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Coding Elements in Non-Syndromic Cleft Lip and Palate Cases
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Abstract

Non-syndromic cleft lip and palate (NS CLP) is a complex birth defect resulting from multiple genetic
and environmental factors. We have previously reported the sequencing of the coding region of genes
in the fibroblast growth factor (FGF) signaling pathway, in which missense and non-sense mutations
contribute to approximately 5%-6% NS CLP cases. In this article we report the sequencing of
conserved non-coding elements (CNES) in and around 11 of the FGF and FGFR genes, which
identified 55 novel variants. Seven of variants are highly conserved among >8 species and 31 variants
alter transcription factor binding sites, 8 of which are important for craniofacial development.
Additionally, 15 NS CLP patients had a combination of coding mutations and CNE variants,
suggesting that an accumulation of variants in the FGF signaling pathway may contribute to clefting.
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INTRODUCTION

Comparing the human genome with distantly related species is a productive method to identify
evolutionarily conserved non-coding elements (CNEs) [Venkatesh et al., 2006]. CNEs contain
regulatory regions important for transcription, translation, recombination, replication and
repair; however, a large portion of these CNEs contain sequence whose function is not
understood [Emison et al., 2005; Ponting and Lunter, 2006]. Although conservation over
evolutionary distance does suggest functionality, not all functional sequence will be conserved
[Ponting and Lunter, 2006]. It has been suggested that 3-15 mammalian genomes are sufficient
to detect transcription factor binding sites, although comparisons among vertebrates such as
chicken or zebrafish are regularly utilized [Eddy, 2005; Emison et al., 2005]. The identification
of functional elements through CNEs does have obstacles; nevertheless, cross-species
comparison is the best approach available.

Studies using comparative genomics have shown that 1.5% of the human genome codes for
exons whereas 3% is devoted to CNEs, suggesting CNEs are highly important locations to
explore for mutations [Emison et al., 2005]. Interestingly, approximately 20-30% of patients
with rare Mendelian diseases have no identifiable mutations in the coding region of the gene
associated with the disease, suggesting non-coding regions may harbor the etiologic mutation
in a significant fraction of cases [Emison et al., 2005]. Using systematic comparisons of
orthologous sequences, a common non-coding variant was identified in the receptor tyrosine
kinase, RET, gene in families with Hirschsprung disease (HSCR), a multifactorial, non-
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Mendelian disorder [Emison et al., 2005]. HSCR is one of the first complex diseases to be
genetically dissected; the complex, multigenic nature of HSCR makes it comparable to non-
syndromic cleft lip and palate (NS CLP) and suggests we should utilize similar approaches to
identify genes and mutations in NS CLP patients.

NS CLP is a common, complex disease affecting ~1/700 births worldwide, with substantial
variation based on geographic origin and socioeconomic status [Jugessur and Murray, 2005;
Lidral and Moreno, 2005]. We previously reported on the sequencing of the coding regions of
the fibroblast growth factors (FGFs) and receptor (FGFR) genes in NS CLP patients [Riley et
al., 2007]. Thirty-seven point mutations were identified in the exons or at the intron—exon
junctions of the FGF and FGFR genes, nine of the mutations were either missense or nonsense,
accounting for about 5-6% of the cases examined. Comprehensive examination of the
functional elements within each FGF or FGFR locus affords an opportunity to identify
additional variation and/or genes playing a critical role in CLP and could have substantial
clinical implications. This study explores the CNEs in FGF and FGFR genes for contributions
to NS CLP.

METHODS

Samples

Ninety-one DNA samples from cases in the Philippines and another 93 from cases born in lowa
were utilized for the sequencing studies. The 184 cases are isolated, non-syndromic unilateral
cleft lip (n = 1), bilateral cleft lip (n = 2), unilateral CLP (n = 60), bilateral CLP (n=102), and
CLP with unknown laterality (n= 19). Whole blood samples were collected by venipuncture.
Subjects were reviewed by JCM to exclude any with syndromic features and have been
described in more detail [Vieira et al., 2005]. Clinical aspects of sample collection have been
previously described [Murray et al., 1997; Schultz et al., 2004]. The University of lowa IRB
gave approval for sample collection (approval numbers 9701068, 199804081, and 200003065)
in conjunction with local approval in the Philippines.

