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Abstract
Identification of the protein constituents of cell organelles forms the basis for studies to define the
roles of specific proteins in organelle structure and functions. Over the past decade, the use of mass
spectrometry-based proteomics has dissected various organelles and allowed the association of many
novel proteins with particular organelles. This review chronicles the evolution of organelle
proteomics technology, and discusses how many limitations, such as organelle heterogeneity and
purity, can be avoided with recently developed quantitative profiling approaches. Although many
challenges remain, quantitative profiling of organelles holds the promise to begin to address the
complex and dynamic shuttling of proteins among organelles that will be critical for application of
this advanced technology to disease-based changes in organelle function.
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1. Introduction
Eukaryotic cells are organized into functionally distinct, membrane-enclosed compartments
or organelles, such as the nucleus, endoplasmic reticulum (ER), Golgi, and mitochondria.
Comprehensive knowledge of the organelle constituents, in particular proteins, can provide
important information on the structure and function of the cell. Traditionally, microscopy is
used to characterize the subcellular localization of individual proteins, employing antibodies
or expression of tagged proteins. In the post-genomics era, global analysis of subcellular
localization of large fractions of the proteome has become possible. Successful studies in yeast
employed fluorescently tagged proteins to characterize their proteome-wide subcellular
localizations (1,2). However, such tag-based microscopic analyses cannot decipher more
complex mammalian systems, primarily due to technical difficulties with the generation of
genome-wide tagging constructs that can consistently express mammalian proteins at wild type
levels.
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An alternative approach to analyze the association of proteins with specific organelles is to
isolate organelles using biochemical methods followed by identification of proteins in the
isolated organelles. Mass spectrometry (MS)-based proteomics has proven to be a powerful
tool to identify and quantify proteins in various complex protein systems, including organelles
(3). Data generated using the combined approach of biochemical isolation of organelles and
MS analysis over the past decade have established the association of a number of novel proteins
with particular subcellular fractions. However, the difficulties with purification of the organelle
in question to homogeneity as well protein identification problems with MS analysis result in
a high false identification rate. These problems have led to the development of more advanced
methods to determine protein associations among subcellular fractions (4–6). Assisted by
quantitative profiles of subcellular distributions and improved protein identification with the
new generation of mass spectrometers (7), the accuracy of protein associations with specific
organelles has been significantly improved. In this review, we focus on the evolution of
technology for organelle proteomics research, starting from simple cataloging attempts in the
early years to the quantitative organelle profiling analysis that emerged about two years ago.
Example organelles are used to discuss the application of individual methodologies, and
limitations and advantages of the approaches are provided. Perspectives regarding future
directions and challenges are also considered. For comprehensive profiles of specific
organelles, readers are referred to previously published review articles (8–10) and other
original publications in the field that cannot be covered in this review due to space limitation.

2. Cataloguing proteins from isolated organelles identifies organelle-
associated proteins and contaminants

The initial approach used to profile organelle proteins was to isolate organelles by traditional
subcellular fractionation methods, such as differential centrifugation and density gradient
fractionation, followed by identification of protein components in the target organelles using
mass spectrometry (Figure 1A). Application of this strategy over the past decade has led to the
identification of protein components of numerous organelles listed in Table 1. These studies
have provided a wealth of information on the proteins associated with particular organelle
fractions, including many novel proteins. However, the success of this method depends heavily
upon purification of the target organelles to near homogeneity with sufficient protein recovery
for in-depth analysis. It is difficult, if not impossible, to obtain a “pure” organelle from
subcellular fractionation approaches. For example, in profiling the Golgi proteome using
density gradient centrifugation and MS analysis, only 151 of the 421 total identified proteins
were annotated as either bona fide or novel putative Golgi proteins (11). In addition to the
limitations of separation approaches, organelles are frequently heterogeneous in their size and
ultrastructural properties although they are microscopically defined by their morphology.
Therefore, data acquired by such high-throughput analysis need to be further tested by other
experimental and bioinformatics approaches to remove false positive contaminants.
Unfortunately, many databases have utilized data from such cataloguing studies, and it is thus
critical to determine the basis of any protein organelle association.

