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Abstract
Since its activity was first reported in the mid-1960s, macrophage migration inhibitory factor (MIF)
has gone from a cytokine activity modulating monocyte motility to a pleiotropic regulator of a vast
array of cellular and biological processes. Studies in recent years suggest that MIF contributes to
malignant disease progression on several different levels. Both circulating and intracellular MIF
protein levels are elevated in cancer patients and MIF expression reportedly correlates with stage,
metastatic spread and disease-free survival. Additionally, MIF expression positively correlates with
angiogenic growth factor expression, microvessel density and tumor-associated neovascularization.
Not coincidentally, MIF has recently been shown to contribute to tumoral hypoxic adaptation by
promoting hypoxia-induced HIF-1α stabilization. Intriguingly, hypoxia is a strong regulator of MIF
expression and secretion, suggesting that hypoxia-induced MIF acts as an amplifying factor for both
hypoxia and normoxia-associated angiogenic growth factor expression in human malignancies.
Combined, these findings suggest that MIF overexpression contributes to tumoral hypoxic adaptation
and, by extension, therapeutic responsiveness and disease prognosis. This review summarizes recent
literature on the contributions of MIF to tumor-associated angiogenic growth factor expression,
neovascularization and hypoxic adaptation. We also will review recent efforts aimed at identifying
and employing small-molecule antagonists of MIF as a novel approach to cancer therapeutics.
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MIF, HIF-1α and Tumor-Associated Angiogenesis
MIF is over-expressed in a large variety of human neoplasms. Pancreatic, breast, prostate,
colon, brain, skin and lung-derived tumors have all been shown to contain significantly higher
levels of MIF message and protein than their non-cancerous cell counterparts (Bando et al.,
2002; Kamimura et al., 2000; Markert et al., 2001; Meyer-Siegler et al., 1998; Shimizu et al.,
1999; Takahashi et al., 1998; Winner et al., 2007). Several of these studies also report that MIF
expression closely correlates with tumor aggressiveness and metastatic potential, suggesting

3correspondence to: University of Louisville, Delia Baxter Research Bldg., Suite 204B, 580 S. Preston St., Louisville, KY, Tel: (502)
852-7698, Fax: (502) 852-5679, E-mail: robert.mitchell@louisville.edu.
Conflict of Interest. R. A. Mitchell is a co-inventor on patents and patent applications describing the therapeutic value of 4-IPP and 4-
IPP analog MIF antagonists.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect
the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Exp Mol Pathol. Author manuscript; available in PMC 2010 June 1.

Published in final edited form as:
Exp Mol Pathol. 2009 June ; 86(3): 180–185. doi:10.1016/j.yexmp.2009.01.001.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



an important contribution to disease severity and survival by MIF (del Vecchio et al., 2000;
Han et al., 2008; Kamimura et al., 2000; Meyer-Siegler et al., 2002; Tomiyasu et al., 2002).
Han and colleagues recently reported that immunohistochemical staining for MIF in pre-
chemotherapy osteosarcoma biopsy specimens shows a strong and significant correlation
between both disease- and metastases-free survival (Han et al., 2008). In a separate study,
increased MIF expression in glioblastoma multiforma (GBM) tumor biopsies was found to
localize predominantly to necrotic areas of GBM lesions and within tumor cells surrounding
blood vessels (Bacher et al., 2003). Because necrotic regions within GBM and other neoplasms
are commonly associated with the very low oxygen tensions (Louis, 2006) it is not unreasonable
to speculate that MIF expression in GBM is positively regulated by hypoxia (Bacher et al.,
2003).

