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Summary
Models of macromolecular assemblies are essential for a mechanistic description of cellular
processes. Such models are increasingly obtained by fitting atomic-resolution structures of
components into a density map of the whole assembly. Yet, current density-fitting techniques are
frequently insufficient for an unambiguous determination of the positions and orientations of all
components. Here, we describe MultiFit, a method for simultaneously fitting atomic structures of
components into their assembly density map at resolutions as low as 25 Å. The component positions
and orientations are optimized with respect to a scoring function that includes the quality-of-fit of
components in the map, the protrusion of components from the map envelope, as well as the shape
complementarity between pairs of components. The scoring function is optimized by our exact
inference optimizer DOMINO that efficiently finds the global minimum in a discrete sampling space.
MultiFit was benchmarked on 7 assemblies of known structure, consisting of up to 7 proteins each.
The input atomic structures of the components were obtained from the Protein Data Bank as well as
by comparative modeling based on 16 – 99% sequence identity to a template structure. A near-native
configuration was usually found as the top-scoring model. Therefore, MultiFit can provide initial
configurations for further refinement of many multi-component assembly structures described by
electron microscopy.
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Introduction
Structural description of macromolecular assemblies is essential for a mechanistic
understanding of the cell1. The scope of the problem is revealed by protein interaction studies:
The yeast cell contains approximately 800 distinct core complexes of 4.9 proteins on
average2, most of which have not yet been structurally characterized3. The human proteome
is likely to have an order of magnitude more distinct assemblies than the yeast cell. Therefore,
there are thousands of biologically relevant assemblies whose structures still need to be
determined.

Structural determination of macromolecular assemblies is a major challenge in structural
biology. X-ray crystallography can provide structures of stable assemblies at atomic
resolution4. However, there are many other assemblies that are refractory to crystallographic
determination. A low-resolution structure of these assemblies can be determined by cryo-
electron microscopy (cryoEM)5. The resolution usually ranges from 4 Å, where the backbone
of the protein can be traced, to 30 Å, where only the outer envelope of the assembly is
visible6.

The increasing numbers of the atomic and cryoEM datasets7 have stimulated the development
of computational techniques for fitting atomic structures of assembly components into a
cryoEM density map of the whole assembly. The result is a pseudo-atomic model of the
assembly that can reveal significant insights into its structure, dynamics, function, and
evolution8–12.

Here, we focus on determining the positions and orientations (i.e., placements) of multiple
atomic component models within the assembly density. When the structure of a homologous
assembly (template) is available, the placements of the components can be computed by fitting
the template into the target assembly density, superposing the target component models on the
corresponding template components, and refining the model13; 14. Alternatively, the
component positions can be determined experimentally by a number of protein labeling
methods, relying for example on gold-labeled antibodies15. However, when only a cryoEM
map and component structures are available, a general method for solving the configuration
problem is not yet available.

A sequential method for fitting multiple components into an assembly map has been
described16. The method starts by fitting the largest component into the map, followed by an
iterative fitting of the largest remaining component into the unoccupied density, until all
components are fitted. The fitting of a component into a given map can be performed manually
using interactive visualization tools17. More desirably, automated fitting methods that assess
the placement of a component by a fit between the component and a segmented6 or complete
density of the assembly can also be used; the fit is optimized over the translational and rotational
degrees of freedom of a rigid component relative to the map18. The sequential method is
applicable if the components to be fitted dominate the unoccupied densities. Unfortunately,
this condition is generally not satisfied, especially when the resolution is low, the number of
components is large, and component models are inaccurate19. For example, sequential fitting
is not expected to work for the 19S proteasome with 18 component proteins20, the mammalian
ribosome for which 30 out of 80 proteins are not present in the known archaeal or bacterial
ribosomes13, nor the ryanodine receptor isoform 1 (RyR1) for which some domains are poorly
modeled while for others no template is available21.

Here, we describe a method named MultiFit for determining the configuration of multiple high-
resolution component structures based on the quality-of-fit of each component into the density
map, the protrusion of each component from the map envelope, and the shape complementarity

Lasker et al. Page 2

J Mol Biol. Author manuscript; available in PMC 2010 April 24.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



between pairs of components. The combination of these terms reduces the ambiguity of the
final solution, compared to using any individual term on its own.

The task of sampling the configuration space is challenging because the placement of a
component depends on the placements of other components. MultiFit tackles this combinatorial
challenge by reformulating the problem as an inferential optimization over a discrete sampling
space. In outline, a discrete set of possible placements for each component is first generated
independently of other components. Next, the globally optimal combination of placements
with respect to a scoring function is found by a combination of branch-and-bound search and
the DOMINO (Discrete Optimization of Multiple INteracting Objects) inferential optimizer.
The relative translations and orientations of pairs of components in the best ranking
configurations are then refined; specifically, a refined discrete sampling space is generated by
pairwise geometrical docking between interacting components, and the optimal refined
combination of placements is again found using DOMINO. We successfully validated the
method on a simulated benchmark of 6 assemblies, consisting of up to 7 proteins each. In
addition, for a more realistic test, we determined the configuration of 4 domains in the subunit
of GroES-ADP7-GroEL-ATP7 chaperonin from Echerichia coli based on an experimentally
determined map at the resolution of 23.5 Å22. A near-native configuration scored best in 4 test
cases, 3rd best in 2 cases, and 4th best in the remaining case.

