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ARGONAUTE 1 (AGO1) slices endogenous messenger RNAs
(mRNAs) during both microRNA (miRNA)- and short interfering
RNA (siRNA)-guided post-transcriptional silencing. We have
previously reported that AGO1 homeostasis is maintained through
the repressive action of miR168 on AGO1 mRNA and the
stabilizing effect of AGO1 protein on miR168, but siRNA-mediated
AGO1 regulation has not been reported. Here, we show that
AGO1-derived siRNAs trigger RNA DEPENDENT RNA POLYMERASE
6 (RDR6)-, SUPPRESSOR OF GENE SILENCING 3 (SGS3)- and
SILENCING DEFECTIVE 5 (SDE5)-dependent AGO1 silencing,
which also requires DICER-LIKE 2 (DCL2) and DCL4. By varying
the efficacy of miR168-guided AGO1 mRNA cleavage, we show
that siRNA-mediated AGO1 silencing depends on correct miRNA
targeting, pointing to coordinated regulatory actions of the miRNA
and siRNA pathways during the maintenance of AGO1 homeostasis.
Finally, our results reveal that dcl2, dcl3 and dcl4 mutations
similarly affect post-transcriptional gene silencing (PTGS) mediated
by a sense transgene and PTGS mediated by inverted repeats,
validating the branched pathway model proposed previously.
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INTRODUCTION
ARGONAUTE 1 (AGO1), one of 10 AGO proteins in Arabidopsis,
is the main AGO protein mediating short interfering RNA (siRNA)-
directed post-transcriptional gene silencing (PTGS) and microRNA
(miRNA)-directed regulation (Vaucheret, 2008). miRNAs are
processed from partially self-complementary miRNA transcripts
whereas siRNA production from sense transgenes, viruses and
endogenous trans-acting siRNA (TAS) loci entails stabilization of
their non-self-complementary transcripts by SUPPRESSOR OF
GENE SILENCING 3 (SGS3) followed by RNA DEPENDENT RNA
POLYMERASE 6 (RDR6)-mediated conversion to double-stranded
RNA (dsRNA; Chen, 2005; Jones-Rhoades et al, 2006; Mallory
et al, 2008). SILENCING DEFECTIVE 5 (SDE5), a homologue of a
human messenger RNA (mRNA) export factor, also influences

the production of siRNA through an unidentified mechanism
(Hernandez-Pinzon et al, 2007). Once mature, miRNAs and siRNAs
load onto AGO1, which shows a preference for small RNAs
beginning with 50-uridine (Montgomery et al, 2008a; Mi et al, 2008;
Takeda et al, 2008), and guide AGO1-mediated cleavage and
translational repression of complementary RNAs (Baumberger &
Baulcombe, 2005; Qi et al, 2005; Brodersen et al, 2008).

AGO1 mRNA is regulated by the miRNA miR168 in an AGO1-
dependent manner (Rhoades et al, 2002; Vaucheret et al, 2004).
Plants expressing a miR168-resistant version of AGO1 (4m-AGO1),
which contains silent mutations that increase the number of
mismatches between miR168 and AGO1 mRNA without altering
AGO1 protein sequence, show developmental defects that can be
rescued on expression of a compensatory miRNA (4m-miR168)
that restores nucleotide pairing (Vaucheret et al, 2004). In
addition to this regulatory loop, two additional mechanisms—
transcriptional co-regulation of MIR168 and AGO1, and
preferential stabilization of miR168 by AGO1—contribute to
AGO1 homeostasis (Vaucheret et al, 2006).

