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Summary
Dengue virus belongs to the family Flaviviridae and is a major emerging pathogen for which the
development of vaccines and antiviral therapy has seen little success. The NS3 viral protease is a
potential target for antiviral drugs since it is required for virus replication. The goal of this study was
to identify novel dengue virus (type 2; DEN2V) protease inhibitors for eventual development as
effective anti-flaviviral drugs. The EUDOC docking program was used to computationally screen a
small-molecule library for compounds that dock into the P1 pocket and the catalytic site of the
DEN2V NS3 protease domain apo-structure (Murthy et al., 1999) and the Bowman-Birk inhibitor-
bound structure (Murthy et al., 2000). The top 20 computer–identified hits that demonstrated the
most favorable scoring “energies” were selected for in vitro assessment of protease inhibition.
Preliminary protease activity assays demonstrated that more than half of the tested compounds were
soluble and exhibited in vitro inhibition of the DEN2V protease. Two of these compounds also
inhibited viral replication in cell culture experiments, and thus are promising compounds for further
development.
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The mosquito-borne dengue virus (DENV), a member of the family Flaviviridae and genus
Flavivirus, appears to be expanding its range, increasing in disease severity, and has recently
been deemed by the US National Institutes of Health as a potential serious public health threat
to the United States (Morens and Fauci, 2008). The U.S. Centers for Disease Control and
Prevention estimate that ~2.5 billion people worldwide are at risk for dengue infection;
annually 50–100 million dengue infections occur with ~500000 cases of dengue hemorrhagic
fever (DHF)/dengue shock syndrome (DSS) resulting in ~25000 deaths. Primary dengue fever
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is caused by any of four distinct serotypes of the virus (dengue virus type 1–4). It is postulated
that subsequent infection by a different serotype may promote more serious forms of the disease
such as DHF/DSS (Alvarez et al., 2006; Halstead, 2003). There are no approved vaccines or
antiviral therapies to combat this disease. The increasing spread and severity of DENV
infections emphasize the importance of drug discovery strategies that efficiently and cost-
effectively identify antiviral drug leads for development into potent drugs.

The ~ 11 kB positive-strand RNA genome of DENV is transcribed and translated as a single
polyprotein that is co- and post-translationally cleaved by cellular and viral proteases (Fields,
1996). The N-terminal region of the non-structural 3 protein (NS3) is a serine protease (Bazan
and Fletterick, 1989; Chambers et al., 1990) that binds a required NS2B cofactor and cleaves
the polyprotein after dibasic residues in the NS2A–NS2B, NS2B-NS3, NS3-NS4A, and NS4B-
NS5 cleavage sites (Chambers et al., 1990). The NS2B-NS3 protease is required for viral
replication (Falgout et al., 1991) and serves as a promising target for DENV antiviral drug
development (Leyson et al., 2000, Sampath et al., 2009). While other studies have identified
protease inhibitors by either high throughput screening or assaying compounds that mimic the
peptide substrate (Chanprapaph et al., 2005; Ganesh et al., 2005; Leung et al., 2001; Yin et al.,
2006a 2006b), this study used a virtual screen to predict which chemicals in a commercially-
available library could inhibit the dengue virus protease. Testing of computer-predicted hits
using a rapid in vitro DEN2V protease assay confirmed the activity of several compounds that
inhibited the NS2B-NS3 protease; two compounds further demonstrated antiviral activity in
cell-based replication assays.

The increased availability of three-dimensional protein structures and chemical compound
libraries has expanded the role of high-throughput computational screening in discovering new
drug leads (e.g., Laird and Blake, 2004). The chemical library chosen for this screen was a
subset of an in-house database from Mayo Clinic that contained 2.5 million three-dimensional
structures of small molecules that were reportedly available from chemical vendors. Two
additional filters were imposed on this dataset. First, due to concerns regarding cellular uptake
and cell membrane impermeability to ions (Ghose et al., 2001, Alberts et al., 2002) only neutral
non-zwitterionic compounds (at pH 7.4) were passed to the filtered chemical library Second,
only compounds readily purchasable from highly reputable chemical vendors were retained in
the filtered chemical library. Using the EUDOC program (Pang et al., 2001 and 2008; Wang
and Pang, 2007), we computationally screened this filtered chemical library against two
previously reported dengue virus type 2 (DEN2V) protease crystal structures, the NS3 protease
domain alone (PDB identifier 1BEF; Murthy et al., 1999) and the NS3 protease domain
complexed with the Bowman-Birk inhibitor (a soybean protein that has been shown to inhibit
the dengue protease) (PDB identifier 1DF9; Murthy et al., 2000). The EUDOC program
performed virtual screens by systematically and separately docking each small molecule from
our chemical library into the protease active site and the P1 pocket. Docked conformations of
each compound were assigned an intermolecular interaction “energy” score that included
charge-charge and Van der Waals interaction energy terms (Pang et. al. 2001). From the
ensemble of docked conformations for each ligand, the conformation with the lowest “energy”
score was retained as representative of the bound structure. Twenty potential protease inhibitors
that had some of the lowest energy scores were purchased from large chemical suppliers (e.g.,
Sigma-Aldrich) for further characterization.