Below, we begin with a detailed description of general combinatorial optimization by
DOMINO, followed by a formal definition of the component configuration problem and the
MultiFit algorithm to solve it using DOMINO (Theory). We then demonstrate the performance
of MultiFit on the benchmark cases (Results). Finally, we discuss the implications of MultiFit
and DOMINO for structural characterization of large assemblies (Discussion).

Theory
Combinatorial optimization by DOMINO

DOMINO applies a divide-and-conquer approach to efficiently find solutions with the globally
optimal score within a discrete sampling space (Fig. 1)23; 24. The idea is to decompose the
set of variables into relatively uncoupled but potentially overlapping subsets that can be
sampled independently form each other, followed by efficiently gathering the subset solutions
into the global minimum. The strength of this approach derives from the decomposition
procedure that helps reduce the size of the search space from exponential in the number of
components in the whole system to exponential in the number of components in the largest
subset. Next, we describe DOMINO’s application to the minimization of a scoring function
F corresponding to a sum of single-body terms {αi} and pairwise terms {βi,j}:

where {yi} are the variables being optimized; for example, in MultiFit, these variables are the
positions and orientations of the components. The scoring function F is represented by a
graphical model G=(V, E). The graphical model G of the scoring function F is a graph whose
nodes V correspond to the variables {yi} and edges E connect all pairs of nodes. The weight
of a node corresponding to yi is αi and the weight of an edge between nodes corresponding to
yi and yj is βi,j. Thus, the scoring function F is the sum of all node and edge weights.

The problem of finding the minimum of the scoring function F is equivalent to the maximum
a posteriori problem in a graphical model. This problem is known to be NP-hard
(nondeterministic polynomial-time hard) for an arbitrary graph G25; NP-hard is a class of
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decision, search, and optimization problems whose computing time increases at least
exponentially with the number of optimized variables. When a graphical model has at most
one path between any two given nodes (i.e., it does not contain cycles and thus is a singly
connected graphical model or a tree), it can be efficiently optimized by the belief-propagation
algorithm26.

Unfortunately, the belief-propagation algorithm is not guaranteed to converge to the globally
optimal solution for graphs with cycles, such as the graphical models used for the MultiFit
application. Therefore, to ensure finding the global minimum of G efficiently, we apply a
divide-and-conquer approach. First, the variables to be optimized are decomposed into smaller
relatively uncoupled but potentially overlapping subsets, using a junction tree construction
algorithm (the decomposition step). Second, each variable is discretized (the variable sampling
step); for example, by uniform sampling. Third, the discrete states of the individual subsets are
constructed and gathered into the globally optimal solution, using the belief-propagation
algorithm (the gathering step). Graph theory provides efficient algorithms for decomposition
(i.e., junction tree construction) and gathering (i.e., belief-propagation). Next, we elaborate on
each of the three steps.

In the decomposition step, the graphical model G is converted into a tree T whose nodes U are
potentially overlapping subsets of variables {yi} (Fig. 1). Importantly, for any two non-adjacent
subsets in T that share some variables, the subsets that connect them must also contain these
variables (i.e., T is a junction tree). In such a case, it is possible to gather the discrete states of
individual subsets into the globally optimal solution using the belief-propagation algorithm.
For maximum efficiency, we aim toward decomposing the graphical model into the junction
tree such that the size of the largest subset is minimal, which is an NP-hard problem. We use
the minimum-degree method that was shown empirically to result in smallest subsets for sparse
graphical models27.

In the variable sampling step, a discrete set of values for each variable is created. The details
of this discretization may depend on the scoring function F. Most generally, uniform sampling
over a relevant range of values can be used. A potentially better possibility is to use the union
of the local minima of scoring functions spanned by the variables in the subsets containing the
discretized variable.

In the final, gathering step, the HUGIN version of the belief-propagation algorithm28 is applied
to the junction tree T to find the global minimum of F (Fig. 1). The computational complexity
of the HUGIN algorithm is O(|U| ·Ls), where s is the size of the largest subset of T and L is the
number of values of a node in the graphical model G.

The belief-propagation algorithm is based on passing messages between the nodes (i.e., subsets
of variables) of the junction tree. A subset is allowed to send a message to a neighbor subset
if it has received messages from all of its remaining neighbor subsets. Thus, propagation of
messages is initiated in subsets connected only to a single subset (i.e., the leaf subsets) and
proceeds to the neighboring subsets until some subset receives messages from all of its
neighbors (i.e., the root subset). The content of a message to a target subset is a vector of the
minimal values of the partial scoring function F over the variables in all previously visited
subsets and the target subset, for each combination of values of the remaining variables in the
target subset; a partial scoring function over a subset of variables includes only those terms of
F that involve these variables. Messages from the root subset are then sent back to the other
subsets, completing the message passing process when the leave subsets receive back the
messages from the root subset. For messages from the root subset, the partial scoring function
is the scoring function F (because all subsets were already visited), and thus each subset that
received a message from all other subsets can infer the values of its variables in the global
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minimum. The efficiency of message passing derives from enumerating combinations of values
for only those variables that are shared between different subsets.