Although AGO1 interacts with numerous siRNAs and mediates
siRNA-guided PTGS, siRNA-mediated AGO1 regulation has not
been reported. Several deep-sequencing analyses have shown
that AGO1 transcripts give rise to both sense and antisense
21-nucleotide siRNAs that map downstream from, and generally
in phase with, the miR168 cleavage site, a feature atypical of most
miRNA targets (Lu et al, 2005; Axtell et al, 2006; Rajagopalan et al,
2006; Kasschau et al, 2007). This uncharacteristic production of
siRNAs prompted us to test whether, in addition to miR168-directed
regulation, AGO1 mRNA might be sensitive to siRNA-directed
regulation. Here, we show that AGO1-derived siRNAs trigger
AGO1 silencing in an RDR6-, SDE5- and SGS3-dependent manner,
and that production of AGO1-derived siRNAs requires the action of
DICER-LIKE 2 (DCL2) and DCL4, similar to viruses (Bouche et al,
2006; Deleris et al, 2006) and inverted repeat (IR) transgenes
(Dunoyer et al, 2005, 2007; Fusaro et al, 2006). miR168-directed
regulation of AGO1 is necessary for robust siRNA-directed AGO1
silencing, indicating that both the miRNA and siRNA pathways are
involved in the maintenance of AGO1 homeostasis.

RESULTS AND DISCUSSION
AGO1 is hyper-susceptible to cosuppression
Plants showing typical ago1 mutant developmental defects,
including serrated leaves, phyllotaxy defects, floral organ defects
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and reduced fertility (Fig 1), were obtained by the transformation
of wild-type Arabidopsis with either an 8-kb AGO1 genomic
fragment that contains all of the upstream and downstream
regulatory elements required for the function of AGO1
(pAGO1:168-AGO1; Vaucheret et al, 2004), an AGO1 cDNA
expressed under the control of the strong cauliflower mosaic virus
35S promoter (p35S:168-AGO1), a promoterless AGO1 cDNA
(Dp:168-AGO1), or the 50 557 nt of the AGO1 mRNA translation-
ally fused to Beta-glucuronidase (GUS) and expressed from the
AGO1 promoter (pAGO1:168-AGO1-GUS ). Developmental
defects of ago1 mutants were not observed when these constructs

were introduced in the PTGS-deficient rdr6 mutant (Fig 2),
suggesting that these defects result from AGO1 cosuppression.

The cosuppression of AGO1 follows the previously established
traits of cosuppression. For example, AGO1 cosuppression
efficiency was high using the strong 35S promoter (p35S:168-
AGO1; Fig 2), which is consistent with reports showing that
cosuppression efficiency depends on the strength of the transgene
promoter (Van Blockland et al, 1994; Vaucheret et al, 1995; Que
et al, 1997; Schubert et al, 2004). In addition, AGO1 cosuppres-
sion frequency using the pAGO1:168-AGO1-GUS construct,
which shares 557 nt of homology with the endogenous AGO1
mRNA, was lower than that using the pAGO1:168-AGO1,
p35S:168-AGO1 and Dp:168-AGO1 constructs, which all share
more than 3 kb of homology with the endogenous AGO1 mRNA
(Fig 2), which is consistent with reports showing that cosuppres-
sion efficiency decreases when shortening the length of homology
between the transgene and the endogenous gene (Vaucheret et al,
1997; Crete & Vaucheret, 1999). Furthermore, the developmental
defects of cosuppressed plants were more pronounced in
pAGO1:168-AGO1-GUS plants than in pAGO1:168-AGO1,
p35S:168-AGO1 and Dp:168-AGO1 plants (Fig 1), probably
because the pAGO1:168-AGO1-GUS transgene, unlike the three
other transgenes, does not encode a full-length functional AGO1
protein. Indeed, cosuppression degrades only a fraction of the
target mRNA; therefore, it is easier to reach low levels of the target
protein when only the endogenous mRNA encodes a functional
protein than when both the endogenous gene and homologous
transgene are contributing to the final pool of functional protein.
Consistently, reduction of AGO1 mRNA accumulation below
detectable levels was observed only in pAGO1:168-AGO1-GUS
cosuppressed transformants (Fig 1; data not shown).

