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Abstract
Disruption of protein-protein interactions by small molecules is achievable but presents significant
hurdles for effective compound design. In earlier work we identified a series of thiazolidinone
inhibitors of the bacterial type III secretion system (T3SS) and demonstrated that this scaffold had
the potential to be expanded into molecules with broad-spectrum anti-Gram negative activity. We
now report on one series of thiazolidinone analogs in which the heterocycle is presented as a dimer
at the termini of a series of linkers. Many of these dimers inhibited the T3SS-dependent secretion of
a virulence protein at concentrations lower than that of the original monomeric compound identified
in our screen.

A possible therapeutic solution to the problem of bacterial resistance to existing antibiotics is
to discover drugs that will block pathogenic mechanisms rather than killing the infecting
microbe. These pathogenic mechanisms include secretion systems such as the type III secretion
system (T3SS) that deliver a variety of pathogen proteins using multicomponent oligomeric
structures. Although many of the secreted virulence proteins are species-specific, the secretion
systems are more conserved across species, indicating that disruption of such secretion systems
is potentially a broad-spectrum therapeutic strategy. Because the T3SS is not required for
bacterial growth per se, this strategy might spare commensals and limit bacterial resistance. In
contrast, antibiotics that inhibit microbial growth exert a strong selection pressure for
resistance.1 In recent years the T3SS machinery has become an aggregate target for drug
discovery.2–4

Previously our group identified a tris-aryl substituted 2-imino-5-arylidenethiazolidin-4-one,
compound 1, as a broad spectrum inhibitor of Gram-negative bacterial secretion systems
(Figure 1).5 Expansion of this chemotype enabled us to define the functional groups that could
or could not be manipulated to synthetically evolve potent new analogs. Modifications at the
heterocycle amido nitrogen were not only tolerated but gave rise to a series of novel dipeptide-
modified congeners, for example 2 and 3, that showed enhanced potency and physiochemical
properties.5, 6 We considered the functional architecture of the T3SS and speculated that these
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compounds might be fragments occupying only one of two inter-monomer binding sites.
Prompted by this hypothesis we synthesized a bis-thiazolidinone dimer, 4.

We analyzed dimer 4 for inhibition of the T3SS in S. typhimurium by monitoring secretion of
a predominant substrate, SipA, into culture supernatants. Supernatant proteins were TCA
precipitated, separated by SDS-PAGE and Western blotted with anti-SipA antibody.
Evaluation of 4 showed a substantial increase in potency over 1, with IC50 values of 5μM
versus 83 μM respectively, but the poor solubility of 4 precluded further biological
characterization of this compound. The significant decrease in the IC50 prompted us to prepare
a panel of dimers, with the goal of improving the solubility of this compound and exploring
the optimal inter-thiazolidinone distance and juxtaposition. For this panel, tethers were
constructed that varied in length, flexibility, charge, and pendent functional groups, providing
divergent presentations of the terminal thiazolidinones (Figure 2). The linear analogs 5 and 6
expand and contract overall thiazolidinone-to-thiazolidinone distance and give different
placements of the amide function. In contrast to the flexible amides, the para, meta, and
ortho diamidophenyl central cores rigidly enforce three distinct shapes (7 – 9). Insertion of a
proline (10) introduces two possible kinks in the tether depending on the populations of cis
and trans conformations. The five analogs that are cationic at physiological pH (11 – 15) can
be divided into the embedded and pendent classes. Monoamine 11 is highly flexible, whereas
guanidine 12 will be somewhat more rigid, and piperazine 13 is likely to assume the shape
determined by a di-equatorial chair conformation. The linker in compound 14 is flexible and
projects the cationic function away from the axis of the dimer. Dipeptide 15 incorporates the
beneficial sequence of the potent mono-thiazolidinone 25, 6 into the motif of 4.

The syntheses of the dimers followed either a general end-to-end7 (Scheme 1) or a center-to-
outside 8 (Scheme 2) strategy. In all the analogs, the substituted thiazolidinone ring was
assembled by the method of Klika.9

The analogs presenting pendent amino acids, 14 and 15, were prepared by essentially linear
routes (Scheme 3).

We evaluated these dimeric thiazolidinones for inhibition of the T3SS in S. typhimurium by
again analyzing secretion of the SipA protein into culture supernatants. All of the dimeric
compounds, with the exception of 7, which was too insoluble to evaluate, were comparable to
or slightly more potent than the original hit compound 1 (Table 1). These data suggest that
these compounds may bind as 4-substituted thiazolidinone monomers, with the additional ring
and intervening tether being innocuous but not overwhelmingly beneficial. Amide 4 is more
potent than the corresponding amine 11 or guanidine 12. This may indicate a role for the
carbonyl in a critical hydrogen bond and/or result from a deleterious effect of cationic charge
along the tether. The greater potency of 5 compared with 6 would argue against the carbonyl’s
position as a critical feature. Indeed, it is the longest linear amide 5 and the most rigidly kinked
ortho diaminobenzene amide 9, two uncharged analogs, that distinguish themselves among the
new compounds by having potency significantly greater than 1. Overall, compound 4 remains
the most potent of the dimers, and may represent an optimum of shape, flexibility, and carbonyl
placement for the cognate binding site. Alternative binding sites along the inter-protein
interface are also possible and would be in agreement with the lack of a single comprehensive
structure-activity trend among the dimers. The specific contribution of each individual
thiazolidinone ring to the activity of the dimer remains undetermined, and we have no evidence
that these rings are acting in tandem. While a definitive identification of the thiazolidinone
binding site(s) will be best determined by structural biology, our results are consistent with
these compounds inhibiting protein-protein interactions along a large oligomeric interface.
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Figure 1.
The original HTS hit thiazolidinone 1, two potent N-3 dipeptide analogs 2 and 3, and the dimer
4.
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Figure 2.
Dimeric analogs 5–15 use the tether to introduce spatial and functional group properties.
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Scheme 1.
Each completely substituted thiazolidinone terminates in either an amine or a carboxylic acid
that reacts with the complementary function to form the dimer.
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Scheme 2.
Each tether terminates in two free amino groups that are simultaneously assembled into the
substituted thiazolidinone.
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Scheme 3.
The synthesis of 14 and 15.
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Table 1
Inhibition of SipA secretion by the dimeric analogs of 1.

compound IC50 (μM)

1 83

4 5

5 17

6 48

7 n.d.

8 80

9 22

10 55

11 65

12 47

13 44

14 48

15 49

Bioorg Med Chem Lett. Author manuscript; available in PMC 2010 March 1.