MIF was first linked to tumor hypoxic responses when the Giaccia laboratory reported that
MIF mRNA levels are induced by hypoxia in human squamous cell carcinoma cell lines
(Koong et al., 2000). Subsequent studies confirmed these findings (Bacher et al., 2003; Baugh
et al., 2006; Schmeisser et al., 2005; Takahashi et al., 2001) but it was not until the Giaccia lab
demonstrated that loss of MIF phenocopies the loss of HIF-1α in inducing premature
senescence that a functional role for hypoxia-induced MIF was first proposed (Welford et al.,
2006). A subsequent study by this laboratory revealed that MIF is a direct transcriptional target
of HIF-1α and, more importantly, loss of MIF results in inefficient HIF-1α stabilization induced
by hypoxia and prolyl hydroxylase inhibitors (Winner et al., 2007). Consistent with these
findings, MIF overexpression in human breast cancer cell lines was found to promote hypoxia-
induced HIF-1α stabilization (Oda et al., 2008). Intriguingly, this study confirmed unpublished
observations from this laboratory showing that the MIF receptor, CD74, is necessary for MIF-
dependent HIF-1α stabilization (Oda et al., 2008).

Hypoxia-induced VEGF expression is significantly reduced in MIF-deficient cells and
increased in MIF over-expressing cells consistent with its contribution to HIF-1α stabilization
(Oda et al., 2008; Winner et al., 2007). Not coincidentally, numerous studies report that MIF
intratumoral expression strongly correlates with VEGF expression, tumor vessel density and
risk of recurrence after resection (Hagemann et al., 2007; Han et al., 2008; Hira et al., 2005;
Ren et al., 2005; Shun et al., 2005; White et al., 2003; Xu et al., 2007). In mouse models, MIF-
deficient mice crossed to adenomatous polyposis coli (ApcMin/+) “oncomice” exhibit
significant reductions in both the number and size of adenomas that correspond to diminished
tumor microvessel density (Wilson et al., 2005). Additionally, MIF-deficient mice show a 45%
reduction in chronic ultraviolet B (UVB) irradiation induced epidermal tumorigenesis (Martin
et al., 2008). Decreased tumor incidence and delayed tumor outgrowth in MIF-deficient mice
exposed to UVB correlated with significantly less VEGF expression and intratumoral
microvessel density. Thus, the single most consistent phenotype associated with loss of MIF
in tumorigenesis is decreased angiogenic growth factor expression and microvascular density
reminiscent of an impaired ability to adapt to hypoxia. While no studies to date have evaluated
hypoxia either directly or indirectly with respect to intratumoral MIF, the invariability of this
angiogenic phenotype suggests that MIF strongly influences tumoral hypoxic adaptation and
associated neovascularization. Because low pO2-mediated induction of HIF-1α serves as more
than just a vehicle by which angiogenic growth factors are generated, studies designed to
elucidate the relative importance of MIF in hypoxia-induced metastatic spread and
chemotherapeutic sensitivity are sorely needed.

Mechanism(s) of Action
Despite the aforementioned plethora of studies linking MIF to intratumoral angiogenesis, none
has provided a clear mechanistic link between MIF, VEGF and tumor vascularization in
normoxic tissues. In an effort to address this question, we recently reported that MIF, in addition
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to promoting hypoxia-induced VEGF expression (Winner et al., 2007), is also an important
regulator of normoxic VEGF expression (Coleman et al., 2008). Specifically, we discovered
that MIF cooperates with its only known homolog, D-dopachrome tautomerase (D-DT), in
dictating the steady state expression of VEGF and IL-8 in non-small cell lung cancer (NSCLC)
cell lines (Coleman et al., 2008). Angiogenic growth factor expression mediated by endogenous
MIF family members was found to rely upon a c-Jun-N-terminal kinase (JNK)/AP-1-dependent
signaling pathway. Importantly, MIF and D-DT-mediated activation of JNK leading to AP-1-
dependent transcription of VEGF and IL-8 relied upon the presence of the cognate MIF cell
surface receptor, CD74 (Coleman et al., 2008; Leng et al., 2003; Shi et al., 2006). Conditioned
supernatants from one or both MIF family member siRNA transfected NSCLC cell lines were
unable to induce endothelial cell migration or tube formation in vitro (Coleman et al., 2008).
This effect could be reversed by adding back recombinant VEGF and/or IL-8 but not rMIF or
rD-DT suggesting that decreased VEGF and IL-8 expression is responsible for defective
endothelial cell migration and tube formation observed in MIF and/or D-DT-deficient cells.