Cosuppression efficiency has been reported to vary greatly
from gene to gene for reasons that are not fully understood. The
frequency of AGO1 cosuppression triggered by the p35S:168-
AGO1 construct (89%) was higher than the cosuppression
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Fig 1 | Ectopic AGO1 copies trigger cosuppression. (A) Varying degrees

of developmental defects resulting from AGO1 cosuppression, including

spoon-shaped cotyledons, serrated leaves, altered floral phyllotaxis,

floral organ defects and reduced fertility. Constructs that potentially

encode a full-length AGO1 protein triggered mild and moderate

phenotypes whereas constructs that encode a truncated AGO1 protein

fused to Beta-glucuronidase (GUS) triggered moderate and severe

phenotypes. (B) GUS staining and AGO1 messenger RNA (mRNA)
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AGO1-GUS transformants show that both the AGO1-GUS transgene and

the endogenous AGO1 gene are cosuppressed. GUS intensity and the

levels of AGO1 mRNA show that the severity of developmental defects

correlates with increased cosuppression. The blot was hybridized for

ACTIN2 as a control. AGO, ARGONAUTE; WT, wild type.
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frequencies generally reported for 35S-driven transgenes (usually
20–40%), although it was not as high as that triggered by
the p35S-NIA2 construct (99%; Elmayan et al, 1998). Further-
more, the frequency of AGO1 cosuppression triggered by the
pAGO1:168-AGO1 and Dp:168-AGO1 constructs was higher
than that reported for other genomic or promoterless transgenes,
which probably trigger cosuppression only when inserted
into highly transcribed areas of the genome (Van Blockland
et al, 1994; Vaucheret et al, 1995). The high frequency of AGO1
cosuppression suggests that, in addition to high transcription
levels, determinants unique to AGO1 promote the triggering of
AGO1 cosuppression.

miR168 complementarity modulates AGO1 cosuppression
AGO1 mRNA contains a miR168 complementarity site that is
cleaved through the slicer activity of the AGO1 protein (Vaucheret
et al, 2004; Baumberger & Baulcombe, 2005; Qi et al, 2005). As
transgene-derived uncapped and unpolyadenylated RNAs have
been shown to activate cosuppression (Gazzani et al, 2004; Luo &
Chen, 2007), it is possible that miR168-guided cleavage of AGO1
mRNA, which produces uncapped and unpolyadenylated
cleavage fragments, contributes to the hyper-susceptibility of
AGO1 to cosuppression. To test this possibility, we engineered
two constructs: pAGO1:4m-AGO1-GUS and pAGO1:D168-
AGO1-GUS. The pAGO1:4m-AGO1-GUS construct contains the
same sequence as pAGO1:168-AGO1-GUS but has silent muta-
tions that create four additional mismatches between AGO1
mRNA and miR168, and render AGO1 resistant to miR168
regulation (Vaucheret et al, 2004). The pAGO1:D168-AGO1-GUS
construct is expressed from the 1.5 kb AGO1 promoter and
consists of the 50 387 nt of AGO1 mRNA translationally fused to
GUS, but lacks the miR168 complementary site. Unlike the
pAGO1:168-AGO1-GUS construct, the pAGO1:4m-AGO1-GUS
and pAGO1: D168-AGO1-GUS constructs, both of which lack the
miR168 complementary site, did not trigger AGO1 cosuppression
(Fig 2), suggesting that miR168-directed AGO1 cleavage facilitates
AGO1 cosuppression.