Compounds identified by the EUDOC program as potential protease inhibitors were tested for
solubility and protease inhibition activity. Of the 20 potential inhibitors that were purchased,
13 were soluble at 100 μM in aqueous cleavage buffer (200 mM Tris [pH 9.0], 20% glycerol)
and used in subsequent NS2B-NS3pro inhibition tests. Potential inhibitors were initially
dissolved in DMSO and diluted with cleavage buffer to their desired final concentration. In
addition to analysis by light scattering to determine compound solubility, protease inhibition
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assays were performed before and after filtering and high-speed centrifugation to remove
precipitated compounds. Poorly soluble compounds generally produced false positive results,
in that protease inhibition appeared to occur in pre-centrifuged solutions that contained
precipitants (Fig. 1A, inhibitors 13 and 154). Soluble compounds generated similar protease
inhibition results both before and after centrifugation (Fig. 1A, inhibitor 6). Compounds with
poor solubility were removed from consideration to prevent false positives, and all assays were
performed on solutions that were “cleared” by centrifugation to remove precipitants. In vitro
DEN2V protease activity assays have been previously described (Leung et al., 2001;Yusof et
al., 2000). The DEN2V NS2B cofactor linked to the protease domain of NS3 (NS2B-NS3pro;
plasmid obtained from Dr. Padmanabhan, Georgetown University) was expressed and purified
as previously described (Yusof et al., 2000). Protease activity was confirmed by cleavage of a
dibasic fluorophore-linked peptide substrate, Boc-Gly-Lys-Arg-AMC (Fig. 1, substrate +
enzyme control relative to substrate control). DEN2V NS2B-NS3pro (100 nM) was incubated
with each soluble compound (100 μM, 1% DMSO) and 100 μM Boc-GKR-AMC (Bachem,
USA) for 30 minutes at room temperature. Protease activity was determined by monitoring
fluorescence intensity from AMC (excitation 390 nm, emission 465 nm) generated by cleavage
from the peptide substrate. Protease reactions performed with 100 μM aprotinin, a known
broad-spectrum serine protease inhibitor, showed fluorescence levels that were similar to that
of the “substrate alone” background control (data not shown).

In vitro assay results indicated that more than half of the tested compounds showed reduced
in vitro NS2B-NS3pro activity as compared to the “no inhibitor” control (Fig. 1B). The five
compounds with the greatest in vitro inhibition of DEN2V protease (Fig. 1B) were further
characterized for the ability to reduce DEN2V replication in cell cultures. These virus
replication studies used the New Guinea C (Sabin, 1952; ATCC, Manassas, Virginia) and
Thailand/16681/1964 (Halstead and Simasthien, 1970) strains of DEN2V. To test small
molecules for inhibition of viral replication we optimized an ELISA-like cell-based replication
assay that monitored production of DEN2V viral proteins. For this assay, confluent LLC-MK2
cells in 96-well plates were infected with DEN2V at MOI 0.2. Final concentrations of
compounds ranged from 1nM to 100 μM, and were added to the cell monolayer at the time of
infection. All assays were performed in quadruplicate. After 48 hr incubation at 37°C, cells
were fixed, treated with polyclonal mouse DEN2V primary antibody (R. Tesh, Arbovirus
Reference Collection, UTMB), washed, and incubated with HRP-conjugated anti-mouse
secondary antibody. Following secondary antibody incubation, cells were washed and
developed with 50 μL per well of the ELISA substrate 3,3′,5,5′-tetramethylenzidine (Sigma).
Reactions were incubated at room temperature for 5 minutes, stopped with 50 μL 1N HCl, and
results determined by measuring optical density at 450 nm in a microplate reader.

In parallel experiments, MTT [3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium
bromide] toxicity assays were performed to determine possible cellular toxicity of the
compounds. In these assays, compound was removed and MTT added to the cells. MTT
reduction in the mitochondria of living cells yielded purple crystals which when solublized can
be quanitified spectroscopically to determine drug toxicity as a function of living cells
(Mosmann 1983; Gerlier and Thomasset, 1986). Effective concentrations (EC50) and cytotoxic
concentrations (CC50) were calculated from nonlinear regression fitting (GraphPad Prism 4,
Graphpad, SanDiego, CA) of signal vs concentration data points to the standard dose response
equation Y=Bottom + (Top−Bottom)/(1+10^(Log(EC50)−X)). In this equation, X was the log
of compound concentration, Y was the response signal, and Bottom and Top refer to plateaus
of the sigmoid response curve.