As discussed above, Oda and colleagues recently recapitulated our findings showing that MIF
functionally stabilizes HIF-1α in human cancer cell lines (Oda et al., 2008). Based on their
observations that p53 null and p53 mutant cell lines were unresponsive to rMIF-induced
HIF-1α stabilization, the authors concluded that MIF-dependent modulation of p53 was
responsible for the effects of rMIF on HIF expression. Based on earlier reports that wildtype
p53 acts to functionally stabilize HIF-1α in hypoxic and anoxic cells (Ravi et al., 2000;
Sanchez-Puig et al., 2005) and coupled with the fact that p53 expression/activity is regulated
by MIF (Hudson et al., 1999; Mitchell et al., 2002; Welford et al., 2006), this would seem to
be a logical conclusion. However, other studies appear to contradict these findings as the
pancreatic ductal adenocarcinoma cancer (PDAC) cell line used in earlier studies showing an
important contributing role for MIF in HIF stabilization is p53 mutant (Cogoi et al., 2005;
Sipos et al., 2003; Winner et al., 2007). Further studies from this laboratory reveal that several
additional human PDAC cell lines that are also p53 mutant are similarly responsive to MIF-
dependent HIF-1α stabilization (R.A.M., unpublished observations). One potential explanation
that might help to resolve this apparent contradiction is the possibility that p53 mutant tumor
suppressor proteins may similarly bind to and facilitate the degradation of HIF-1α. This
explanation also could help to resolve why the HIF-1α/COP9 signalosome subunit 5 (CSN5)
interaction is destabilized in MIF-deficient cells (Winner et al., 2007). CSN5, an important
effector and interacting partner for MIF, also has been shown to functionally associate with
p53 thus raising the possibility that MIF may influence CSN5/p53 interactions with HIF-1α
and regulating its stability in hypoxic cells.

In order to better understand the contributions of MIF to HIF stability and hypoxic adaptation,
it is first important to understand how HIF-1α stability is physiologically regulated by oxygen.
HIF is a heterodimeric transcription factor in which both the α- and β-subunits are basic helix-
loop-helix PAS (Per-ARNT-Sim) proteins (Kim and Kaelin, Jr., 2003). Isozymes of both
HIF-1α and HIF-1β subunits have been identified with HIF-1α and HIF-2α being regulated by
oxygen levels (Kim and Kaelin, Jr., 2003). The HIF-β subunit, identical to the aryl hydrocarbon
receptor nuclear translocator (ARNT), is a constitutive nuclear protein involved in other
transcriptional responses under normoxic conditions. In contrast, protein levels of the HIF-α
subunit are virtually undetectable under normoxic conditions in most tissues, thus indicating
that oxygen-dependent protein stability is a key mechanism regulating HIF function. Thus,
under hypoxic conditions, protein levels of HIF-α rise, allowing HIF-α nuclear translocation,
hetero-dimerization, and transcriptional activation.

Many studies have identified multiple molecular events involved in the degradation of HIF-
α and have led to the identification of a family of Fe(II) and 2-oxoglutarate (2-OG) dependent
dioxygenase enzymes acting as oxygen sensors (Kim and Kaelin, 2003). Under normoxic
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conditions, HIF-1α undergoes trans-4-hydroxylation at Pro-564 (CODD or C-terminal ODD)
and Pro-402 (NODD or N-terminal ODD) which form part of highly conserved LXXLAP
motifs in oxygen-dependent degradation domains (ODDs) (Chan et al., 2005; Kim and Kaelin,
Jr., 2003). Hydroxylation allows recognition of HIF-1α by the von Hippel-Lindau tumor
suppressor protein (pVHL) which serves as the recognition component of the ubiquitin E3
ligase complex consisting of VHL/Elongin C/Elongin B (VCB), Cullin 2, and the RING-H2
finger protein Rbx-1 (Hon et al., 2002). It is important to note that this HIF-degradation
complex is distinct from SCF complexes which are made up of Cullin 1 (Cul1), Skp1 and F-
box proteins. Importantly, structural analysis of the HIF-CODD and pVHL reveals that all five
pVHL residues lining the 4-hydroxyproline-binding pocket are affected by mis-sense
mutations in VHL disease (Kim and Kaelin, 2004), suggesting that failure to capture HIF-1α,
and/or other hydroxylated targets, is important to the tumor-promoting mechanism associated
with VHL disease. Subsequent ubiquitylation of HIF-α by the Cdc34/Ubc5 E2 ubiquitin
conjugating complex targets HIF-α for transport to the proteasome and degradation.