In an effort to improve specificity of organelle isolation and reduce possible contaminants,
different biochemical enrichment approaches have been reported for purification of several
specific organelles (see Table 1, biochemical enrichment). For example, to isolate the
phagosome, macrophages were fed latex beads that altered their physical properties and
allowed their separation from other organelles (12,13). A similar approach has been reported
for isolation of lysosomes filled with Triton WR1339 (14) that altered the lysosomal
centrifugation properties. A more specific approach to isolate organelles is to use affinity
chromatography targeting organelle-specific proteins. Successful application was reported for
purification of a subset of lysosomal proteins carrying mannose-6-phosphate modifications.
Proteins with the mannose-6-phosphate structure were affinity purified on immobilized
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mannose-6-phosphate receptor and then identified by MS (15,16). Affinity purification can
also be achieved by specifically tagging organelle specific proteins. To profile the spliceosome,
Zhou and colleagues tagged pre-mRNA (used to reconstitute the spliceosome) with three
hairpins that can be specifically recognized by a bacteriophage coat protein MS2. Then the
tagged spliceosome, bound with the MS2 fused with maltose-binding protein, was
subsequently purified using maltose-binding protein affinity chromatography. The acquired
spliceosome was functional in splicing mRNA, and 145 spliceosomal proteins were identified
from this complex (17). A tagging strategy was also utilized to isolate plasma membrane
proteins. The plasma membrane proteins were effectively fractionated by labeling the lysine
residues of the extracellular domain of cell surface proteins with biotin tags. The labeled plasma
membrane proteins were affinity purified using streptavidin or avidin chromatography and
subsequently identified by MS (18,19). In addition to enrichment approaches, advanced
biochemical separation technology, such as free-flow electrophoresis, has been utilized to
purify mitochondria based on their surface charge with improved proteome coverage (20–
22). Although such biochemical approaches increase the purity of isolated organelles in
comparison with the use of simple, density gradient fractionation methods, complete removal
of contaminant proteins is hard to achieve. Therefore, elimination of false-positive
identifications again requires further testing, or application of other proteomic strategies
discussed below.

3. Subtractive organelle proteomics help distinguish organelle-associated
proteins from background proteins

Subtractive proteomics strategies were developed to reduce the frequency of false-positive
contaminants in organelle fractions (23). To examine proteins in a nuclear envelope fraction
by MS, a post-nuclear microsomal fraction was also analyzed in parallel. Proteins identified
in the microsomal fractions, presumably containing no nuclear envelope, were considered as
background and then subtracted from the proteins in the nuclear envelope fraction. Using this
strategy, 80 nuclear envelope proteins were identified with high fidelity. However, this
background subtraction scheme utilizes two protein lists from separate proteomics analyses,
and thus can lead to both false negative and false positive identifications. For example, a false
negative result can arisefrom subtraction of any identification in the background sample, even
if its amount is significantly less than that in the test sample. On the other hand, differences in
sample complexities and dynamic ranges between the test and background fractions can lead
to identifications in the test but not the background sample and thus generate false positive
results. Consequently, such qualitative-based subtractive proteomics have been most useful
for samples with similar compositions, and for data acquired with high performance mass
spectrometers.

Some of the limitations of early subtractive proteomics have been circumvented by the
development of quantitative proteomics approaches that allow comparison of the relative
abundance of proteins from the target and control fraction in the identical analytical
environment following sample combination. Foster and colleagues utilized SILAC-based
isotope labeling to analyze lipid rafts (24,25), with heavy isotopes for samples containing lipid
rafts and light isotopes for control samples treated with cholesterol-disrupting agents to remove
lipid rafts (26). Following cell lysis, samples with equal amounts of protein were combined,
prepared for lipid raft fractionation, and then analyzed by MS. This quantitative proteomics
analysis allowed assignment of proteins with different heavy/light ratios into three protein
groups: raft proteins (ratio > 7.5), raft-associated proteins (ratio > 3.0 but <7.5), or nonspecific
proteins (ration < 3.0). A second study to profile clathrin-coated vesicles used heavy and light
iTRAQ reagents to label an untreated sample and one in which the clathrin heavy chain was
knocked down by siRNA (27). The combined samples were processed, analyzed by MS and
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the acquired proteins with light/heavy ratios >2 were referred to as clathrin coated vesicle-
associated proteins (28). For both of these studies, the application of quantified ratios between
the sample and control fractions was the basis for subtraction of false identifications, an
advance that lowers error rates. However, the use of arbitrary thresholds rather than statistical
analyses as the basis for assignment of organelle associations remains a limitation.