To assess whether the rate of miR168-guided AGO1 mRNA
cleavage influences AGO1 cosuppression efficiency, constructs
producing full-length AGO1 mRNAs that are either resistant or
hyper-susceptible to miR168-guided cleavage were introduced
into wild-type Arabidopsis plants and rdr6 mutants. The
pAGO1:4m-AGO1 construct is similar to the pAGO1:168-
AGO1 construct but contains silent mutations that create four
additional mismatches between the AGO1 mRNA and miR168
and render AGO1 resistant to miR168 regulation (Vaucheret et al,
2004). By contrast, the pAGO1:0m-AGO1 construct repairs the
three natural mismatches between AGO1 mRNA and miR168,
producing an AGO1 mRNA that has an increased cleavage rate
(Vaucheret et al, 2006). The frequency of AGO1 cosuppression
was 50% lower in pAGO1:4m-AGO1 plants than in pAGO1:168-
AGO1 transgenic plants (Fig 2). Although the frequency of
cosuppression was reduced in pAGO1:4m-AGO1 plants, it was
not abolished, suggesting that miR168-guided cleavage of AGO1
mRNAs arising from the native AGO1 gene is sufficient to
trigger AGO1 cosuppression. Confirming the positive role of
miR168-guided AGO1 mRNA cleavage during AGO1 cosuppres-
sion, the frequency of cosuppression was nearly 30% higher in
pAGO1:0m-AGO1 plants than in pAGO1:168-AGO1 plants

(Fig 2). In all cases, cosuppression was observed only in
wild-type plants and never in rdr6 mutants.

AGO1 cosuppression correlates with AGO1 siRNA
miR168-guided AGO1 mRNA cleavage results in the production
of uncapped and unpolyadenylated fragments, which could
contribute to AGO1 cosuppression. However, other miRNA
targets seem to be no more susceptible to cosuppression than
non-targeted RNAs, suggesting that, in addition to miRNA-guided
mRNA cleavage, other determinants promote the triggering of
AGO1 cosuppression. In contrast to other protein-coding mRNAs
targeted by miRNAs, AGO1 gives rise to 21-nt siRNAs that map
downstream from, and generally in phase with, the AGO1 miR168
cleavage site (Lu et al, 2005; Axtell et al, 2006; Rajagopalan et al,
2006; Kasschau et al, 2007). More than 70% of the cloned siRNAs
that are complementary to AGO1 mRNA begin with a 50 uridine,
a characteristic shared by small RNAs that associate preferentially
with and function through AGO1. The production of siRNA
following miR168-guided cleavage of AGO1 mRNA is reminis-
cent of the production of trans-acting short interfering RNA
(tasiRNA) following miRNA-guided cleavage of TAS transcripts
(Mallory & Bouche, 2008). The production of AGO1 siRNAs and
the heightened susceptibility of AGO1 to cosuppression suggest
that AGO1 is naturally subjected to siRNA-mediated self-regula-
tion in addition to miR168 regulation, and that heightened AGO1
siRNA production in transgenic plants containing ectopic AGO1
copies could be responsible for AGO1 cosuppression. Consistent
with their low cloning frequencies, we were unable to detect
AGO1 siRNAs in untransformed wild-type plants by RNA gel blot
analyses (Fig 3). However, both sense and antisense AGO1
siRNAs corresponding to sequences downstream from the miR168
complementary site were detected in p35S:168-AGO1 transgenic
plants undergoing cosuppression (Fig 3; data not shown). AGO1
cosuppression was observed after the transformation of wild-type
plants and ago7 mutants, but was never observed in the
PTGS-deficient mutants rdr6, sgs3 or sde5 (Fig 3).

