a previous section. Fig. 7 shows biharmonic
PDE-based cm-rep models fitted to the corpus callosum and the corticospinal tract
segmentations. The Dice overlap for these more complex structures is 0.92 and 0.94,
respectively. Some of the complexities of the shapes are not captured, but the overall fit is very
close.

5. Discussion and Conclusions
5.1. Contributions

This work represents a second-generation PDE-based deformable medial model that offers
several distinct advantages over earlier work (Yushkevich et al., 2006) that used a non-linear
Poisson PDE. The additional degree of freedom that the biharmonic PDE offers allows us to
incorporate medial geometric constraints as linear boundary conditions. Issues of poor
convergence that prevented us from implementing the Poisson model on arbitrary triangular
meshes are thus resolved, and an additional benefit is the ability to generalize to branching
medial models. The biharmonic model retains the main advantages of the original Poisson
model: (1) the ability to faithfully represent the geometric relationship between the skeleton
and the boundary of a deformable model; (2) the ability to map linear combinations of
parametric representations of such models into the space of valid models; and (3) the ability
to closely capture the variability in the shape of anatomical structures, particularly, the
hippocampus.

5.2. Limitations
Although the biharmonic model simplifies medial modeling significantly, a number of issues
remain to be resolved. Whereas the equality constraints for inverse skeletonization are neatly
enforced by the PDE, inequality constraints still have to be enforced, which is done rather
inefficiently by introducing penalty functions into the optimization. These constraints pose a
challenge to linear interpolation of cm-rep models, even though for the hippocampus dataset,
constraint violations do not arise until one moves about 3 standard deviations from the mean.

The finite differences approach used to implement the biharmonic equation may also be subject
to improvement. Although remeshing using Delaunay flips helps ensure numerical stability,
issues with the convergence of a model to the limit still arise. For more complex models, such
as the corpus callosum, a model fitted at a given resolution may have φ > 0 everywhere, whereas
the limit of φ, as the resolution of the mesh increases, may be negative. A more sophisticated
numerical method may help resolve this issue. Another workaround, which remains to be
explored, may be to ensure that the solution is always positive by framing R as an exponential
function of φ, rather than , as we do currently.
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5.3. Generalization to Branching Medial Geometry
One of the conceptual advantages of the medial model based on the biharmonic PDE is the
ability to generalize to branching skeletons, which was not the case for the earlier Poisson-
based cm-rep model. Along the seams in a branching medial model, the equality constraint (4)
must hold at every point. This constraint can be rewritten in terms of the derivative of R in the
direction of ν, the outward unit normal vector along the seam curve γ(s). There are three such
constraints, one for each of the medial manifolds m1, m2, m3 coming together at the seam:

(15)

where αi is the angle between the tangent planes of the medial manifolds mi⊕1 and mi⊕2, i.e.,

with ⊕ denoting addition modulo 3.

Let us split the branching medial skeleton along the seams, breaking it up into several
manifolds, each bounded by edges and seams of the original skeleton (this operation may create
manifolds with infinitely thin holes, but we can still treat them as boundaries). Let γseam and
γedge be the boundaries of these manifolds. Then on each of these manifolds we can define a
biharmonic PDE that incorporates the seam equality constraint (15) and the edge equality
constraint (5):

(16)

Each seam curve in the original skeleton appears three times in the set of manifold-specific
biharmonic equations that we define. The function τ must be the same along a given seam curve
in each of the equations in which it appears; otherwise, the solution φ would be discontinuous
at the seam.

Note that this simple solution is possible for the fourth order biharmonic PDE that admits both
a zeroth-order and a first-order boundary condition. With a second order PDE, which admits
only one boundary condition, we can still specify the constraint on φ,ν | γseam, but the value of
the solution φ along the seam will be different in each of the three manifolds that share the
seam, creating a discontinuity across the seam!

Fig. 8 shows a toy example where the biharmonic PDE is applied to a branching skeleton. The
skeleton is formed by rotational extrusion of a two-dimensional branch shaped as an upside
down letter “Y”. Constant values of τ are prescribed along the medial seam and the three medial
edges and ρ = 0 is given on each of the manifolds. The biharmonic PDE (16) is solved on each
of the manifolds, giving a radius function R that is continuous across the seam. Inverse
skeletonization (1) gives a closed boundary surface.

Our examination of medial branching with the biharmonic equation is intended as a proof of
concept and does not take into account the additional equality constraint at the points where
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seams and edges intersect (the toy example does not have these intersections). This constraint
must be incorporated in order to model real-world anatomical structures with branching
skeletons. This remains the subject of future work.
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Fig. 1.
Skeletonization vs. medial modeling. Left: A 3D object and the skeleton derived by
skeletonization. The color map on the skeleton is the “radius scalar field” R or, equivalently,
the distance to the closest boundary point. Right: medial modeling, which is, essentially, the
opposite of skeletonization. A deformable parametric medial model is defined as a surface or
set of surfaces, and the boundary is derived analytically using “inverse skeletonization,” (see
Eqn. 2). The model is then deformed to maximize fit between its boundary and the object of
interest. The key difference between skeletonization and medial modeling is that the former
computes exact skeletons, but does not guarantee that the branching topology of the skeletons
is consistent across individuals; the latter computes approximate skeletons, but guarantees the
same topology for all individuals, allowing effective statistical analysis.
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Fig. 2.
Example of a branching skeleton. The blue curves forming the outer boundaries of medial
manifolds are called medial edges and the red curve where the three medial manifolds join is
the medial seam.
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Fig. 3.
Two-dimensional diagram of medial geometry. The red curve represents the medial surface
(skeleton) m. The circle has radius R, given by the radial scalar field on m. The boundary,
shown in blue, consists of two parts, b+ and b−, derived from the skeleton and radial scalar
field by inverse skeletonization (2). The vector ∇mR lies in the tangent plane of m and points
in the direction of greatest change in R. The arrows pointing from m to b+ and b− are called
spokes.
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Fig. 4.
Medial coordinate system (in 2D). The skeleton forms one axis, and the spokes, projecting
from the skeleton to the boundary (orthogonally to the latter) form the second axis. Each point
inside the model is has a unique coordinate value. The medial coordinate system extends the
parameterization of the skeleton onto the whole interior of the object, providing a way to
compute shape-based correspondences between similar objects.
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Fig. 5.
Examples of cm-rep models fitted to binary segmentaions in the hippocampus dataset. For each
hippocampus, shown are the medial manifold colored by the ρ function (the right hand side of
the biharmonic PDE), the medial manifold colored by the radius function R (the solution of
the PDE), the boundary generated by inverse skeletonization (1), and the boundary of the
segmentation to which the cm-rep was fitted.
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Fig. 6.
Principal component analysis in cm-rep parameter space
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Fig. 7.
Examples of cm-rep models fitted to white matter structures extracted from a DTI atlas. This
figure illustrates the ability of PDE-based cm-rep models to describe more complex shapes.
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Fig. 8.
A toy example of biharmonic PDE-based medal modeling with branching skeletons. The
synthetic skeleton (left panel) consists of three branches that join along a circular seam curve.
The skeleton has three edge curves, also circles. The inputs to the PDE are ρ = 0 on the interior,
τ = 0.1 at the edge curves and τ = 0.5 at the seam curves. The radius function R reconstructed
by the PDE is plotted in the middle panel, and the reconstructed boundary is given in the right
panel. Large blue points indicate the positions on the boundary that correspond to seam and
edge curves on the skeleton.
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