A unique attribute of quantitative subtractive proteomics is that it is less dependent upon
absolute purification of organelle fractions, and thus can even be applied when ideal
fractionations are not possible. This is illustrated by the method used to monitor the relative
enrichment of proteins during purification of yeast peroxisomes (29) in which samples before
and after a specific affinity purification step were differentially labeled with light and heavy
ICAT reagent (30), respectively. True peroxisomal proteins, which were enriched during the
affinity purification, were expected to have relatively high heavy/light ratios, and statistical
analysis was then applied to the quantified proteins. Proteins with ratios significantly higher
than a statistically determined threshold were assigned to the peroxisomal protein group, while
all the others were assigned to the background group and subtracted. To monitor the enrichment
of specific organelles, similar studies targeting zymogen granules using iTRAQ and
postsynaptic density fractions using ICAT have been reported (31,32). An advantage of
quantitative subtractive proteomics is that it can be used to profile any organelle fractions that
utilize enrichment or purification steps. As shown in Figure 1 (method B), the target organelle
protein (displayed as a blue diamond) in a partially enriched organelle sample from a density
gradient fractionation is predominantly distributed in fractions 1–3 among the 11 acquired
fractions. Consequently, labeling fractions 1–3 (enriched) and fractions 4–11 (depleted) with
light and heavy isotope reagents, respectively, leads to elevated light/heavy ratios in MS
analysis of proteins associated with the target organelle. Other proteins with low light/heavy
ratios are considered as background and are subtracted from the positive dataset. Application
of the quantitative subtractive organelle proteomics represents a significant advance and has
led to improved accuracy of protein organelle profiling, even with fractions of partially purified
organelles.

4. Quantitative profiling of organelles improves the quality of organelle
assignment

Quantitative proteomics has also been used to directly monitor protein distributions among
subcellular fractions. As illustrated in Figure 1 (method C), MS analysis of all 11 partially
separated fractions can measure the relative abundance of each identified protein among
different fractions. Application of bioinformatics analysis can therefore be used to obtain a
quantitative distribution pattern for each protein among all fractions. Proteins with similar
distribution patterns are assumed to be in the same organelle. By examining the relative match
of the quantitative distribution of each protein with that of the organelle marker proteins, the
organelle association for each protein can be determined. This is akin to the traditional protein
organelle assignment using subcellular fractionation except that proteins are quantified by MS
instead of by immunoblot.

In the past several years, quantitative protein profiling has been successfully used to analyze
organelles. Profiling the centrosome was the focus of the first report that measured the relative
precursor ion intensities of peptides identified by MS in sequential sucrose gradient fractions
(33). The authors developed a method termed protein correlation profiling (PCP) to acquire
the distribution pattern among fractions for each protein. A consensus distribution pattern
shared by many known centrosomal proteins was derived that constituted a digital organelle
signature for the centrosome. This digital organelle signature was useful in predicting novel
centrosomal proteins as illustrated by the validation of 19 of the 23 novel centrosomal proteins
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using other subcellular localization approaches. A similar PCP-based approach successfully
profiled the mouse peroxisome (34).

The PCP platform was subsequently further expanded as a means to characterize multiple
organelles simultaneously, including the nucleus, ER, Golgi, ER/Golgi vesicles, plasma
membrane, and mitochondria (5). Digital signatures (or quantitative distribution patterns) for
these organelles were successfully acquired from partially separated subcellular fractions. In
addition to the PCP, the digital organelle signatures can also be acquired from the subcellular
fractions using other quantitative proteomics methods. An example is an analysis platform
termed “localization of organelle proteins by isotope tagging” (LOPIT) in which the
commercial available stable isotope labeling reagents (ICAT and iTRAQ) were used for the
quantitation (4,35). Using LOPIT, digital signatures were successfully acquired for organelles
of endoplasmic reticulum, Golgi, plasma membrane, vacuole, and mitochondria on fractions
labeled with isotopic reagents. Similarly, organelle signatures for the ER, Golgi and Golgi-
derived COPI-coated vesicles (transport vesicles between the Golgi and ER) were determined
in an independent study by simply quantifying redundant peptides for each identified protein
combined with significant bioinformatics support (6). Together, these studies demonstrate that
multiple organelles can be profiled simultaneously from a partially fractionated sample
utilizing various quantitative proteomics methods, and can allow acquisition of digital
signatures for the organelles based upon statistical analysis.

