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Multilocus Bayesian Meta-Analysis
of Gene-Disease Associations

Paul J. Newcombe,2 Claudio Verzilli,2 Juan P. Casas,2 Aroon D. Hingorani,1 Liam Smeeth,2

and John C. Whittaker2,*

Meta-analysis is a vital tool in genetic epidemiology. However, meta-analyses to identify gene-disease associations are compromised

when contributing studies have typed partially overlapping sets of markers. Currently, only marginal analyses are possible, and these

are restricted to the subset of studies typing that marker. This does not allow full use of available data and leads to the confounding

of marker effects by closely associated markers. We present a Bayesian approach that exploits prior information on underlying haplo-

types to allow multi-marker analysis incorporating data from all relevant studies of a gene or region, irrespective of the markers typed.

We present results from application of our approach to data on a possible association between PDE4D and ischemic stroke.
Introduction

The determination of the effect of genetic variation on

susceptibility to common human disease, or the effect of

genetic variation on the corresponding intermediate

phenotypes, is one of the key problems of modern biomed-

icine. However, it is now clear that genetic effects due to

common alleles are small and that detection requires both

comprehensive SNP screens and large sample sizes1–3:

many previous studies have been underpowered4,5, in terms

of sample size and/or in terms of using sets of genetic

markers that were not capable of representing unobserved

genetic variants with sufficient accuracy. Recent genome-

wide association studies on large case-control collections

have partially overcome these difficulties and have been

highly successful in identifying genetic associations in

a number of diseases.6 However, synthesis of all available

evidence and data pooling remains important and, in the

case of several common diseases, has uncovered suscepti-

bility loci that individual studies could not identify reliably.7

It is often desirable to incorporate into meta-analyses the

results of prior gene-disease association studies from which

only summary (rather than participant-level) data might

be available. The current study is motivated by the desire

to synthesize all available evidence regarding the putative

association between the gene encoding phosphodiesterase

4D (PDE4D [MIM 600129]) and ischemic stroke (MIM

#601367), first reported in 2003.8 PDE4D encodes proteins

that degrade cAMP, a key signaling molecule that has

a range of vascular effects,9 and the biological plausibility

of PDE4D’s influencing stroke risk provided added interest

to this initial finding. However, a range of subsequent

studies have largely failed to replicate the initial finding.

A recent meta-analysis10 concluded that an effect of this

gene on stroke was unlikely; however, this meta-analysis

was restricted to single-SNP analyses of the six markers
reported by five or more studies and therefore, as we see

below, does not incorporate much of the relevant data.

A key difficulty with attempting a more exhaustive

meta-analysis is that studies have typed partially overlap-

ping SNP sets so that many SNPs are unobserved in each

individual study; in fact, no SNP was present in all studies.

Moreover, studies report only summary data, typically

genotype or allele frequencies. The standard approach is

to pool all available data on each directly typed SNP in

turn. However, this is an inefficient approach if our interest

is to detect an effect at a gene as a whole because data pool-

ing is only possible from a subset of studies that typed the

SNP in question. Univariate results are also difficult to

interpret because they do not account for between-marker

association due to linkage disequilibrium (LD). When indi-

vidual patient data are available, imputating unobserved

SNPs and using the observed SNP data makes it possible

to incorporate data on all SNPs from all studies.11 However,

current imputation methods cannot work with summary

data and so are not applicable in this problem. We recently

developed a Bayesian method for meta-analysis that

accommodates summary SNP information from all studies

of the same gene or region irrespective of the SNPs typed.12

The method is applicable to continuous traits but not to

binary outcomes. Accordingly, we have now developed

a Bayesian hierarchical model that regresses a binary

outcome (e.g., disease: no disease) on summary data for

multiple SNPs, allowing the SNPs available to vary by

study. LD information on the set of markers is incorporated

as prior information on haplotype frequencies, obtained

from HapMap or other sources. For each SNP, the method

provides effect estimates adjusted for the effect of all other

SNPs and allows a global test of the gene-disease associa-

tion. Although motivated by the association between

PDE4D and stroke, the approach is generic and potentially

widely applicable.
1Center for Clinical Pharmacology, University College London, WC1E 6JJ London, UK; 2Department of Epidemiology and Population Health,

London School of Hygiene and Tropical Medicine, WC1E 7HT London, UK

*Correspondence: john.whittaker@lshtm.ac.uk

DOI 10.1016/j.ajhg.2009.04.001. ª2009 by The American Society of Human Genetics. All rights reserved.

The American Journal of Human Genetics 84, 567–580, May 15, 2009 567

mailto:john.whittaker@lshtm.ac.uk


Table 1. PDE4D SNP Sets Used by the Studies Analyzed

Studies by Bibliographic Reference

SNPa rs Number 27 28 29 25 30 14 26 23 24 31 32 10 8 13

2 rs152341 d

3 rs187481 d

5 rs27564 d

9 rs3117 d d d

13 rs26949 d

14 rs26950 d

15 rs35382 d

19 rs4133470 d

22 rs26954 d

26 rs40512 d d d d d

34 rs27653 d d d d

35 rs26955 d

37 rs26956 d

39 rs3887175 d

41 rs152312 d d d d d d d

42 rs153031 d d d d

45 rs12188950 d d d d d d d d d d d d d

48 rs37760 d

83 rs966221 d d d d d d d

87 rs2910829 d d d d d d

89 rs1396476 d d d d d

175 rs27171 d d

199 rs27547 d d

219 rs6450512 d

220 rs425384 d d

222 rs27727 d d d

Cases 89 94 97 151 222 248 250 259 376 639 685 737 988 1159

Controls 191 99 102 164 447 560 219 259 262 736 751 928 652 1564

a deCODE number.8
Material and Methods

Systematic Review of PDE4D and Stroke
For their systematic review, Bevan et al.10 searched two electronic

databases (PubMed Medline and EMBASE) for literature published

from 1996 to October 1, 2007 by using the keywords ‘‘stroke,’’

‘‘SNP polymorphism,’’ ‘‘PDE4D,’’ and ‘‘phosphodiestrase 4D’’ in

isolation and combination with one another. The literature search

was limited to studies of humans. We obtained full texts of all the

identified articles to examine the association between PDE4D and

stroke in populations of European descent. We updated the litera-

ture search to August 12, 2008 but found no new relevant studies.

This current analysis incorporated 14 data sets from populations

of European descent, and a total of 12,929 subjects (5994 cases

and 6935 controls) and 33 SNPs were genotyped in at least one

study (Table S4 for study details). In the cases of Gretarsdottir8

and Kuhlenbaeumer,13 SNP data not included in the original publi-

cations were obtained from Brophy14 and Bevan10, respectively.