Using the above cell-based virus replication assay, the small molecules ARDP0006 and
ARDP0009 were observed to have the best efficacy among the tested compounds at inhibiting
DEN2V replication (Table 1). ARDP0009 had no apparent toxicity at the concentrations tested
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thus a lower limit to its toxicity was based on the maximum tested concentration. Selectivity
indices (SIs; selectivity index = CC50/EC50) calculated for ARDP0006 and ARDP0009 were
comparable to the SI calculated for ribavirin (Table 1), a nucleoside analog that has
demonstrated inhibition of the DENV 2′-O-methyltransferase NS5 (Benarroch et al., 2004)
and hepatitis C virus replication when used in combination with interferon.

The EUDOC-predicted bound conformations of ARDP0006 and ARDP0009, the two
compounds that were active against DEN2V in cell culture, were analyzed to identify
intermolecular contacts that might contribute to the observed inhibition. ARDP0006 was
predicted to interact with active site and P1 pocket residues, including Gln 35 (adjacent to the
active site), His 51 and Ser 135 of the active site, and Gly 151 and Gly 153 of the P1 pocket
(Fig. 3A). Additional contacts (< 4Å) were made between ARDP0006 and protease residues
Ser 131, Pro 132, Gly 133, Thr 134, Asn 152, and Val 155. ARDP0009 was also predicted to
interact with the protease active site and P1 pocket residues, including Gln 35, His 51, Ser 135,
Tyr 150, Gly 151, and Gly 153 (Fig. 3B). Additional contacts (< 4Å) were made between
ARDP0009 and protease residues Leu 115, Asn 152, Val 155, and Ala 160. Both small-
molecule inhibitors were also docked into the recently solved structure of active DEN2V
NS2B-NS3 protease (PDB identifier 2FOM; Erbel et al., 2006). Although the NS2B-NS3
protease complex and the NS3 protease had several significant structural differences, docking
predictions identified similar intermolecular contacts between the inhibitors and the DEN2V
protease structures. The intermolecular contact analysis supported the inference that protease
inhibition observed in vitro was responsible for inhibition of virus replication observed in the
cell-based assays. However, further investigations will be required to unequivocally delineate
the molecular mechanism of virus replication inhibition of our protease inhibitors.

In summary, we report a strategy that correctly predicted the protease inhibitory activity of
several small molecules and assays to rapidly validate the computer predictions. This strategy
incorporated virtual screening of a chemical library to identify small molecules that fit into
defined target sites (active site and P1 pocket) on the DEN2V NS3 protease crystal structure.
These computer “hits” were tested for solubility and in vitro protease inhibition to establish
activity and mechanism of inhibition. Several EUDOC “hits” demonstrated in vitro inhibition
of the DEN2V NS3 protease. Significantly, these compounds were subsequently analyzed for
antiviral activity in cell-based replication assays, in which two protease inhibitors showed
dengue antiviral activity in cell culture. While others have reported limited in vitro studies to
identify DEN2V protease inhibitors (Ganesh et al., 2005), we extended these studies to analyze
protease inhibitors for cellular toxicity and inhibition of viral replication in cell culture. This
strategy reflects a logical progression for early-stage drug discovery that can be used to
successfully identify candidate antiviral drugs.
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nonstructural

NS2B-NS3pro 
NS3 protease with NS2B cofactor

DHF  
dengue hemorrhagic fever

DSS  
dengue shock syndrome

GKR  
glycine-lysine-arginine

AMC  
7-amino-4-methylcoumarin
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Figure 1.
In vitro DEN2V NS2B-NS3 protease inhibition assay. (A) Representative protease inhibition
assays performed both before and after centrifugation and filtration to “clear” the solutions of
precipitated compounds. (B) Protease inhibition assay of soluble compounds in cleared
solutions; compounds were predicted by EUDOC virtual screening as potential DEN2V
inhibitors. Compounds were assayed for in vitro protease inhibition along with “no
inhibitor” (i.e., protease + substrate) and no protease (i.e., substrate alone) controls. Protease
activities of each reaction were normalized to the “no inhibitor” control.

Tomlinson et al. Page 7

Antiviral Res. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Dose response curves for compounds that demonstrated antiviral activity in cell-based ELISA
replication assays. Toxicity was measured using a standard MTT assay. Curves were fit using
Graphpad Prism 4. (A) Efficacy and toxicity dose response curves for ARDP0006. (B) Efficacy
dose response curve for ARDP0009. Since this compound had no observed toxicity at the
concentrations tested, its toxicity curve was not included.
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Figure 3.
EUDOC-predicted models of bound conformations of compounds that demonstrated dengue
antiviral activity in cell culture. (A) ARDP0006 and (B) ARDP0009 were predicted to interact
with active site (pink) and P1 pocket (green) residues of the DEN2V protease. Images were
generated with SWISS PDB (Guex and Peitsch, 1997).
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