MultiFit: Simultaneous fitting of multiple components into a density map of their assembly
The goal is to find the positions and orientations (i.e., placements) of components (e.g., sub-
complexes, proteins, domains, secondary structure segments), represented at atomic resolution,
within a cryoEM density map of their assembly. We express this structure characterization
challenge as a combinatorial optimization problem. Next, we outline a representation of the
modeled system, a scoring function, and an optimization algorithm.

Representation—The assembly density map is represented by a three-dimensional (3D)
grid, in which every voxel is assigned an estimated density value. The components are
represented by their atoms and remain rigid throughout the entire optimization process (Fig.
2).

Scoring—We evaluate potential configurations based on the quality-of-fit of individual
components in the density map, the protrusion of each component from the map envelope, as
well as the shape complementarity between pairs of components.

Optimization—The component configuration that optimizes the scoring function is identified
by a combinatorial optimization protocol, consisting of three stages: (i) anchor graph
construction, (ii) coarse-grained sampling, and (iii) fine-grained sampling (Fig. 2). In anchor
graph construction, the density map is discretized into regions and the connectivity between
them is calculated. In coarse-grained sampling, the sampling space is first discretized by fitting
each of the components into each of the map regions and selecting a number of top-ranking
placements for each component in each region. Next, a branch-and-bound search through all
mappings of components to regions combined with DOMINO finds top 20 scoring
configurations. In fine-grained sampling, each of these top configurations is refined by
DOMINO; a refined sampling space is generated for each coarse configuration by docking
pairs of its interacting components and selecting only those placements that are approximately
consistent with the initial coarse configuration.

Scoring function for MultiFit
The score of placements of N components 29 in an assembly density map is:

ϕ1(xi) is the quality-of-fit of xi into the assembly density map D. In the extreme case, the

configuration that optimizes  may occupy only the highest density region in the
assembly density map. To overcome this problem, we add two geometric terms (ϕ2 and ϕ3) to
the scoring function. The component protrusion term ϕ2 (xi) scores how well xi is placed inside
the density envelope. The interaction term ϕ3 (xi, xj) scores the pairwise shape complementarity
between the structures xi and xj, and also accounts for their excluded volume.

Quality-of-fit term—The fit of a given structure xi into the assembly density map D is usually
assessed by a cross-correlation measure between the densities of xi and the assembly5; 19.
Here, we use the “normalized fitting score” C as implemented in Mod-EM (Eq. 2 in ref.30);
the density of xi is simulated at the same resolution as the assembly density map D, using the
uniform-sphere model. However, C is insufficient for comparing placements of different
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components because small domains have a better chance of higher cross-correlation with the
map31. Thus, we calculate the quality-of-fit of a component into a map by expressing C as a
Z-score, (C − m)/s where m and s are respectively the mean and standard deviation of a reference
distribution of C. The reference distribution is generated by optimally fitting randomly selected,
similarly-sized protein structures into simulated maps of randomly selected, similarly-sized
protein structures (F. Davis, M.S. Madhusudan, N. Eswar, A. Sali, and M. Topf, unpublished
results).

Interaction term—The pairwise shape complementarity score between structures xi and xj
is calculated as a weighted sum of a reward for interaction areas and a penalty for steric clashes
between the components32; 33. Specifically, the reward is the total number of surface atom
pairs of xi and xj within a distance cutoff and the penalty is a weighted sum of all clashing pairs
of atoms of xi and xj. To speed up the calculation of the reward, we first classify atoms as buried
or exposed, by placing each atom on a grid and dividing the grid into a surface and 4 core shells
according to the closest distance from the molecular surface (the surface shell contains all grid
points that are at most half of the map resolution away from the surface)32. The reward is
calculated by indexing the surface atoms of xi in a geometric hash table34;35, querying the
hash table for each surface atom of xj, and summing the number of hits to get the reward. To
calculate the steric clash penalty, we determine the accessibility of each atom of xi (and xj)
using the grid of xj (xi). If an atom in xi (xj) is located within the surface (k=0) or the k-th core
shell of xj (xi), we add (k+1)·27 to the penalty. The sum of the penalty score of xi with respect
to xj and the penalty score of xj with respect to xi is divided by 2 to obtain the steric clash
penalty. Due to fitting errors, the correct configuration of components might include some
minor clashes between interacting components. These clashes are not significantly penalized
because of the thickness of the surface shell and because of the evaluation of the favorable and
penalty terms using only mainchain atoms. The choice of the shell thickness and the weight of
the penalty score were chosen by trial-and-error.

Component protrusion—The protrusion of a component from the assembly envelope is
defined to be the negative value of the shape complementarity score between the component
surface and the assembly envelope. The assembly envelope is calculated by representing each
density voxel above a threshold as an atom and calculating the Connolly surface36 of this
collection of atoms.

Optimization for MultiFit
Construction of anchor graph—The centroids of L approximately equally-sized regions
of density voxels are calculated from the density map D using the QVOL procedure of
SITUS37; a density voxel belongs to the region with the closest centroid. When L equals N
and the components are of similar size, the centroids of the regions correspond approximately
to the centroids of the N assembly components. These points are the nodes of the anchor graph.
We then calculate connectivity between the anchor points (i.e., the edges of the anchor graph);
a pair of anchor points (ai, aj) are connected if (i) the distance between ai and aj is below a
predefined threshold (by default, 1.5 the sum of radii of the two largest components in the
system); and (ii) the variance of the gradient of the density along a line of voxels that connects
ai with aj is below a predefined threshold (by default, two times the variance of the assembly
density).