Because our method relies on prior information on LD from

HapMap, we restricted analysis to the 26 typed markers included

in HapMap. No SNP was typed in every study, but there was partial

overlap of SNP typing across several studies (see Table 1).

Bayesian Hierarchical Model
We model the single-locus counts of alleles in cases and controls

reported by each study. Our model is written in terms of a set of
568 The American Journal of Human Genetics 84, 567–580, May 15
underlying haplotype probabilities, and the case haplotype prob-

abilities differ from control probabilities via parameters that can

be interpreted as adjusted odds ratio (OR) values for each SNP.

Below we describe the form of the likelihood and sketch a number

of extensions, for instance allowing variation in the underlying

haplotype probabilities across studies. The model is fitted in the

Bayesian framework via Markov chain Monte Carlo; accordingly,

we go on to describe the prior distributions and sampling scheme

used.

Likelihood

Consider M markers with H underlying haplotypes and S studies

reporting on some subset of the markers. Our data consist of the

marginal minor-allele counts in cases and controls reported by

each study at each marker. Take d ¼ 1 to indicate cases and d ¼ 0

to indicate controls, let qs
d denote the marginal minor-allele

counts observed by study s; note that many of these qs
d will

be unobserved. We can write these in terms of the (unobserved)

H 3 1 vector of counts of the underlying haplotypes,

hs
d ¼ ðhs

d,1,.hs
d,H Þ’, by summing over the haplotypes that contain

the allele of interest; more formally, we define an M 3 H matrix D

where Dij is 1 if haplotype j carries the minor allele at locus i and

zero otherwise, so that

qs
d ¼ Dhs

d (1)

The haplotype counts are naturally assumed to have a multino-

mial distribution, hs
d � Mnð2ns

d,ps
dÞ, where ps

d ¼ ðps
d,1,::ps

d,H Þ
0 are

the appropriate haplotype probabilities and ns
d is the number of
, 2009



cases/controls in study s. Note that the pair of haplotypes within

each person are assumed to be independent (i.e., Hardy-Weinberg

equilibrium is assumed). Observing that 2ns
d, the sum of the haplo-

type counts, is fixed by design in cases and controls, we may

reduce the number of free parameters needed to describe qs
d by

one. Because hH ¼ 2ns
d �

P
h¼1,::H�1 hh, by conditioning on ns

d we

may construct a mapping f : hs
½�H�d/qs

d, where hs
d½�H� indicate

the first H – 1 haplotype counts only:

qs
d ¼ fðhs

d½�H�Þ ¼ DXhs
d½�H� þ 2ns

dD½,�H�, (2)

where D[, H] denotes the Hth column of D, and the H 3 H – 1

matrix X is

X ¼

2
66664

1 0 . 0
0 1 . 0
« « 1 «
0 0 . 1
�1 �1 . �1

3
77775

We would like to use the above relationship between qs
d and

hs
d½�H�, together with the fact that the haplotype counts hs

d have

a multinomial distribution, to calculate the likelihood of the allele

counts, Pðqs
d jp,ns

dÞ, but this is not straightforward. Instead, we

approximate the likelihood of the log-allele counts by a multivar-

iate normal distribution distribution, with mean and variance

written in terms of ps
d½�H� and ns

d and derived via the multivariate

delta method, known to perform well for log-multinomial

counts.15 Via details given in Appendix A, we obtain:

logðqs
dÞ jps

d½�H�,n
s
d

� MVN

�
log
�
f
�
2ns

dps
d½�H�

��
,2ns

d

�
vlogðqs

d
Þ

vqs
d

DX

�
Sðps

d½�H�Þ
�

vlogðqs
d
Þ

vqs
d

DX

�0�
,

(3)

where Sðps
d½�H�Þ is the multinomial covariance matrix of these first

H – 1 haplotype probabilities. Note that where elements of

logðqs
dÞjps

d½�H�,n
s
d are unobserved, for instance because a given

marker is not typed in study s, the appropriate likelihood is easily

obtained because the marginal distribution of any subset of the

components of a multivariate normal distribution is also multivar-

iate normal distribution, with a mean and variance easily obtained

from the above. If we were interested solely in investigation of

whether haplotype frequencies differ between cases and controls,

we could work directly with the above model for logðqs
dÞjps

d½�H�,n
s
d.

However, we also wish to investigate which SNPs might be associ-

ated with the disease. We therefore write the haplotype probabili-

ties in cases, ps
1, in terms of the haplotype probabilities in controls,

ps
0 and M adjusted SNP log-ORs, which we denote b ¼ ðb1,::bMÞ0.

We assume SNP ORs combine log additively across loci so that

the log-OR for a given haplotype is the sum of the log-ORs for

the component SNP, i.e., the haplotypic log-ORs are given by

bH ¼ D0b, where D is the design matrix defined above. From16,

ps
1,j ¼

ps
0,jexp

�
bH

j

�
P

i¼1,::H

ps
0,iexp

�
bH

i

� for j ¼ 1,H: (4)

Equation (3) may be used directly to obtain the likelihood

Pðqs
0jps

0½�H�,n
s
0Þ for controls. Substituting bH ¼ DT b into (4) and

the resulting expression for ps
1½�H� (parameterized by ps

0½�H� and

b) into (3) gives the independent likelihood, Pðqs
1jps

0½�H�,n
s
1,bÞ,

for cases. The full likelihood is then

P
�
qs

0,qs
1 jps

0½�H�,n
s
0,b
�
¼ P

�
qs

0 jps
0½�H�,n

s
0

�
3 P
�
qs

1 jps
0½�H�,n

s
1,b
�
:

The Am
So far we have worked with separate sets of haplotype frequen-

cies ps
0 in each study. We expect these to be similar, but possibly

not identical, across studies and so model these hierarchically

via a multinomial logit link to a set of Gaussian random effects:

ps
0,h ¼

exp
�
gs

h

�
P

i¼1,::H

exp
�
gs

i

� for h ¼ 1,::H and s ¼ 1,::S (5)

where

gs
h � N

�
gh, sHap

�
for h ¼ 1, ::H and s ¼ 1, ::S: (6)

Note that sHap gives a measure of the heterogeneity in haplotype

frequencies across studies.