CSN5 is a 38 kD protein and an essential component of the COP9 signalosome (CSN) which
is composed of eight subunits designated CSN1-CSN8 (for review see Wolf et al., 2003). Until
recently the function of the CSN was obscure although it appeared to control proteins that had
high turnover rates. Mutational analysis in S. pombe revealed that disruption of CSN1 resulted
in the accumulation of neddylated Cullins (Wolf et al., 2003). The conjugation of the small
ubiquitin-like protein Nedd8 to Cullins is thought to be required for E2-recruitment and
targeted ubiquitylation. CSN5 contains a JAB-1/MPN domain Metalloenzyme Motif (JAMM)
that forms the catalytic region of the isopeptidase. In CSN5, the JAMM domain is responsible
for the cleavage of Nedd8 from cullins. Cycles of cullin neddylation and de-neddylation are
required for Cullin-dependent ubiquitin E3-ligase (Cul-Ub-E3) function. Thus, altering CSN
function directly or indirectly has significant effects on the protein stability of Cul-Ub-E3
targets. This directly implicates the CSN in dynamically preventing ubiquitylation of certain
proteins and subsequent 26S proteasome dependant degradation.

CSN5 binds both the CODD of HIF-1α and the pVHL tumor suppressor (Bemis et al., 2004).
High CSN5 expression generates a pVHL-independent form of CSN5 that stabilizes HIF-1α
aerobically by inhibiting HIF-1α prolyl-564 hydroxylation. Aerobic CSN5 association with
HIF-1α occurs independently of the CSN holocomplex, leading to HIF-1α stabilization
independent of Cullin 2 deneddylation. CSN5 also associates with HIF-1α under hypoxia and
is required for optimal hypoxia-mediated HIF-1α stabilization (Bemis et al., 2004). Less clear
from this study is whether the anaerobic binding of CSN5 to HIF-1α occurs independently of
pVHL. Several studies have shown that CSN5 exists in small subunits or in monomeric form
outside of the CSN in various species (Freilich et al., 1999; Kwok et al., 1998; Oron et al.,
2002; Tomoda et al., 2002; Tomoda et al., 2004). Both monomeric and CSN-associated CSN5
has been found to functionally interact with a number of intracellular proteins and, in almost
all cases, regulates their turnover (Richardson and Zundel, 2005). A notable exception to this
is MIF (Kleemann et al., 2000). Jab1/CSN5 was initially identified by yeast 2 hybrid screening
to interact with MIF (Kleemann et al., 2000). Interestingly, MIF was shown to modulate CSN5
function and subsequent CSN5-dependent effects on p27 degradation, JNK activation and
AP-1-mediated transcription (Kleemann et al., 2000). Extracellular MIF is shown to
functionally regulate the activities of intracellular CSN5 (Berndt et al., 2008; Kleemann et al.,
2000; Kleemann et al., 2002; Lue et al., 2007; Meyer-Siegler et al., 2006). While the precise
mechanism remains unclear, studies from this laboratory (Winner et al., 2007) and those of
others (Kleemann et al., 2000; Kleemann et al., 2002; Leng et al., 2003) support the supposition
that extracellular MIF may functionally regulate intracellular Jab1/CSN5 functions.