Discretization step in coarse-grained sampling—We construct a discrete sampling
space of component placements, represented by a set of M′ placements (by default, 50) for each
of the N components in each of the L regions. Thus, each set of placements for all components
in region i (Ai) contains M=M′·N “local” placements around an anchor point ai. Here, we set
L to N, although L can also be larger than N.
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In detail, for each component j, the discrete sampling space is constructed as follows.
Placements around each anchor point ai are sampled by optimizing C in a cube surrounding
the anchor point (the edge length of the cube is half the resolution of the map). This optimization
is performed by Mod-EM30, starting with a random starting orientation of the component
centered at the anchor point. Next, the sampled placements for all anchor points are clustered
based on their pairwise Cα RMSD values: The highest scored placement (by C) initiates the
first cluster and is its pivot. The closest remaining placement is either joined with the first
cluster for which its Cα RMSD with the cluster’s pivot is less than the threshold (half the
resolution of the map) or initiates its own cluster otherwise. The process is repeated with the
best scoring non-clustered placement until all placements are clustered. The best scoring
placement from each cluster is assigned to the set of placements Ai,j corresponding to the closest
anchor point ai; each anchor point is assigned at most M′ placements.

Optimization step in coarse-grained sampling—We find the optimal combination of
placements of components by optimizing the scoring function S within the discrete sampling
space constructed in the previous step. The global minimum of S is the minimum of the optimal

solutions for each of the  mappings of components to anchor points Π={πk}, where πk is a
function that maps a component j to an anchor point i (i = πk (j)); formally, we solve

, where xj are placements of component j in the set Aπk(j),j, as
constrained by mapping πk.

Naively, this optimization could be achieved by a nested double loop in which the outer loop
consists of enumerating the mappings and the inner loop consists of applying DOMINO to the
scoring function S constrained by the given mapping. However, enumerating over all possible
mappings becomes computationally expensive as the number of components increases. To
improve the efficiency of MultiFit, we replace the enumeration by a branch-and-bound
procedure that eliminates some of the mappings and makes use of partial results (Fig. 2).

The scoring function F optimized by DOMINO for each mapping ( ) is
a simplified S that does not contain uninformative interaction terms ϕ3 corresponding to
physically non-interacting components (Fig. 2); specifically, we eliminate interaction terms
between pairs of components that are mapped to unconnected anchor points. Importantly, it is
this simplification that results in a relatively “sparse” graphical model G, thus allowing it to
be optimized efficiently by DOMINO.

Discretization step in fine-grained sampling—We construct a refined discrete sampling
space for a coarse configuration found in coarse-grained sampling, ( ). The refined set
of placements of component j is first initialized with the placements in Aπ(j),j, as found in
coarse-grained sampling. We then enrich this set of placements by sampling binding of
component j to neighboring components {w} with PATCHDOCK32. A PATCHDOCK-
produced binding mode of component j to component w (xj) is added to the refined set of
placements of component j if (i) the distance between the centroid of xj and the centroid of

 is below half the resolution of the map and (ii) xj is consistent with the density map boundaries
(i.e., if ϕ2(xj) is below a predefined threshold). Finally, the refined set of placements of
component j is re-ranked by the quality-of-fit score and clustered according to Cα RMSD
(described above).

Optimization step in fine-grained sampling—The optimal combination of component
placements is found by DOMINO, through optimizing the scoring function S within the refined
discrete sampling space.
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Results
Benchmark with simulated maps

Benchmark—We tested MultiFit on a benchmark of 6 simulated test cases. The assembly
density maps were simulated at 20 Å resolution using the PDB2VOL program of SITUS38
with voxel size of 3 Å. The input atomic structures of the components included native structures
from the Protein Data Bank (PDB39) as well as models calculated by comparative modeling
using MODELLER-9v3 (http://salilab.org/modeller)40 based on related template structures
with sequence identity ranging from 16% to 99%. The accuracy of the individual comparative
models is assessed using Cα RMSD and native overlap to the corresponding native structure.
Native overlap (NO3.5) measures the percentage of Cα atoms of the model that are within 3.5
Å to the corresponding Cα atoms in the native structure. The native overlap was calculated by
superposing the model on the corresponding native structure using a rigid-body least-squares
minimization, as implemented in the model. superpose command of MODELLER-9v3.

We use three scores to assess the accuracy of modeled configurations at different levels of
resolution: First, the mapping score is the number of substitutions needed to convert the
assessed mapping of components to anchor points to the native mapping of components to
anchor points (the Hamming distance); the native mapping has a mapping score of 0. Second,
the configuration score is the fraction of the components positioned correctly; we define a
component as positioned correctly, if the distance between its centroid and the corresponding
reference centroid is smaller than half of the map resolution. Third, the assembly placement
score is the average of its components placement scores, each of which is composed of a
distance and an angle to the reference placement; the distance is calculated between the
centroids of the placements and the angle is the axis angle of the rotation matrix between the
two placements41. Because the components are kept rigid throughout the optimization process,
the reference components used in the assessment of an assembly model are the component
models superposed on the corresponding components in the native assembly (i.e., the reference
placement). We chose not to use the Cα RMSD measure to assess assembly models because
the significance of Cα RMSD values depends strongly on the number of assembly components
and their sizes42.