Model Fitting

We work within the Bayesian framework, so our objective is to

calculate the posterior distribution for the parameters of interest,

i.e., the probability distribution of those parameters given the

observed data. We also want to allow inference on which SNPs

affect the trait of interest, which we achieve by allowing some or

all of the SNP OR b values to be exactly zero. We use m to indicate

the model, that is, which SNPs are not zero, and so wish to calcu-

late

Pðps
0,b,m jqs

dÞfPðqs
d jps

0,bÞPðps
0,b,mÞ:

We cannot calculate this analytically and so use Markov-chain

Monte Carlo, specifically reversible jump Metropolis-Hastings

(RJMH)17,18, to sample from the required posterior. The RJMH

sampling scheme starts at an initial model and set of parameter

values, m(0) and qð0Þ ¼ ðps
0ð0Þ,bð0Þ,sð0ÞÞ. To sample the next

model and set of parameters, m(1) and q(1), we propose moving

from the current state to another model and/or set of parameter

values, m* and q*, by using a proposal function q(m*, q*jm, q).

We then accept these proposed values as the next sample with

probability equal to the Metropolis-Hastings ratio:

MHR ¼ Pðqs
d jm�,q

�ÞPðm�,q�Þ
Pðqs

d jm,qÞPðm,qÞ 3
qðm,q jm�,q�Þ
qðm�,q� jm,bÞ:

If this new set of values is accepted, the proposed set is accepted

as m(1) and q(1); otherwise, the sample value remains equal to the

current sample value, i.e., m(1) ¼ m(0) and q(1) ¼ q(0). It can be

shown that this produces a sequence of samples that converge

to the required posterior distribution.19 More details about the

scheme used are in Appendix B.

Bayes Factors

Increasingly, Bayes factors (BFs) are being used in genetic epidemi-

ology as an alternative to p values.6,20 A Bayes factor is defined as

the posterior-to-prior odds of two competing models, that is,

model mi in comparison to model mj

BF
�
mi,mj

�
¼ Pðmi j DÞ

P
�
mj j D

�=PðmiÞ
P
�
mj

�

where D denotes the data. BF(mi, mj) is a measure of how much our

prior beliefs about the relative merits of mi and mj change after

observing the data.

Priors

Priors for b and sHap are bm ~ N(0, 0.4) for m ¼ 1, ..M and 1/s2
Hap ~

Gamma[0.001, 0.001].

The prior for the log-ORs is realistically informative, suggesting

that most of the density for the ORs lies between 0.5 and 2.

Genetic ORs outside this range are rarely observed.3 If the causal

variant is unobserved, one would expect adjusted ORs at SNPs in
erican Journal of Human Genetics 84, 567–580, May 15, 2009 569



positive LD to be in the same direction (and in opposite directions

if the LD is negative). This prior information could be reflected

with a multivariate normal covariance matrix for the log-ORs,

and we have implemented such a prior. However, this gave almost

identical results to the independent priors above, so for simplicity,

these are used here. A Gamma[0.001,0.001] prior for between-

study precision is a standard reference prior;21 alternative priors

give very similar results.

A vital part of our approach is the use of an informative prior

distribution for the haplotype frequencies p0: this enables the

model to share information between associated markers and obtain

adjusted estimates of SNP ORs. In the current work this has been

based on the 120 founding haplotypes from the HapMap trios of

European ancestry (see Web Resources). We have accordingly

assumed that p0 � Dirichletð1203pHapMapÞ, where pHapMap denotes

the H haplotype frequency estimates in HapMap.

We also need to specify a prior on the model space, which we do

by specifying a prior on k SNPs in the model and then assuming

that all models with k SNPs are equally likely. This could of course

be modified where certain SNPs—perhaps because of prior

evidence of functionality—are judged more likely to be causal

than others.

We judged PDE4D to be a strong candidate gene for association

with stroke and so allowed a prior probability of 10% that one or

more SNP has a non-zero effect by using a truncated Poisson prior

with appropriate mean (Figure S1 in the Supplemental Data). We

also examined sensitivity to this prior.

Single-SNP Random-Effects Meta-Analysis
Where possible, we compared results from our multi-SNP model to

those obtained from an orthodox single-SNP random-effects meta-

analysis in both simulation studies and the PDE4D/stroke data set.

In both cases additive ORs were calculated for each study via

logistic regression. The study-specific estimates and their standard

errors were pooled via random-effect models. The DerSimonian

and Laird Q test, as well as the I222, were used for evaluating the

degree of heterogeneity between studies.

Results

Simulation Studies

For these simulations we examined the effect of alterations

in effect size (including no effect), the location and

number of causal sites, allele frequency of causal marker,

and whether the causal site was observed. Haplotypes for

five biallelic markers on the PDE4D gene were simulated

with a multinomial model, centered on HapMap-based

frequencies. The LD pattern for the five loci is given in

Figure 1. We partitioned multinomially drawn haplotypes

into cases and controls by assigning disease status with

a probability conditional on the presence of designated

causal SNP(s) via a logistic regression model with desired

causal SNP ORs. We then obtained marginal MAFs for

each SNP by summing over the relevant haplotype

frequencies. Data was simulated as though from 14 studies,

with case and control numbers approximately equal to the

14 PDE4D/stroke studies obtained in our literature review.

To model potential heterogeneity in LD structure

between different populations, we generated different
570 The American Journal of Human Genetics 84, 567–580, May 15
haplotype probabilities, ps for s ¼ 1,.14 and pPrior ; with

which to stimulate each study and to use as prior informa-

tion in our model, respectively. For each study a value was

drawn for each haplotype from a normal distribution with

a standard deviation of 0.1 centered on the corresponding

log-haplotype probability from HapMap. Multinomial-

logit transformations were then used for generating

study-specific haplotype probabilities that sum to one.

This means that the parameter sHap, which our model

uses to capture study heterogeneity in haplotype frequen-

cies, was set to 0.1 for the data simulation. For each

replicate an additional set of haplotype probabilities

was generated as above to act as prior information in

place of the underlying HapMap probabilities; therefore,

we also model possible heterogeneity between the

HapMap population and the populations in the published

studies.