Consistent with the finding that MIF modulates CSN5-dependent p27 ubiquitylation and
proteasomal degradation (Kleemann et al., 2000), MIF was recently found to be necessary for
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DNA damage checkpoint responses in developing lymphomas (Nemajerova et al., 2007).
Specifically, MIF controls CSN5-dependent deneddylation and subsequent cullin (Cul1)-
containing ubiquitin E3 (SCF) complex stability. Aberrant neddylation of the SCF complex in
MIF-deficient B cell lymphomas results in defective checkpoint response protein (Chk1, Chk2,
Cdc25A) accumulation resulting in defective DNA repair. As mentioned above, prior studies
from this laboratory implicate CSN5/Jab1 in MIF-dependent HIF-1α stabilization (Winner et
al., 2007). However, in contrast to the studies involving MIF regulation of the SCF complex
resulting in enhanced degradation/decreased stability of p27 and Cdc25A proteins, MIF/CSN5
regulates HIF-1α turnover resulting in enhanced stability/decreased degradation of HIF-1α
(Winner et al., 2007). These differences in p27 (the target of a Cullin-1Ub-E3), and HIF-1a
(the target of a Cullin-2 Ub-E3), underscore the fact that CSN5 interacts with and affects its
targets differently and may produce different effects depending on these interactions. Clearly
more studies are needed to fully delineate how MIF influences HIF stabilization and what
contributions, if any, p53 and CSN5 play in this process.

Irrespective of the mechanism by which MIF contributes to hypoxia-induced HIF-1α stability,
another question that remains unanswered is that of the apparently divergent phenotypes of
HIF-1α-deficient mice versus those associated with MIF-deficiency. HIF-1α homozygous null
mice developmentally arrest and die by embryonic day 11 (Iyer et al., 1998; Ryan et al.,
1998) while MIF-deficient mice are viable and develop relatively normally (Bozza et al.,
1999). MIF-deficiency, however, does render these mice more resistant to several diseases
including autoimmune, bacterial and parasitic infections, atherosclerosis and tumorigenesis
(Bozza et al., 1999; de Jong et al., 2001; Fingerle-Rowson et al., 2003; Koebernick et al.,
2002; McDevitt et al., 2006; Pan et al., 2004; Santos et al., 2008; Taylor, III et al., 2007; Wilson
et al., 2005). Because existing data indicate that MIF contributes to, but is not required for,
HIF-1α stabilization, it is more likely that MIF-deficiency more closely resembles HIF-1α
heterozygous null mice than HIF-1α homozygous null mice. HIF-1α heterozygous null mice
are viable and develop normally but do display specific phenotypes, some of which are similar
to those of MIF−/− mice. For example, a recent study reveals that MIF-deficiency results in
defective lung maturation and lethality in prematurely born pups (Kevill et al., 2008).
Moreover, MIF is induced by heart ischaemia and contributes to AMPK activation leading to
glucose uptake and cardiac repair following ischaemia-reperfusion (Miller et al., 2008). As
these phenotypes are consistent with a role for MIF in hypoxic adaptation associated with
HIF-1α activity (Cai et al., 2008; Compernolle et al., 2002; Land and Wilson, 2005; Loor and
Schumacker, 2008), it is plausible that MIF acts to potentiate HIF-1α stabilization and function
but is not absolutely essential for it. As such, when MIF is highly expressed in primary and/or
metastatic malignant lesions, there is a correspondingly higher level of HIF-1α stabilization,
angiogenic growth factor expression and intratumoral angiogenesis. As discussed above, high
MIF expression within tumors is a negative predictor of disease survival and corresponds
closely with enhanced VEGF expression and microvessel density (Hagemann et al., 2007; Han
et al., 2008; Hira et al., 2005; Ren et al., 2005; Shun et al., 2005; White et al., 2003; Xu et al.,
2007). Combining all of this information, it is not unreasonable to conclude that MIF is a critical
determinant of hypoxic responses and plays an important role in maintaining
microenvironmental adaptation within developing neoplasms.