DCL4 and DCL2 are required for AGO1 cosuppression
The mutants ago1, hua enhancer 1 (hen1), rdr6 and sgs3 have
been isolated in genetic screens for mutants defective in sense
transgene-mediated PTGS (Mourrain et al, 2000; Morel et al,
2002; Boutet et al, 2003) whereas nuclear rna polymerase d1a
(nrpd1a), rdr2, rdr6, sde3, sde5 and sgs3 have been recovered
in genetic screens for mutants defective in transgene/virus
(amplicon)-based PTGS (Dalmay et al, 2000, 2001; Herr et al,
2005; Hernandez-Pinzon et al, 2007), indicating that neither of
these two systems retrieved the entire set of PTGS components.
Indeed, dcl mutants have not been recovered from these two
screens. However, it has been shown that DCL2 and DCL4 act
redundantly in the production of endogenous tasiRNAs, some viral
siRNAs and IR transgene-derived siRNAs (Gasciolli et al, 2005;
Xie et al, 2005; Blevins et al, 2006; Bouche et al, 2006; Deleris
et al, 2006; Fusaro et al, 2006; Dunoyer et al, 2007). To determine
the DCL that is responsible for AGO1 siRNA production, we
introduced the p35S:168-AGO1 construct into dcl mutants and
assayed AGO1 cosuppression frequencies and siRNA accumula-
tion. AGO1 cosuppression was observed at high frequencies in
wild-type plants and in dcl2, dcl3 and dcl4 single mutants, and
AGO1 siRNAs were detectable in these mutants (Fig 3). By
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contrast, the frequency of AGO1 cosuppression and accumulation
of AGO1 siRNAs were reduced in the dcl2 dcl4 double mutant
and in the dcl2 dcl3 dcl4 triple mutant, indicating a redundant
role for DCL2 and DCL4 during AGO1 siRNA production and
AGO1 cosuppression, similar to that observed for tasiRNAs, viral
siRNAs and IR transgene siRNAs (Gasciolli et al, 2005; Xie et al,
2005; Bouche et al, 2006; Deleris et al, 2006; Fusaro et al, 2006;
Dunoyer et al, 2007). It is noted that the impact of AGO1
cosuppression was slightly more pronounced in dcl3 and dcl2
dcl3 dcl4 than in wild-type plants and dcl2 dcl4 mutants,
respectively, suggesting an antagonistic role for DCL3 in
cosuppression, similar to that reported for DCL3 in the pSUC-
PDS IR-PTGS system (Smith et al, 2007).

Conclusions
Our results show that siRNAs arising from AGO1 mRNA have
the capacity to modulate the levels of AGO1 mRNA. This
siRNA-mediated AGO1 mRNA degradation is miR168 cleavage
dependent and requires SGS3, RDR6, SDE5 and DCL2/DCL4.
Such regulation distinguishes AGO1 from other protein-coding
miRNA targets, which undergo RNA degradation through the

EXORIBONUCLEASE (XRN) and exosome pathways following
miRNA-guided cleavage (Shen & Goodman, 2004; Souret et al,
2004; Gy et al, 2007). It remains to be tested whether the
production of AGO1 siRNAs downstream from the miR168
complementary site is a special feature of miR168-directed
AGO1 regulation, similar to the specific requirement for
miR173- and miR390-directed regulation of TAS transcripts for
the production of tasiRNAs (Montgomery et al, 2008a,b). Together
with AGO1-catalysed miR168-guided AGO1 mRNA cleavage
(Vaucheret et al, 2004) and AGO1-mediated preferential stabili-
zation of miR168 (Vaucheret et al, 2006), AGO1 siRNA-guided
AGO1 mRNA cleavage helps AGO1 levels to be kept in check,
indicating that the miRNA and siRNA pathways coordinately
regulate the maintenance of AGO1 homeostasis (Fig 4).

METHODS
Plant material. All plants are in the Columbia ecotype. rdr6 (sgs2-1),
sgs3-1, ago7 (zip-1), dcl2-1, dcl3-1 and dcl4-2 mutant alleles have

been described previously (Elmayan et al, 1998; Mourrain et al, 2000;
Hunter et al, 2003; Xie et al, 2004, 2005). sde5-3 corresponds to the
T-DNA insertion line WiscDsLox429G09. Plants were transformed
using the floral dip method (Clough & Bent, 1998). All plants
were grown in standard long-day conditions (16h light–8 h dark)
at 22 1C. Constructs were prepared as described in the supplementary
information online.
Molecular analyses. High molecular and low molecular RNA gel
blot analyses were performed as described previously (Gy et al,
2007). All RNAs were extracted from floral inflorescence at the
same developmental stage. AGO1 mRNA probe was described
previously (Vaucheret et al, 2006). GUS histochemical staining
was performed as described previously (Elmayan et al, 2005).
Supplementary information is available at EMBO reports online
(http://www.emboreports.org)
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