Finally, to reflect the variation in SNP sets used by

different studies, we introduced missingness (the level of

missing data) in the same pattern as that observed in the

real studies for SNPs 41–83 (see Tables 1 and 2). For each

simulation scenario, 20 replicate data sets were generated

in the same way. When a single causal site was simulated,

single-SNP analysis produced significant results at multiple

sites. Although the effect estimates were always largest and

closest to the truth at the causal SNP, for ORs of 1.5 and

above all other SNPs were significant at the 5% level in

all replicated data sets. Therefore, univariate analysis of

these data would most likely conclude that all five markers

were possible causal sites. When the effect size was reduced

to 1.25, all other SNPs were significant in between 65%

and 100% of replicates (Table 3). When two causal

sites were simulated, the univariate analysis substantially

underestimated the effect at both sites. Because the two

causal sites are in strong negative LD, the effect at each is

Figure 1. Pairwise LD between the Markers Used in the Simu-
lation Studies
Based on the r2 pairwise LD measure.
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Table 2. Information on Missingness in Simulated Data Sets

SNP 1 SNP 2 SNP 3 SNP 4 SNP 5

Mean allele Frequency 0.37 0.43 0.44 0.44 0.46

Number of studiesa 7 4 13 1 7

Average casesb 6,058 3,178 11,488 1,976 6,214

Average controlsb 6,136 3,140 13,430 1,304 6,302

The same pattern of missingness was used in all scenarios for simulating each replicate data set. This is equivalent to the pattern of missingness for SNPs 42

to 83 in the real PDE4D data (see Table 1).
a In each replicate, this is the number of studies to have measured the marker (there are 14 studies in total).
b As a result of our simulation method, the number of cases and controls varies slightly in each replicate. However, these are the average numbers of cases

and controls providing data on each marker.
confounded by the other, resulting in a bias toward the

null hypothesis (Table 4). This highlights an important

use of multiple-marker models: when there are multiple

causal sites, adjustment of between-marker confounding

may be essential for revealing an effect of the gene on

disease.

All Bayesian multi-SNP analyses use a truncated Poisson

(0.1) prior on model space, as described in the Material and

Methods, and were run for 20 million iterations. An anal-

ysis of one replicate for 20 million iterations takes around

2 hr to complete on a 2.5 GHz quad core desktop PC.

Marginal posterior probabilities of selecting each SNP are

presented. OR estimates are presented over all iterations

and are conditional on inclusion in the model; note that

when interpreting the latter, one must take care unless

posterior probability is high. Our model consistently

distinguished causal SNPs in all scenarios. When a single

site was simulated as causal, for effect sizes of 1.5 and above

the causal marker was selected with 100% posterior proba-

bility, whereas noncausal SNPs were given low posterior

probabilties (the highest in these anlyses was 7%). When

the effect size was reduced to 1.25, the causal site was still

selected with high posterior probabiltity (81%), and the

highest probability given to a noncausal marker was still
only 14% (Table 5). Effect estimates were similar to the

simulated values at causal SNPs, regardless of the choice

of causal site. This remained true for multiple causal sites,

showing that, in contrast to single-SNP analysis, our model

successfully adjusts for most of the downward confound-

ing the two sites exert on one another (Table 6). To inves-

tigate the performance of the model with SNPs of low allele

frequencies, we derived a new set of haplotype probabili-

ties for the multinomial generation model such that the

allele frequency at SNP 2 was reduced from 0.43 to 0.14.

On simulations based on these haplotype probabilities

and a causal OR of 1.5 at SNP 2, the model performed

equally well at adjusting for the between-marker con-

founding present in single-SNP analysis of the same data

(Tables S1 and S2).

We simulated a scenario in which the causal marker has

not been typed by deleting data on SNP 2 from the repli-

cates in which this SNP was simulated as causal with an

OR of 1.5. Prior haplotype probabilities in each replicate

were collapsed accordingly, and data on the remaining

four markers were analyzed by our model. This may be

compared to results from the standard univariate analysis

of the same data at noncausal sites (Table 3). In contrast

to the univariate analysis, our model successfully corrected
Table 3. Average Results from Single-SNP Meta-Analyses of Simulated Data Replicates

SNP 1 SNP 2 SNP 3 SNP 4 SNP 5

Number of studies 7 4 13 1 7

True OR 1 1.5 1 1 1

Proportion significanta 1.00 1.00 1.00 1.00 1.00

Mean OR (SE) 0.82(0.01) 1.51(0.02) 1.38(0.01) 1.39(0.02) 0.78(0.01)

Mean CI length 0.14 0.34 0.15 0.38 0.13

True OR 1 1.25 1 1 1

Proportion significanta 0.65 0.95 1.00 0.80 0.80

Mean OR (SE) 0.90(0.01) 1.26(0.02) 1.19(0.01) 1.2(0.02) 0.87(0.01)

Mean CI length 0.15 0.30 0.13 0.34 0.15

True OR 1 2 1 1 1

Proportion significanta 1.00 1.00 1.00 1.00 1.00

Mean OR (SE) 0.70(0.01) 2.03(0.02) 1.74(0.01) 1.76(0.03) 0.66(0.01)

Mean CI length 0.12 0.46 0.19 0.48 0.11

For each scenario results are means (SE) of the OR estimate over 20 analyses of replicate data sets simulated under identical conditions.
a Proportion of replicates in which the SNP is significant at the 5% level.
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Table 4. Average Results from Single-SNP Meta-Analyses of Simulated Data Replicates

SNP 1 SNP 2 SNP 3 SNP 4 SNP 5

Number of studies 7 4 13 1 7

True OR 1 1 1 1 1.5

Proportion significanta 1.00 0.95 1.00 0.95 1.00

Mean OR (SE) 1.17(0.01) 0.79(0.01) 0.79(<0.01) 0.77(0.01) 1.50(0.01)

Mean CI length 0.19 0.18 0.09 0.21 0.25

True OR 1 1.5 1 1 1.5

Proportion significanta 0.15 0.75 0.90 0.15 0.95

Mean OR (SE) 0.96(0.01) 1.18(0.01) 1.09(<0.01) 1.08(0.02) 1.18(0.01)

Mean CI length 0.16 0.25 0.11 0.29 0.18

For each scenario results are means (SE) of the OR estimate over 20 analyses of replicate data sets simulated under identical conditions.
a Proportion of replicates in which the SNP is significant at the 5% level.
for confounding at SNPs 1 and 5. Furthermore, our model

correctly inferred a single causal site, splitting the posterior

probability between SNPs 3 and 4, which both have

the strongest LD with the unobserved causal variant

(Table 7). Encouragingly, when no causal site was simu-

lated, average posterior probability over 200 replicates

was %0.03 at all SNPs, indicating that the false-positive

rates of our model are extremely low (Table S3).