Conserved Non-Coding Elements Selection

Sequencing

CNEs (2-10) were selected for the following genes: FGF2, FGF3, FGF4, FGF7, FGF8, FGF9,
FGF10, FGF18, FGFR1, FGFR2, FGFR3 (see the online Supplementary Table | at
http://www.interscience.wiley.com/jpages/1552-4825/suppmat/index.html.). Regions in the
introns of the gene and up to 140 kb outside the gene were chosen using VISTA genome
browser and the UCSC genome browser (see the online Supplementary Figs. 1-11 at
http://www.interscience.wiley.com/jpages/1552-4825/suppmat/index.html for Vista plots).
Regions were first selected based on greater than 50% conservation between human and frog.
Next, regions were selected that had greater than 80% conservation between human and mouse
and were longer than 100 bp in length. Finally, 3'- and 5’-UTRs were selected (FGFR2 and
FGFR3) that were not fully sequenced in the original coding region sequencing project. A total
of 52 regions were sequenced.

Cycle sequencing was performed in a 10 ul reaction using 0.25 ul of ABI Big Dye Terminator
sequencing reagent (version 1.1), 0.5 ul of 5 uM sequencing primer, 0.5 pl DMSO, 1 pl of 5x
buffer, and 6.75 pl of ddH,0. Primers were designed from public sequence and are available
on the Murray lab web site at http://genetics.uiowa.edu. Following a denaturation step at 96°
for 30 sec, reactions were cycle sequenced at 96°C for 10 sec, 55°C for 5 sec, and 60°C for 4
min for 40 cycles. Cleanup with magnetic beads by standard protocols and injected on an
Applied Biosystems 3730 capillary sequencer.
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Sequence Analysis

Chromatograms were transferred to a Unix workstation (Sun Microsystems, Inc., Mountain
View, CA), base called with PHRED (version 0.961028), assembled with PHRAP (version
0.960731), scanned by POLYPHRED (version 0.970312) and the results viewed with the
CONSED program (version 4.0) [Nickerson et al., 1997].

RESULTS

Fifty-two CNEs were sequenced encompassing approximately 30,000 nucleotides of sequence
in 184 NS CLP patients. Fifty-five novel variants that have not been previously reported in
dbSNP were identified (listed in the online Supplementary Table Il at
http://www.interscience.wiley.com/jpages/1552-4825/suppmat/index.html) as well as 33
previously reported SNPs. Seven of the novel variants (found in five different CNES) are
conserved across eight species or more and are highlighted in bold in Table I. The five regions
containing the seven highly conserved variants were chosen for additional sequencing in 184
controls from the Philippines (90) and a European ancestral population (94). Four of the seven
variants were found in only one case and no controls, and the other three variants were found
in multiple cases and controls.

Of the 55 novel variants, only one (FGF2 CNE 5 C > T) falls into a transcription factor binding
site (FOXO1A) identified by the UCSC genome browser in the HMR Conserved Transcription
Factor Binding Sites track. This track contains the location and score of transcription factor
binding sites conserved in the human/mouse/rat alignment. The C > T nucleotide change in
the FOXOIA binding site was found in 8 unrelated lowa NS CLP cases and 4 of 159 controls
(all 4 are Caucasian).

Additional analyses using the Genomatix MatInspector program (http://www.genomatix.de)
were performed to search for transcription factor binding sites disrupted or created by the novel
variants. These analyses predict 14 of the variants create new transcription factor binding sites,
16 of the variants remove transcription factor binding sites, and 3 of the variants change a
binding site to a new binding site. Of the predicted transcription factor binding sites affected
by the novel variants, eight are implicated in craniofacial development or the FGF signaling
pathway: CBFA1/2, ARNT, PAX3, SOX5, STAT, MSX1/2, DLX, and MAZR. These
transcription factors are highlighted in bold in Table 11.

To further characterize possible functions of the novel variants, each variant was examined for
presence in a human miRNA target site using the Memorial Sloan Kettering Human miRNA
Targets—Search and View (http://chio.mskcc.org/cgi-bin/mirnaviewer/mirnaviewer.pl). This
online program creates a track on the UCSC genome browser. None of the identified variants
were located in predicted miRNA target sites.