Determining the configuration of Arp2/3—To illustrate MultiFit, we first describe in
detail a challenging application to Arp2/3 (Table 1, Figs. 2 and 3). The Arp2/3 complex of
seven proteins is crucial for regulating the initiation of actin polymerization and the
organization of the resulting filaments43. A density map was simulated from the Arp2/3 crystal
structure with ATP and Ca2+ (PDB entry 1TYQ44). The atomic structures of the Arp2/3
components (proteins) were modeled using templates with sequence identity ranging from 16%
to 99%; the Cα RMSD error for these models varied from 0.4 Å to 21.4 Å and their native
overlap varied between 38% and 100%; we intentionally used inaccurate comparative models
to benchmark the robustness of our method with respect to errors in the component
conformations.

In the final output of MultiFit, the near-native model with an assembly placement score of (7.1
Å, 25°) was ranked 4th among all the sampled configurations. In coarse-grained sampling, this
model was ranked 10th, with a configuration score of 4/7 and an assembly placement score of
(10.8 Å, 136°). The centroids of the individual components were positioned in the vicinity of
their native centroids; however, the orientations of some components were incorrect, resulting
in steric clashes between components. In fine-grained sampling, the top 20 scored models were
refined. The refinement procedure was able to resolve many of the clashes in the model, which
in turn improved its global score, resulting into the final rank of 4. Next, we elaborate on the
individual steps of the optimization protocol.
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In anchor graph construction, we computed 7 anchor points from the density map using the
QVOL program of Situs38. The average distance between the anchor points and the centroids
of the corresponding reference components was 7.2 Å. We then identified pairs of anchor points
that are sufficiently close to allow components placed in their vicinity to interact with each
other. The procedure pruned 12 of the possible 21 pairs (i.e., 7 · 6/2). The remaining 9 pairs
allowed identification of 9 of the 12 native contacts between the 7 components.

In the discretization step of coarse-grained sampling, we fitted by Mod-EM each component
in the neighborhood of each anchor point. We assessed the accuracy of the discretization by
the placement score of the best placement of each component (i.e., the placement with the
lowest Cα RMSD to the corresponding reference). These best placement scores ranged from
(2.5 Å, 30°) to (23.0 Å, 177°). As expected, as the model accuracy measured by Cα RMSD
and native overlap decreases, so does the rank of the best placement. The most accurate
placement was ranked within the top 50 solutions for each component by the normalized fitting
score C.

In the optimization step of coarse-grained sampling, we first represented the scoring function
as a graphical model. The globally optimal component configuration was then found by a
branch-and-bound search in conjunction with the DOMINO optimizer. We utilized DOMINO
for decomposing the simplified graphical model into an anchor junction tree of subsets of
anchor points. The anchor junction tree contained 4 subsets of 2, 3, 3, and 3 anchor points. The
branch-and-bound procedure resulted in 486 complete mappings for the 7 components (out of
7! = 5040 possible mappings). For each of these 486 mappings, the optimal placements of the
7 components were inferred by the gathering algorithm of DOMINO. A configuration with a
mapping score of 0, a configuration score of 4/7, and an assembly placement score of (10.8 Å,
136°) was ranked 10th. The total running time with pre-computed scoring terms was
approximately 70 minutes on a single CPU; it takes approximately 2 hours to pre-compute the
scoring function terms.

This prediction demonstrates some of the benefits and problems with coarse-grained sampling.
For example, an accurate placement of Rpb2 and ARPC5 could not have been obtained solely
based on the quality-of-fit due to non-native conformations of their models (Table 1).
Nevertheless, global optimization of the scoring function for the entire assembly did result in
the correct placement for these two components. However, global optimization can also make
a prediction less accurate. For example, ARPC4 was placed inaccurately, because of the need
for shape complementarity with inaccurately modeled neighbors Rpb1, ARPC1, ARPC2, and
ARPC5. Such problems can be partly resolved by finer discretization of the sampling space
(i.e., the fine-grained sampling, below), in addition to flexible fitting (not attempted here).

In fine-grained sampling of a given model, we repopulated the sampling space for the
corresponding complete mapping with pairwise docking solutions between the interacting
components. Specifically, we enriched the set of placements by sampling binding modes of a
component to the corresponding placed components of its neighboring anchor points using
PATCHDOCK32. We then ran DOMINO again to find the optimally refined configuration.
The assembly placement score of the refined configuration is (7.1 Å, 25°), which clearly
demonstrates the improvement in the accuracy of the relative orientations. For example, the
placement accuracy of ARPC4 improved from (23.0 Å, 177°) to (11.8 Å, 46°). The improved
placement was ranked only 499 in the pairwise docking between ARPC4 and ARPC1.
However, global optimization relying on restraints derived from coarse-grained sampling (i.e.,
shape complementarity between interacting components and protrusion from the map
envelope) resulted in this placement occurring in the best-scoring assembly configuration.
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To validate the contribution of the shape complementarity score, we optimized a scoring
function lacking this term (ϕ3 in the scoring function S, Theory). The top-ranking configuration
had a mapping score of 3, a configuration score of 3/7, and an assembly placement score of
(42.5 Å, 94°). A model with a mapping score of 0 was not found in the top 50 solutions. This
comparison demonstrates the positive contribution of the shape complementarity score to the
accuracy of the generated assembly models.