A Meta-Analysis of the Association between PDE4D

and Stroke

To investigate heterogeneity in MAF estimates between the

studies, and between the studies and HapMap, we plotted

study-specific MAF estimates and 95% confidence intervals
572 The American Journal of Human Genetics 84, 567–580, May 15
(CIs) for controls. This yielded concerns for SNPs 9 and 41

(Figure 2). The HapMap MAF for SNP 9 is substantially

different from that reported by the three studies in which

it was typed (p < 10�33 for a test of equality of propor-

tions); because only Zee et al.23 report the rs number (as

rs3117), it seems possible this SNP might have been misi-

dentified. For SNP 41 the position is less clear, but the

SNP shows substantial heterogeneity (p ¼ 0.0041 for

a test of equality of proportions). HapMap MAF estimates

were not substantially different from those reported by

studies for any other SNP, although the SNP 45 MAF re-

ported by Meschia24 is noted as an outlier (Figures S2 and

S3). In addition, SNPs 42 and 48 are identical in

HapMap, meaning analysis of both SNPs simultaneously
Table 5. Average Results from Bayesian Multi-SNP Meta-Analyses of Simulated Data Replicates

SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 sHap

Number of studies 7 4 13 1 7 –

True OR 1 1.5 1 1 1 –

Mean posterior probability (SE) 0.02(0.05) 0.99(0.05) 0.07(0.19) 0.05(0.09) 0.04(0.06) 1.00(0)

Mean OR (SE) 1.00(<0.01) 1.50(0.13) 0.99(0.06) 1.00(<0.01) 1.00(<0.01) 0.11(0.02)a

Mean BCI length 0.02 0.39 0.05 0.07 0.04 0.10

Mean OR present (SE)b 1.02(0.05) 1.50(0.13) 0.94(0.08) 0.97(0.13) 1.02(0.08) 0.11(0.02)a

Mean BCI length presentb 0.12 0.38 0.27 0.29 0.22 0.10

True OR 1 1.25 1 1 1 –

Mean posterior probability (SE) 0.02(0.03) 0.81(0.29) 0.14(0.18) 0.12(0.18) 0.04(0.08) 1.00(0)

Mean OR (SE) 1.00(<0.01) 1.22(0.12) 1.01(0.04) 1.01(0.04) 1.00(<0.01) 0.11(0.02)a

Mean BCI length 0.02 0.31 0.14 0.12 0.03 0.10

Mean OR present (SE)b 1.00(0.07) 1.26(0.08) 1.01(0.16) 1.00(0.14) 1.00(0.08) 0.11(0.02)a

Mean BCI length presentb 0.13 0.26 0.31 0.34 0.19 0.10

True OR 1 2 1 1 1 –

Mean posterior probability (SE) < 0.01(0.01) 1.00(<0.01) 0.03(0.05) 0.02(0.01) 0.03(0.02) 1.00(0)

Mean OR (SE) 1.00(<0.01) 1.98(0.05) 1.00(<0.01) 1.00(<0.01) 1.00(<0.01) 0.12(0.02)a

Mean BCI length < 0.01 0.33 0.04 0.02 0.03 0.10

Mean OR present (SE)b 1.02(0.04) 1.98(0.05) 0.97(0.08) 1.01(0.10) 1.02(0.08) 0.12(0.02)a

Mean BCI length presentb 0.12 0.33 0.25 0.32 0.24 0.10

For each scenario, results are means (SE) of estimators over 20 analyses of replicate data sets simulated under identical conditions. In each analysis, OR

estimates were taken as the median of the posterior sample.
a These are point estimates of sHap and therefore are not ORs.
b Calculated on the condition that the SNP was included in a model.
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Table 6. Average Results from Bayesian Multi-SNP Meta-Analyses of Simulated Data Replicates

SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 sHap

No. Studies 7 4 13 1 –

True OR 1 1 1 1 1.5 –

Mean posterior probability (SE) 0.03(0.04) 0.03(0.05) 0.01(<0.01) < 0.01(0.01) 1.00(<0.01) 1.00(0)

Mean OR (SE) 1.00(<0.01) 1.00(<0.01) 1.00(<0.01) 1.00(<0.01) 1.50(0.04) 0.12(0.02)a

Mean BCI length 0.02 0.03 < 0.01 < 0.01 0.18 0.10

Mean OR present (SE)b 1.00(0.05) 1.04(0.07) 1.03(0.03) 1.03(0.05) 1.50(0.04) 0.12(0.02)a

Mean BCI length presentb 0.14 0.22 0.18 0.14 0.18 0.10

True OR 1 1.5 1 1 1.5 –

Mean posterior probability (SE) 0.03(0.08) 0.95(0.22) 0.01(0.02) 0.08(0.25) 1.00(<0.01) 1.00(0)

Mean OR (SE) 1.00(<0.01) 1.51(0.18) 1.00(<0.01) 1.01(0.09) 1.52(0.1) 0.11(0.02)a

Mean BCI length 0.02 0.53 0.02 0.04 0.47 0.10

Mean OR present (SE)b 1.02(0.06) 1.52(0.16) 1.01(0.09) 1.00(0.12) 1.52(0.10) 0.11(0.02)a

Mean BCI length presentb 0.14 0.53 0.27 0.25 0.47 0.10

For each scenario, results are means (SE) of estimators over 20 analyses of replicate data sets simulated under identical conditions. In each analysis,

OR estimates were taken as the median of the posterior sample.
a These are point estimates of sHap and therefore are not ORs.
b Calculated on the condition that the SNP was included in a model.
in our model is impossible because they would be identical

in the underlying HapMap-defined haplotypes. Conse-

quently, SNP 48, which was typed in only one study,8

was excluded from our analysis.

Our analysis is thus based on 23 SNPs, which are divided

among three LD blocks: block 1, SNPs 2–37; block 2, SNPs

39–89; and block 3, SNPs 175–222 (Figure 3). Because

HapMap haplotype information is sparse over the

complete set of 23 markers but reasonable within each

LD block and indicates that there is very little LD between

the blocks, we analyze each block independently.

Tables 8, 9, and 10 present univariate meta-analysis of

the SNPs in the three blocks. No SNP was significant at

the 5% level; the strongest evidence of association is at

SNPs 5, 175, 219, and 222, where 95% CIs just include 1

and moderately large effects are not excluded by the

data. Significant p values from the DerSimonian and Laird

test of heterogeneity in reported effect estimates was found

at SNPs 42, 83, 87, and 89 (see Figure S4 for forest plots).

This was mostly explained by Gretarsdottir8 (whose effect
The Am
estimate is in the oppposite direction of that proposed by

all other studies at SNP 42) and Staton25, who, unusually,

found significant ORs for three of the six SNPs for which

they reported results.

Tables 11, 12, and 13 present results from our multi-SNP

analysis of blocks 1, 2, and 3, respectively. There is no

evidence for association: the posterior probability of non-

zero effect is less than 7.34% at all SNPs. These null results

for SNPs 5, 175, 219, and 222 reflect the extra information

available to the Bayesian model through studies that have

typed SNPs in high LD with 5, 175, 219, and 222, but not 5,

175, 219, and 222 themselves: absence of evidence for

association in these studies makes association at 5, 175,

219, and 222 less likely.