The quantitative proteomics platforms described above have successfully identified
quantitative organelle patterns, and significantly improve the quality of organelle assignment
for each identified protein. Advantages of these quantitative platforms include the fact that
organelles can be profiled without the necessity of complete purification of the target
organelles, and data from organelle profiles can be more accurately managed with quantitative
annotations. In addition, the acquired organelle signatures appear to be more robust, in large
part because they are defined by consensus distribution patterns shared by a group of known
resident proteins rather than by one or two marker protein(s) used in traditional organelle
analysis. The ability to profile multiple organelles from a single fractionation experiment
represents a significant advance, and provides the possibility to analyze the complexity of
proteins shuttling among organelles.

5. Conclusion and challenges
Although organelle proteomics has a relatively short history of about 10 years, it has developed
rapidly and has provided important information on the constitution and functional organization
of organelles. While the accuracy of assigned organelle associations has remained a serious
limitation, significant improvements have been made recently that reduce the false positive
rate. The new generation of mass spectrometers with high mass accuracy and resolving power,
particularly the FT-ICR and LTQ-Orbitrap (7), have made a major contribution to this
improvement. Data quality with new quantitative proteomic approaches is better controlled
and documented, even with the similar organelle purification methods. Application of this
advanced technology to additional organelle analyses has the potential to provide a more
comprehensive and accurate understanding of the subcellular localization of the proteome.

However, organelle proteomics must still surmount at least two major challenges. The first is
to develop strategies to profile dynamic changes in organelle constituents following different
stimuli. Although organelles are composed of resident proteins, many proteins shuttle among
different organelles, and their redistribution is critical for different organelle functions. Current
organelle profiles are often measured under steady state conditions, but evaluation of changes
in protein distribution under different conditions could provide important clues to protein
function and the specific impact of molecular perturbations, including various disease states.
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The recent emergence of quantitative organelle proteomics technologies, especially those able
to profile multiple organelles at the same time (4–6), provide the necessary tools to dissect
dynamic states of organelles by comparing different snapshots of the organelle profiles. Early
attempts at dynamic profiling are beginning to appear (36,37). However, such approaches are
still in their infancy and face the difficult task of distinguishing proteins dynamically shuttling
among organelles from the contaminants. It will require accurate and reproducible organelle
assignment for all proteins at each measured state before such comparisons are possible..

A second challenge is to determine the extent to which the composition of organelles may vary
between different cells and tissues. Several proteomics studies suggest that organelle
constituents may be distinct in different tissues (38–40). As shown in Table 1, the majority of
tissue proteomics have been conducted on liver samples. A recent publication illustrates the
power of dynamic profiling of synaptic proteins to identify protein changes within one hour
of treatment (65). The continued expansion of organelle profiling to more diversified samples
can be expected in the next few years, and is particularly important, as illustrated in the recent
publication profiling synaptic proteins (65), to the application of basic cell biological studies
to disease-based pathology.
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Figure 1. Development of new strategies for proteomics analysis to more accurately associate
proteins with specific organelles
Partial separation of 3 organelles (individual organelles displayed with different colors and
shapes) by density gradient fractionation are shown schematically on the left. The middle panel
demonstrates a typical distribution pattern of individual fractions analyzed by immunoblot
analysis of organelle marker proteins. Three different approaches to analyze the mass
spectrometric data are illustrated in the right panel: A. direct identification of proteins in
specific fractions of purified organelle; B. organelle fraction identifications after subtraction
of proteins in background fractions using different qualitative and quantitative approaches; C.
identification and quantification of proteins in all fractions, and establishment of a quantitative
distribution pattern among all of the fractions for each protein to create an organelle signature
based on the distribution of organelle marker proteins. The third approach can be used to profile
organelles and predict subcellular localization of unknown proteins.
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