MIF Structure, Function and Small Molecule Antagonists
Three-dimensional X-ray crystallographic studies have revealed that human MIF exists as a
homotrimer structurally related to the bacterial enzymes 4-oxalocrotonate tautomerase and 5-
carboxymethyl-2-hydroxymuconate isomerase (Sugimoto et al., 1996; Sun et al., 1996). MIF
possesses the unusual ability to catalyze the tautomerization of the non-physiological substrates
D-dopachrome and L-dopachrome methyl ester into their corresponding indole derivatives
(Rosengren et al., 1996).
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More recently, phenyl-pyruvic acid, p-hydroxy-phenylpyruvic acid (HPP), 3,4-
dihydroxyphenylaminechrome, and norepinephrine-chrome also have been found to be MIF
substrates. High Michaelis constant (Km) values, however, suggest that these also are unlikely
to be natural substrates for MIF (Matsunaga et al., 1999; Rosengren et al., 1997). The N-
terminal proline of MIF (Pro-1) appears to be a critical residue for enzymatic activity, as site-
directed mutagenesis that substitutes a serine for this proline (P1S) is devoid of D-dopachrome
tautomerase activity (Bendrat et al., 1997). Similarly, a proline to glycine (P1G) MIF mutant
is also catalytically null for both D-dopachrome and HPP tautomerase activities (Lubetsky et
al., 1999; Swope et al., 1998).

Structure-based drug design (SBDD) holds great promise but in itself is really the first step in
one of many subsequent steps and disciplines that are needed for optimized drug discovery.
The success of SBDD is well documented; it has contributed to the introduction of 50
compounds into clinical trials and to numerous drug approvals (Jorgensen, 2004). Virtual
screening is a computational technique that can prescreen vast databases of small molecule
structures against a three-dimensional structure to see which fit, or dock, into the chosen site.
This can reduce the actual physical screening for lead compounds by many orders of magnitude.

Orita et al. first described virtual screening as a tool to identify novel small molecule
antagonists of MIF enzymatic activity (Orita et al., 2001). From screening both ACD and
ACDSC libraries (totaling nearly 1,000,000 compounds) the authors identified 524 potential
inhibitors and tested them for MIF tautomerase inhibition. The top 14 candidate inhibitory
compounds could be classified into four independent groups: 1) coumarin and derivatives; 2)
7-hydroxycoumarin and derivatives; 3) 7-hydroxy-chromen-4-one and derivatives; and, 4) 7-
hydroxy-chroman-2,4-dione and derivatives. Co-crystallization studies revealed two
hydrophobic binding regions that small molecule inhibitors require for MIF binding (Orita et
al., 2001). This screen, like most studies attempting to identify MIF tautomerase inhibitors,
targeted the N-terminal proline as the central target residue for inhibition. Despite excellent
inhibitory activities reported for these compounds, it is unclear whether they also are capable
of inhibiting the biological activities of MIF (Orita et al., 2001).

Of the MIF antagonists reported thus far (Dios et al., 2002; Lubetsky et al., 2002; Senter et al.,
2002), ISO-1 (S,R-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester) is
the best characterized (Al Abed et al., 2005; Lubetsky et al., 2002; Meyer-Siegler et al.,
2006; Nicoletti et al., 2005; Rendon et al., 2007; West et al., 2008). Ours and others’ studies
reveal that this compound is effective in blocking MIF-dependent malignant phenotypes nearly
as well as MIF knockdown by siRNA (Meyer-Siegler et al., 2006; Rendon et al., 2007).
Interestingly, ISO-1 was found to inhibit prostate cancer cell invasion, tumor volume and
angiogenesis only in prostate cancer cells that express the cognate MIF receptor, CD74 (Meyer-
Siegler et al., 2006). These findings indicate that small molecule inhibitors of MIF vestigial
enzymatic activity may block MIF/CD74 interaction and/or signaling initiation leading to
defective malignant cell growth, migration, invasion and tumor-associated angiogenesis
(Meyer-Siegler et al., 2006; Rendon et al., 2007).