The posterior probabilities of the null model in each

block were 87.9%, 90.0%, and 81.6%, which, in compar-

ison to a prior probability of 90.5% from the truncated

Poisson prior described above, result in Bayes Factors

against the null model of 1.3, 1.1, and 2.1, respectively.

For all three blocks, we checked convergence by visually
Table 7. Average Results from Bayesian Multi-SNP Meta-Analyses of Simulated Data Replicates

SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 sHap

Number of studies 7 4 13 1 7 –

True OR 1 1.5a 1 1 1 –

Mean posterior probability (SE) 0.02(0.03) – 0.23(0.22) 0.81(0.21) 0.02(0.04) 1.00(0)

Mean OR (SE) 1.00(<0.01) – 1.04(0.12) 1.34(0.12) 1.00(<0.01) 0.11(0.02)b

Mean BCI length 0.02 – 0.34 0.42 0.02 0.10

Mean OR present (SE)c 0.98(0.06) – 1.19(0.25) 1.39(0.03) 0.96(0.05) 0.11(0.02)b

Mean BCI length presentc 0.18 – 0.56 0.29 0.16 0.10

Results are means (SE) of estimators over 20 analyses of replicate data sets simulated under identical conditions. In each analysis, OR estimates were taken

as the median of the posterior sample.
a Deleting data on the causal SNP 2 in these replicates simulated a scenario in which the causal SNP is unobserved.
b These are point estimates of sHap and therefore are not ORs.
c Calculated on the condition that the SNP was included in a model.
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Figure 2. Study-Reported MAFs for Excluded SNPs 9 and 41
Both these SNPs were excluded from our analysis. The HapMap MAF for SNP 9 is very different from that reported by the three studies;
because only Zee et al.23 report the rs number (as rs3117), this SNP might have been misidentified. The HapMap MAF for SNP 41 is substan-
tially different from the average reported value, suggesting that HapMap provides a poor estimate. A binomial normal approximation was
used for calculating 95% CIs. SNPs are indicated by their deCODE numbers.
inspecting posterior plots and by running additional

chains starting in the saturated model. Sensitivity to

model-space prior was checked by changing the truncated

Poisson mean to 0.05 and 0.2. Inference was similar in all

these additional analyses (results not shown).

For block 2, sensitivity was further checked by excluding

the Meschia,24 Staton25, and Gretarsdottir8 data, one study

at a time. Meschia was excluded because of the outlying

MAF reported for SNP 42 and Staton and Gretarsdottir

Figure 3. Pairwise LD between All 23 SNPs Analyzed
Estimates are based on HapMap data. SNPs are indicated by their
deCODE numbers. Based on the r2 pairwise LD measure.
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because they explain most of the heterogeneity in reported

ORs in this block. To explore small-study bias, we also ran

an analysis with the five largest studies (those with > 500

cases) only. Again, inference was the same in all these addi-

tional analyses (Table S5). The consistently null result

when the Gretarsdottir8 data were excluded is notable

because exclusion of these data from univariate analysis

results in a borderline significant OR at SNP 42 of 1.19.

95% CI: (1.02,1.39).

These further sensitivity analyses were not carried out

for blocks 1 and 3 because there was no significant hetero-

geneity in reported effect estimates within these blocks,

and too few studies contributed data to allow small-study

bias to be explored (five and three studies for blocks 1

and 3, respectively).

Figures 4 and 5 provide two recommended diagnostics for

our model. Figure 4 shows a forest plot of the estimated

MAFs for SNP 45 (the SNP with most prior interest); these

estimates were obtained from application of our model to

block 2. Note that SNP 45 was not typed in Woo,26 so this

estimate has been imputed on the basis of MAFs observed

at other SNPs in close LD. Reassuringly, among studies

that did type SNP 45, our model estimates are similar to

reported estimates. Figure 5 shows a forest plot of study-

specific effect estimates for SNP 45, again from application

of our model to block 2. Model selection was turned off

for this analysis, and the model was fixed with just SNP 45

present. A shrinkage prior, with 90.5% prior probabiltiy of

no effect, enabled comparison with the above reversible

jump analyses. Note that although restricting this analysis

allowed an effect at SNP 45 alone, the analysis still combines
, 2009



Table 8. Single-SNP Analysis of PDE4D/Stroke Data on SNPs 2–37, or Block 1

SNP 2 SNP 3 SNP 5 SNP 13 SNP 14 SNP 15

Number of studies 1 1 1 1 1 1

ORa 1.02 1.00 0.90 1.00 0.96 0.94

95% CI (0.88,1.17) (0.87,1.16) (0.78,1.04) (0.87,1.15) (0.83,1.11) (0.82,1.08)

SNP 19 SNP 22 SNP 26 SNP 34 SNP 35 SNP 37

Number of studies 1 1 5 4 1 1

ORa 1.12 0.94 1.02 0.99 0.98 0.91

95% CI (0.95,1.31) (0.81,1.09) (0.93,1.12) (0.91,1.08) (0.86,1.13) (0.78,1.06)

a Estimates obtained via the Mantel-Haenszel technique when the SNP was typed in just one study or from a random-effects meta-analysis when the SNP

was typed in more than one study.
evidence across all SNPs in block 2. Again, except for the

imputed value for Woo, effect estimates are similar to those

reported elsewhere. The global OR estimate was 1 95.5% of

the time, confirming that although in isolation many study

estimates are consistent with a sizeable effect, when infor-

mation is combined across studies CIs become tighter

around an OR of 1.

Discussion

Literature-based meta-analysis provides an important tool

for the identification and characterization of genetic asso-

ciations, but to date it has been restricted to single-SNP

analyses. This is inefficient because only studies that

have typed the particular SNP may be used, despite

substantial variation in SNP sets between studies. Further-

more, single-SNP analysis is vulnerable to between-marker

confounding, which hinders the identification of causal

SNPs and can reduce power, as shown in our simulation

results. We present a multimarker approach that allows

simultaneous analysis of all SNPs and studies and thus

maximizes the power to find gene-disease associations

and for each SNP obtains effect estimates, adjusted for

other SNPs. To form adjusted effect estimates, and allow

sharing of information between correlated SNPs, we used

HapMap data in the current analysis. Other sources of

information on haplotype frequencies could be incorpo-

rated: in particular, when individual patient data (IPD)

are available from one or more study, it could be incorpo-

rated to make likelihood contributions as haplotype

frequency estimates. Inference is made in the Bayesian

framework, via a reversible jump MCMC algorithm that

allows calculation of the posterior probability that any
The Am
SNP or set of SNPs is associated with disease, as well as esti-

mation of effect size for any such set of SNPs. In particular,

this allows a test of association at the gene level, which

increases power and reduces the difficulty of interpreting

multiple individual SNP results.