Benchmark—To assess MultiFit more comprehensively than is possible by a single example,
we also applied it to a benchmark that included 5 additional simulated test cases. In all 6
simulated tests, a model with the mapping score of 0 was found within the top 4 solutions
(Table 2); in fact, a model with the mapping score of 0 was the best scoring model in all cases
for which the structures of the individual components were modeled based on templates with
sequence identities higher than 60%. The assembly placement score of the model with the
mapping score of 0 ranged between (2.6 Å, 4°) and (7.1 Å, 25°). These results demonstrate the
utility of MultiFit in predicting the configuration of atomic components in a low-resolution
density map of their assembly. Next, we report the benchmark results at each of the 5 steps of
the algorithm.

In anchor graph construction, the average distance between the predicted anchor point and the
centroid of the corresponding reference component in the near-native configuration was
between 4 Å and 7 Å.

In the discretization step of coarse-grained sampling, a near native configuration was sampled
within the discrete sampling space in all test cases. However, this configuration was not
necessarily ranked highly according to our scoring function, due to steric clashes between
interacting components.

In the optimization step of coarse-grained sampling, a model with the mapping score of 0 was
found in the top 10 solutions in all test cases; and in 4 of the 6 cases it was the best-scoring
solution. The assembly placement score of the model with the mapping score of 0 ranged from
(2.6 Å, 4°) to (10.8 Å, 136°). The prediction accuracy depended on the component accuracy
(Table 2). As the accuracy of the component models is decreased, the rank of the correct
configuration as well as its placement score also become worse. The benchmark shows that
coarse-grained sampling is able to determine component positions quite accurately, but
frequently fails to result in accurate relative orientations. The main reason is the coarseness of
the discrete sampling space, as demonstrated by the Arp2/3 and 1z5s examples. In the latter
case, we obtained the near-native assembly (i.e., (5.9 Å, 113°)) with the native components
and a less accurate configuration (i.e., (7.7 Å, 92°)) with distorted components.

In the discretization step of fine-grained sampling, the PATCHDOCK docking program32 was
able to sample near-native interaction modes between pairs of components. However, these
interactions were generally not ranked highly by PATCHDOCK. For example, in the 1z5s case
with distorted components, the most accurate docking prediction of chains C and D against
chain A ranked 405 and 138, respectively.

In the optimization step of fine-grained sampling, the refined models were at least as accurate
as the most accurate models generated in coarse-grained sampling, sometimes much more so.
In particular, the accuracy of the relative orientations between pairs of interacting components
improved. For example, in the 1z5s case with distorted components, the assembly placement
score improved from (7.7 Å, 92°) to (6.4 Å, 62°). The refined model contained placements
derived from the docking prediction of chains C and D against chain A. These placements were
ranked 405 and 138 by PATCHDOCK; reweighing the placements by the normalized fitting
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score C increased their ranks to 78 and 43, respectively. DOMINO finally correctly selected
these placements for the final best-scoring configuration.

Benchmark with an experimentally determined map
To test the method in a realistic setting, we benchmarked it again by modeling the component
configuration for an assembly with an experimentally determined cryo-EM map.

GroEl-GroES domains—GroEL/GroES is a chaperonin that aids protein folding in E.
coli. GroEL consists of two back-to-back rings of 7 identical subunits, each of which contains
three domains (i.e., the equatorial, apical, and intermediate domain). GroES is a ring of seven
identical single-domain proteins that cap GroEL. We applied MultiFit to model the
configuration of the four domains in an interacting pair of the GroEL and GroES subunits.
Atomic coordinates for the four domains were obtained from a crystal structure of the GroEL-
ADP-GroES complex (ADP-state; PDB entry 1AON45). The corresponding density was
segmented from a cryoEM map of the bacterial GroES-ADP7-GroEL-ATP7 chaperonin
determined at 23.5 Å resolution (ATP-state; EMDB ID 104622). The crystal structure of the
ADP-state was fitted to the density (as one rigid body) and used as a reference for assessment.
The main structural differences between the ATP- and ADP-states are the downward rotation
of the intermediate domain and the counterclockwise twist of the apical domain22.

The configuration with the mapping score 0 was ranked third, with an assembly placement
score of (13.9 Å, 160°). A sampling space of approximately 14 million combinations was
searched in 16 minutes of CPU time. The fine-grained sampling was able to generate a more
accurate model with an assembly placement score of (11.0 Å, 84°). We note in passing that
fitting all 49 domains (i.e., 3 × 7 × 2+7) into the density of both rings would presumably benefit
from the added information in the subunit-subunit interactions within and across rings;
however, to test MultiFit in a more challenging setting, we deliberately modeled only a single
symmetry unit consisting of 3 GroEL domains and 1 GroES domain.