Using a novel virtual screening strategy we have discovered a novel suicide antagonist of MIF
that is ~10x more potent than ISO-1 in blocking both MIF-dependent enzymatic and biologic
functions (Winner et al., 2008). Unlike the prior virtual screening strategy described above this
targeting strategy focused on identifying compounds that block methionine at position A2
(MetA2; the A2 refers to monomer A, position 2 from the crystal structure of MIF which is
made up of A, B and C monomers to form a catalytically active trimer). This strategy was
chosen for two reasons: 1) MetA2 resides at the base of the hydrophobic binding pocket
adjacent to the N-terminal proline that actually resides on the side of the pocket (Sun et al.,
1996); and 2) prior studies have shown that disrupting this hydrophobic substrate-binding
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pocket by insertion of a single amino acid residue adjacent to Met A2 leads to a complete loss
of enzymatic and biologic activity (Lubetsky et al., 2002).

As mentioned above, this novel compound, 4-iodo-6-phenylpyrimidine (4-IPP), is unique
compared to previously identified MIF tautomerase inhibitors in that it acts as a suicide
substrate for MIF (Winner et al., 2008). Moreover, this compound is as effective as siRNA-
mediated knockdown of MIF and ~5–10x more effective than ISO-1 in blocking migration and
anchorage-independent growth of non-small cell lung cancer cells (Rendon et al., 2007; Winner
et al., 2008). Importantly, 4-IPP delivered intraperitoneally effectively inhibits liver MIF
enzymatic activity suggesting that 4-IPP is bio-available (Winner et al., 2008). Additionally,
recent studies from our laboratory reveal that pancreatic ductal adenocarcinoma xenograft
tumors in nude mice treated with 4-IPP are dramatically smaller and significantly less
vascularized than vehicle control treated mice (unpublished observations). These findings are
consistent with earlier studies showing ISO-1-mediated inhibition of tumor-associated
angiogenesis of xenograft prostate adenocarcinoma tumors (Meyer-Siegler et al., 2006). These
findings lend further support to a potential role for MIF antagonists in inhibiting HIF-1α
stabilization in hypoxic tumors and the subsequent loss of hypoxia-induced VEGF expression
and intratumoral angiogenesis.

Conclusions and Future Prospects
It is becoming more and more evident that MIF influences several important biological
mechanisms and processes by which tumors thrive and spread. One of the most important of
these is the modulation of hypoxic adaptation within the tumor microenvironment by directly
influencing hypoxia-induced HIF-1α stabilization (Oda et al., 2008; Winner et al., 2007).
Evidence of tumor microenvironmental modulation by MIF is found in numerous human and
rodent studies demonstrating a clear and pronounced role for MIF in modulating tumor-
associated neoangiogenesis.

MIF influences both hypoxic and normoxic neovascular processes within a tumor’s
microenvironment. We envision MIF transcription and secretion being induced in hypoxic
areas of tumors where increased MIF then acts to further amplify HIF-1α expression and
activity (Figure 1). Hypoxia-induced MIF can diffuse into normoxic regions of a tumor to
further enhance VEGF and IL-8 angiogenic growth factor expression leading to
neovascularization (Figure 1). The success of angiogenesis inhibitors such as Avastin (Omuro
and Delattre, 2008;Sachdev and Jahanzeb, 2008), and the recent discovery of potent small
molecule MIF antagonists, suggest that MIF targeting may represent a novel cancer
chemotherapeutic strategy.
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VEGF  
Vascular endothelial growth factor

VHL  
von Hippel-Lindau
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Figure 1.
Scheme demonstrating hypoxic/normoxic contributions to tumor microenvironmental
adaptation by macrophage migration inhibitory factor (MIF). Hypoxia induces HIF-1α-
dependent MIF transcription and secretion in human cancers. When over-expressed, MIF
functionally enhances hypoxia-induced HIF-1α stabilization (Winner et al., 2007) and
subsequent hypoxic adaptive responses thus contributing to angiogenic, metabolic, cell cycle
and metastatic responses to low oxygen tension. Hypoxia-induced MIF diffuses into normoxic
regions of the tumor where it can additionally modulate angiogenic growth factor expression,
cell cycle progression and migration/invasion of normoxic malignant cells (Coleman et. al.,
2008; Rendon et al., 2007).

Rendon et al. Page 14

Exp Mol Pathol. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