Our new method has enabled us to perform the most

thorough meta-analysis to date of the association between

PDE4D and stroke, and on the basis of these results, it

seems likely that the association is null, or too small to

be of clinical relevance. Our results overall were consistent

with those from Bevan10: the power increase obtained

through the use of our newly developed methods did not

uncover any previously unidentified genetic associations.

The evidence to date does not support PDE4D as a potential

drug target for the prevention or treatment of stroke.

However, we cannot exclude the possibility that causal

variants not well tagged by the SNPs studied here exist.

Under r2 thresholds of 0.7 and 0.8, the SNPs we analyze

tag only 11% and 8% of the 1,542 SNPs typed in

HapMap between the two most widely separated SNPs

considered by Gretarsdottir.8 Our results—and indeed, all

previous analyses of the association between PDE4D and

stroke—therefore largely rely on Gretarsdottir et al.’s orig-

inal identification of SNPs that accurately tag any causal

variants in PDE4D. Despite the intense interest in this

gene over the last 5 years, there might exist causal variants

that are not well tagged, or that because of type II error are

not associated with stroke in Gretarsdottir et al.. It is hoped

that large whole-genome association studies currently in

progress will resolve this issue in the near future.

Our model assumes that both LD structure and any

gene-disease associations are similar across the individual

studies. It is difficult to be certain that either of these

assumptions is true, but diagnostics (see forest plots of
Table 9. Single-SNP Analysis of PDE4D/Stroke Data on SNPs 39–89, or Block 2

SNP 39 SNP 42 SNP 45 SNP 83 SNP 87 SNP 89

Number of studies 1 4 13 7 6 5

ORa 0.97 1.05 1.01 1.01 0.99 1.05

95% CI (0.60,1.57) (0.82,1.36) (0.91,1.13) (0.86,1.17) (0.89,1.1) (0.81,1.37)

a Estimates obtained via the Mantel-Haenszel technique when the SNP was typed in just one study or from a random-effects meta-analysis when the SNP

was typed in more than one study.
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Table 10. Single-SNP Analysis of PDE4D/Stroke Data on SNPs 175–222, or Block 3

SNP 175 SNP 199 SNP 219 SNP 220 SNP 222

Number of studies 2 2 1 2 3

ORa 0.90 0.97 1.25 1.04 0.91

95% CI (0.79,1.02) (0.85,1.1) (0.97,1.6) (0.82,1.31) (0.82,1.02)

a Estimates from random-effects meta-analyses.
control MAFs in Figures S2 and S3) provide no evidence

that they are not. In particular MAFs in controls seem to

be very consistent across the studies, and our estimate of

the random-effects variance in control haplotype frequen-

cies suggests little heterogeneity. Similarly, for most SNPs,

we have found no evidence for study heterogeneity in

effect. Where there was weak evidence of heterogeneity

of study effects, notably for SNP 42, where one estimate

of effect was in the opposite direction of estimates from

the other three studies attempting to type it, our model

proved more robust to this heterogeneity than single-locus

analysis: exclusion of the outlying study resulted in

a significant association in the frequentist (classical) anal-

ysis, but a null result in the Bayesian analysis, compatible

with the analysis if all studies. This robustness is to be ex-

pected because our approach borrows information from

SNPs in LD with SNP 42, and these data are inconsistent

with an effect at SNP 42, regardless of the inclusion of

the outlying study.

As we have shown in our simulation studies, our method

is susceptible to confounding when the causal site is unob-

served; however, in contrast to single-SNP analysis, our

method was still able to correct for confounding at two

of the four noncausal loci. Furthermore, in this scenario

the ability of our method to provide inference about the

number of causal sites is potentially valuable, although

care must be taken if multiple causal sites are inferred

because this may simply be an indication that a single

causal site needs multiple markers to tag it. Finally, we

note that our model is only intended for use with candi-
date genes, where the number of SNPs analyzed will be

limited to the tens. Performance when our model is

applied to more SNPs will depend on the sparseness of

the data and the amount of prior information available

on haplotype frequencies.

In summary, we have developed a novel Bayesian

approach to the meta-analysis of genetic-association

studies and applied this to provide the most conclusive

evidence to date that there is no effect of PDE4D on stroke.

We expect the method to be of wide applicability, given

the increasing interest in meta-analysis of genetic-associa-

tion studies. Our method is released as a cross-platform

Java program under the GPL and is available for download

from our website (see Web Resources).

Appendix A

For M markers with H underlying haplotypes, we define

a multivariate normal approximation for observed log-

allele counts, denoted by log(q) ¼ (log(q1), ..log(qM))’,

parameterized by the first H – 1 unobserved haplotype

probabilities, denoted by p½�H� ¼ ðp1,::pH�1Þ0 and the

sample size n. Let p[�H] be the (unobserved) haplotype rela-

tive frequencies in the sample. In order to use the multivar-

iate delta method to derive an approximate distribution of

log(q), we need to define a mapping (and its derivative),

g : p½�H�,n/logðqÞ. The Material and Methods section

presents a mapping from the unobserved sample haplo-

type counts, h[�H], to the log allele counts; (2). By

substituting h[�H] ¼ 2np[�H], we obtain
Table 11. Bayesian Multi-SNP Analysis of PDE4D/Stroke Data on SNPs 2–37, or Block 1

SNP 2 SNP 3 SNP 5 SNP 13 SNP 14 SNP 15

Posterior probability 0.01 0.03 0.03 0.01 0.01 0.01

OR 1.00 1.00 1.00 1.00 1.00 1.00

BCI (1.00,1.00) (1.00,1.00) (0.98,1.00) (1.00,1.00) (1.00,1.00) (1.00,1.00)

OR presb 0.99 1.46 0.80 1.02 1.01 0.97

BCI presb (0.93,1.08) (0.95,2.07) (0.48,1.03) (0.94,1.05) (0.94,1.05) (0.88,1.05)

SNP 19 SNP 22 SNP 26 SNP 34 SNP 35 SNP 37 sHap

Posterior probability 0.01 0.02 0.01 0.01 0.01 0.01 1.00

OR 1.00 1.00 1.00 1.00 1.00 1.00 0.07a

BCI (1.00,1.00) (1.00,1.00) (1.00,1.00) (1.00,1.00) (1.00,1.00) (1.00,1.00) (0.03,0.2)