Discussion
We described MultiFit, a computational method for determining the positions and orientations
(i.e., placements) of multiple atomic components in a cryoEM density map of their assembly.
The problem is formulated in terms of combinatorial optimization, solved by our inferential
optimizer DOMINO that guarantees finding the global minimum within a given discrete
sampling space. The input is a density map and a set of atomic components, which are kept
rigid throughout the optimization process. For a given configuration of components, the scoring
function measures the quality-of-fit of the atomic structures in the map, the protrusion from
the map envelope, as well as the shape complementarity between pairs of components. The
optimization process consists of the coarse- and fine-grained sampling. Each sampling stage
starts with a discretization step, achieved respectively by fitting and docking, followed by an
optimization step that relies on DOMINO. Both DOMINO and MultiFit are available as part
of Integrative Modeling Platform (IMP) (http://salilab.org/imp46; 47).

Accurate MultiFit’s predictions for 7 test cases demonstrated its utility (Table 2). Specifically,
our benchmark demonstrated the utility of MultiFit in predicting the configuration of
components with known folds within density map at resolutions between 20 Å to 23.5 Å; the
average assembly placement score for the near native configurations was (5.3 Å, 38°). MultiFit
was able to determine the assembly configuration even in cases where the fitting scores were
ambiguous. Examples include Arp2/3 (Table 1) and the 1z5s test case with distorted
components (Table 2).
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Next, we discuss (i) the benefits of simultaneous multiple component fitting, (ii) inaccuracies
resulting from the discrete sampling space, and (iii) broad utility of combinatorial optimization.

Benefits of simultaneous fitting
Most methods for modeling assemblies in the context of a cryoEM map rely on a segmented
assembly map and/or a model of the whole assembly. In the absence of such information,
sampling the configuration space is computationally challenging, as the placement of each
component may depend on the placements of other components. For example, the configuration
of the Arp2/3 assembly with modeled components could not have been solved by iteratively
fitting the largest remaining component in the unoccupied region using Mod-EM30. The
configuration also cannot be modeled accurately without the component protrusion and the
interaction terms in the scoring function used by MultiFit. However, by considering the
placements of all components simultaneously, the protrusion of a component from the
assembly envelope, and the shape complementary between the interacting components, we
were able to determine the assembly configuration with an assembly placement score of (7.1
Å, 25°).

Inaccuracies resulting from the discrete sampling space
MultiFit prediction will be accurate when a near-native configuration exists in the discrete
sampling space and corresponds to the global minimum of the scoring function. These two
conditions depend, in turn, on the accuracy of the atomic models of the individual components
and the choice of anchor points. Next, we elaborate on these two dependencies.

Accuracy of component models—The atomic models of the individual components
might be inaccurate due to modeling errors and/or induced fit. As the accuracy of the
component models decreases, the discretized sampling space (either by fitting or docking) is
less likely to contain near-native placements (i.e., the sampling problem) and the global
minimum is less likely to correspond to the most accurate sampled configuration (i.e., the
scoring problem). In other words, these errors may affect the accuracy of the predicted assembly
configuration due to scoring and sampling inaccuracies. One such example is the pair of 1z5s
test cases (Table 2): The inputs to the first test case were the native components and the
assembly density. The discretization steps of coarse- and fine-grained sampling resulted in
near-native placements and the top ranked configuration detected by DOMINO had a relatively
accurate assembly placement score of (5.0 Å, 67°). The inputs to the second test case were
models with average Cα RMSD error of 6.3 Å. The discrete sampling spaces generated in the
coarse- and fine-grained sampling contained less accurate placements. As a result, the utility
of the scoring terms (especially the protrusion from the map envelope and the shape
complementarity) decreased. The assembly placement score of the final assembly model with
distorted component models was significantly worse (6.4 Å, 62°) than the assembly placement
score of the assembly model with the native components. More accurate assembly models may
be obtained by using a shape complementarity score that is less sensitive to component model
errors and/or by an explicit treatment of the component conformations. To this end, techniques
might be adopted from flexible fitting of a component into a density map41; 48 as well as from
flexible molecular docking49;50.

Accuracy of anchor points—Given the QVOL algorithm, the utility of the anchor points
is affected by the variances in the size and shape of the components (data not shown). The
utility of the anchor points is also affected by the resolution of the map (data not shown). To
obtain a discrete sampling space that contains a near-native configuration, we sample candidate
placements of each component in a neighborhood of each anchor point. However, there are
many assemblies for which the variation in component sizes is too large for reasonable
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neighborhood sizes. We intend to improve the utility of anchor point calculation by considering
component sizes and density map segmentation51; 52.

Combinatorial optimization in structural biology
Modeling challenges in structural biology can generally be expressed as optimization
problems46. These optimization problems often fall into a general class of NP-complete
problems (Theory)53. Combinatorial optimization is a type of optimization in which the set of
feasible solutions is discrete, and the goal is to find the best possible solution within this discrete
set. Combinatorial optimizers have been suggested for various modeling tasks, such as
sidechain packing54–56, threading27, ab initio RNA folding57, and prediction of quaternary
structures of multi-protein complexes58. These methods can in principle be re-formulated as
a combinatorial optimization of a scoring function represented by a graphical model, benefiting
from graph theory techniques23; 24. Such a formulation has already been proposed for the
sidechain packing problem56.