DISCUSSION

Mutation searches in human disease should include both coding regions of genes and
neighboring non-coding elements [Emison et al., 2005]. We have thoroughly searched both
the exons and non-coding conserved elements of 12 FGF and FGFR genes for mutations in
NS CLP patients. Although many novel mutations in the exons have been identified in patients
with NS CLP, these are likely rare mutations that explain, or partially explain, the clefting
phenotype in those individuals. The results from CNE sequencing also identified many novel
mutations, 31 of which are located in transcription factor binding sites (Table 11). The remaining
25 novel variants should not be excluded from playing a role in etiology as these variants may
be located in elements whose functional consequences that have not yet been characterized.
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Of the 31 variants that alter transcription factor binding sites, 8 are located in binding sites
important for craniofacial development. The change of CBFAL to a CBFA2 site in the FGF2
CNE2 may be important as mutations in CBFA1 (OMIM 600211) cause cleidocranial dysplasia
(defects in the development of the skull and collar bone) and can be associated with cleft palate.
A change such as this may affect the regulation of the FGF2 gene in the craniofacial region.
ARNT (AhR nuclear translocator) has been significantly associated with non-syndromic
clefting [Kayano et al., 2004]. Mutations in PAX3 cause craniofacial-deafness-hand syndrome
and it has been demonstrated that Pax3 is a downstream target of Fgf signaling, suggesting a
potential feedback loop [Asher et al., 1996; Firnberg and Neubuser, 2002; Monsoro-Burq et
al., 2005]. Knockout mice for Sox5 have cleft palate and it has been shown that SOX proteins
regulate the expression of Fgf genes [Smits et al., 2001; Luster and Rizzino, 2003; Murakami
et al., 2004]. The signal transducer and activator of transcription (STAT) proteins are
downstream regulators of the FGF signaling pathway. Mutations in both MSX1 and MSX2 have
been identified in NS CLP patients and are critical regulators of craniofacial development [van
den Boogaard et al., 2000; Jezewski et al., 2003; Vieira et al., 2005]. The DLX genes are
involved in craniofacial development and knockout mice for DIxI, DIx2, DIxI/DIx2, DIx5, and
DIx5/DIx6 all have cleft palate in a proportion of the embryos [Qiu et al., 1997; Depew et al.,
1999; Robledo et al., 2002]. The MAZR protein pairs with BACH2 to bind DNA and activate
transcription; this pair is known to bind upstream of the FGF4 gene and may regulate other
FGF and FGFR genes [Kobayashi etal.,2000].

The seven variants that were highly conserved between eight species or more were also
sequenced in control individuals and four of the seven variants which were found in only one
case and were not found in the controls sequenced (Table I). The other three variants were
found in both cases and controls. It is interesting to note that four of the highly conserved novel
variants were identified in the FGF10 gene and association studies for FGF10 had borderline
significant results with a P-value of 0.02 [Riley et al., 2007].

Kryukov et al. [2005] suggest that most individual variants in conserved non-coding regions
are only slightly deleterious and do not have a large effect on fitness. However, they also
propose that cumulatively, these CNE variants may have a significant impact on the fitness of
the individual [Kryukov et al., 2005]. Of the highly conserved (>8 species) CNE variants and
the CNE variants located in transcription factor binding sites implicated in craniofacial
development, we find only two individuals with multiple CNE variants (lowa-5 and lowa-10,
Table I11). The lowa-10 individual has two CNE variants in transcription factor binding sites
(MAZR and FOXOIA) and the lowa-5 individual has three CNE variants in transcription factor
binding sites (PAX3, BARX2, and FOXOIA). Expanding the data to include all CNE variants
identifies many individuals with multiple accumulated variants; however, it is difficult to
determine if this accumulation has an affect on the fitness of the individual without functional
testing. Further studies investigating the accumulation of CNE variants in individuals with NS
CLP will help to determine the component of contributions of this class of variant to this
common, complex disease.

Next, it has been suggested that coding and non-coding mutations work synergistically [Emison
etal., 2005]. Table 11 lists 5 Filipino and 10 lowa individuals that have both CNE variants and
coding variants. While this is consistent with the hypothesis that coding and non-coding
variants may work synergistically, functional testing is needed to accurately predict their
effects.

Currently, it is not possible to discriminate between those mutations that contribute to disease
and those that are normal polymorphisms without testing for function. We can make

generalizations based on frequency in case versus control populations, however, this criterion
may not be appropriate for a significant fraction of mutations because of penetrance and gene—
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gene interaction issues that must be accounted for in complex diseases such as CLP. In the
future it will be necessary to design an assay to screen these CNE variants for functionality.
Most recently, Fisher et al. [2006] developed an efficient method to test CNE function using
a transposon-based transgenic assay in which the CNE can be screened for control of GFP
expression in vivo in the zebrafish [Fisher et al., 2006]. An extension of this method would be
to compare the wild-type CNE expression to the mutant CNE expression to determine if the
identified variants alter gene expression.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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