Our DOMINO method can in principle be applied to many problems in structural modeling,
from low-resolution assembly modeling to sidechain refinement. Its strength derives from the
junction tree algorithm that helps reduce the size of the search space from exponential in the
number of components in the whole system to exponential in the number of components in the
largest subset. More specifically, the computational complexity is O(| U | · Ls) where |U| is the
number of subsets in the junction tree, L is the size of the largest subset, and s is the number
of discrete values of a single variable in the graphical model. Fortunately, at the granularity
level used in MultiFit’s application to protein assemblies in our benchmark, the theoretical
complexity of the junction tree algorithm has not been a limiting factor. Nevertheless, in other
applications that involve a dense graphical model of the scoring function and extensively
sampled variable values, incomplete sampling of a discrete space may have to be accepted.

In conclusion, MultiFit and DOMINO can help to bridge the gap between the atomic structures
of the individual proteins and the cryoEM maps of their assemblies. In particular, they can
provide initial configurations for further refinement of many multi-component assembly
structures described by electron microscopy41; 48; 59; 60.
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Figure 1. DOMINO outline
(1) The DOMINO optimizer is illustrated with the scoring function F of 8 variables {yi}
composed of a sum between 3 single body terms {αi} and 11 pairwise terms {βi, j}. The scoring
function is encoded in the graphical model G. (2) (I) Decomposition of the graphical model
results into a junction tree T 23; 24. The graphical model is first triangulated; a graph is
triangulated if there are no cycles with more than three edges without a chord (a chord is an
edge connecting two non-adjacent nodes in a cycle). The triangulation procedure adds edges
(dotted lines) to the graphical model until no cycle is chordless. The triangulated graphical
model is then converted into a complete subset graph. The nodes of the complete subset graph
are maximum cliques in the triangulated graphical model (gray circles); a maximum clique is
a sub-graph whose nodes are connected directly to each other and are not all part of another
clique. The weight of an edge in the complete subset graph is the number of the shared variables
between the adjacent subsets, as indicated; edges of weight zero are not shown. Next, the
junction tree is the maximum spanning tree of the complete subset graph; a maximal spanning
tree of a graph spans all of the nodes without cycles, using a subset of the original edges with
the maximal sum of their weights. (II) The sampling space of each variable is discretized. (III)
Finally, the globally optimal solution of F is gathered from enumerated subset states by passing
messages between subset nodes. The numbers on the edges indicate a valid sequence of
message passing.
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Figure 2. MultiFit outline
The MultiFit algorithm is illustrated using an assembly between models of Rpb1 (red), Rpb2
(yellow), ARPC1 (light green), ARPC2 (blue), ARPC3 (gray), ARPC4 (dark green), and
ARPC5 (purple) (PDB entry 1tyq). The component – template sequence identities and Cα
RMSDs are indicated. The input to MultiFit is the assembly density map (grey mesh) and the
atomic structures of the individual components (top left). The output is a ranked list of assembly
models that optimize the MultiFit scoring function (one model is shown on bottom right). (1)
The anchor points (the 7 labeled nodes) are constructed for the input density map by QVOL;
the 9 grey edges indicate pairs of anchor points that are sufficiently close to allow components
placed in their vicinity to interact with each other. (2) The sampling space of component
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placements is discretized by fitting each of the 7 components around each of the 7 anchor points
(regions), and selecting a number of top-ranking placements for each component in each region;
the small colored spheres indicate placement centroids. (3) The optimal combination of
component placements is found by optimizing the scoring function S for each mapping of
components to anchor points using DOMINO. (3.1) For efficiency, we replace the enumeration
by a branch-and-bound procedure that eliminates some of the mappings and makes use of
partial results. In the branch stage, we first decompose the anchor graph into an anchor junction
tree using DOMINO’s decomposition algorithm (Fig. 1). The top 60% mappings of
components to anchor points for each subset of anchor points (partial mappings) are found and
stored by iterating over all possible partial mappings; the color of the circle indicates which
component is mapped to the anchor point. The partial mappings are scored by partial scoring
function S including only the terms involving the mapped components. Complete mappings
consistent with the stored partial mappings are generated efficiently with a hashing procedure
(not described). (3.2) Next, for each of these complete mappings, the optimal combination of
placements for the 7 components is found by DOMINO; the color of the solid circles in the
component junction tree indicates the component mapped to the corresponding anchor point
in the anchor junction tree. The molecular model shown has a mapping score of 0 and the rank
of 10. (4) The top 20 scoring coarse models are further refined. A refined sampling space is
generated for each coarse configuration by docking pairs of its interacting components and
selecting only those placements that are approximately consistent with the initial coarse
configuration. (5) DOMINO is applied again to find the optimal combination of placements
for the 7 components; the molecular model shown has a mapping score of 0 and the rank of 4.
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Figure 3. MultiFit results for Arp2/3
(a) An assessment of the final model with the mapping score of 0. The model has the 4th smallest
value of the scoring function S (the 4th model in (b)). The modeled and reference placements
of the individual components are compared (Results); the corresponding placement scores are
indicated below each comparison. (b) Five top ranked models for Arp2/3. The atomic
representations of the models are displayed in the top row. The bottom row shows the centroid
and the rotation axis for each component; the corresponding rank, the mapping score, the
configuration score, and the assembly placement score are indicated below each model.
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