OR presb 0.99 0.95 1.00 0.98 0.99 0.95 0.07a

BCI presb (0.92,1.08) (0.49,1.09) (0.91,1.05) (0.89,1.04) (0.92,1.09) (0.81,1.03) (0.03,0.20)

Point estimates of each parameter were taken as the median of the corresponding posterior sample.
a These are point estimates of sHap and therefore are not ORs.
b Calculated on the condition that the SNP was included in a model.
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Table 12. Bayesian Multi-SNP Analysis of PDE4D/Stroke Data on SNPs 39–89, or Block 2

SNP 39 SNP 42 SNP 45 SNP 83 SNP 87 SNP 89 sHap

Posterior probability 0.02 0.04 0.01 0.01 0.01 0.01 1.00

OR 1.00 1.00 1.00 1.00 1.00 1.00 0.38a

BCI (1.00,1.00) (1.00,1.05) (1.00,1.00) (1.00,1.00) (1.00,1.00) (1.00,1.00) (0.28,0.52)

OR presb 1.04 1.07 1.04 1.03 0.97 1.01 0.38a

BCI presb (0.98,1.10) (1.00,1.14) (0.96,1.1) (0.97,1.08) (0.93,1.02) (0.94,1.08) (0.28,0.52)

Point estimates of each parameter were taken as the median of the corresponding posterior sample.
a These are point estimates of sHap and therefore are not ORs.
b Calculated on the condition that the SNP was included in a model.
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where design matrices D and X are defined in the methods

section, and D[, H] denotes the Hth column of D. The deriv-

ative of g, required for the multivariate delta method
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The multivariate delta method15 provides an approxi-

mate MVN distribution for a vector function, g, of p[�H]

and n.
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where Sðp½�H�Þ denotes the multinomial covariance matrix

of these first H – 1 probabilities. Therefore, substituting

Equation (A2) into Equation (A4), we obtain the following

MVN for logðqÞjp½�H�,n
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Appendix B

Moves Within the Model Space

As described in the Material and Methods, the model was

fitted via a reversible jump MCMC algorithm, which

enabled model selection. Whether it was necessary to

include study-specific haplotype frequencies and all H

haplotypes in the model was not part of the main study

question, so it was decided that the study-specific haplo-

type frequencies and between-study variance parameter

would always remain in the model. The question being

investigated was whether each SNP has an association

with disease, so the set of models between which the

reversible jump algorithm was allowed to move was

defined by all possible combinations of OR parameters

being included or excluded for each marker. Therefore, if

M markers are considered for analysis, there will be a set

of
Pm¼M

m¼0

�
M
m

�
possible models that reversible jump may

move between.

Determining the probability of a model move was a two-

stage process. First, the type of move was determined from
Table 13. Bayesian Multi-SNP Analysis of PDE4D/Stroke Data on SNPs 175–222, or Block 3

SNP 175 SNP 199 SNP 219 SNP 220 SNP 222 sHap

Posterior probability 0.06 0.02 0.04 0.02 0.07 1.00

OR 1.00 1.00 1.00 1.00 1.00 0.21a

BCI (0.88,1.00) (1.00,1.00) (1.00,1.06) (1.00,1.00) (0.85,1.00) (0.08,0.64)

OR presb 0.89 0.99 1.15 1.05 0.88 0.21a

BCI presb (0.80,1.00) (0.88,1.11) (0.92,1.69) (0.87,1.28) (0.66,1.00) (0.08,0.64)

Point estimates of each parameter were taken as the median of the corresponding posterior sample.
a These are point estimates of sHap and therefore are not ORs.
b Calculated on the condition that the SNP was included in a model.
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four possibilities: adding a marker OR, removing a marker

OR, swapping the OR of one marker for another, or making

a ‘‘null’’ move where no change occurs. An addition can

only occur when there are <M ORs present, a removal

can only occur when there are >0 ORs present, and

a swap can only occur when there are >1 ORs present.

Swap, addition, and removal moves were each given a 1
6

probability of happening, when such a move was avail-

able. The null move therefore had a 1
2 chance of happening

when all other move types were available, although this

was increased by the probabilities assigned to other move

types when they were unavailable.

Second, if an addition, removal, or swap move was

selected, the markers to be involved in the move werepicked

from the markers available for the move (e.g., an addition

can only involve markers with ORs currently excluded)

with equal probability. Therefore, one determines the prob-

ability of a particular model move within the model space

by multiplying the probability of the move type and, with

the exception of a ‘‘null’’ move, the probability of selecting

the particular marker(s) involved in the move.

Parameter Updates

We adopt a proposal mechanism that updates one param-

eter type at each iteration of the reversible jump algorithm.

Figure 4. Bayesian Multilocus Analysis: Study-Specific MAF
Estimates for SNP 45
These were estimated from application of our model to data on
SNPs 39–89. Woo et al.26 did not type SNP 45,(26), so this estimate
was imputed by our model. For each MAF, 95% credible intervals
are given.
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For each proposal made in the reversible jump algorithm,

there are four types of parameters that may be updated:

d Study-specific control haplotype probabilities ps
0

d Grand mean control haplotype probabilities p0

d Between-study haplotype standard error sHap

d SNP log-ORs b.

The parameter type to update is chosen at random, with

weighting equal to the number of occurrences of the param-

eter type in the model under consideration. Note that the

variance parameters for all proposal distributions below

are tuned to obtain an acceptance rate of approximately 0.4.

Updating Control Haplotype Probabilities ps
0 and p0

For modeling the hierarchical relationship of the study-

specific haplotype probabilities at each iteration for each

study, parameters gs ¼ (gs
1, ..gs

H) are stored. These define

study-specific haplotype probabilities via the following

multinomial-logit link;

ps
0,h ¼

exp
�
gs

h

�
P

i¼1,::H

exp
�
gs

i

� for h ¼ 1,::H and s ¼ 1,::S (B1)

Figure 5. Bayesian Multilocus Analysis: Study-specific OR
Estimates for SNP 45
These were estimated from application of our model to data on
SNPs 39–89. The posterior probability for a global effect of SNP
45 on stroke was 5%, suggesting that although data from several
studies are consistent with considerable effects, when data are
pooled, any effect disappears. The global effect is omitted from
the plot because the low posterior probability meant no reliable
estimate was obtained. Woo et al. did not type SNP 4526, so this
estimate was imputed by our model. For each OR, 95% credible
intervals are given.
, 2009



When a study-specific vector of haplotype probabilities,

ps
0, is selected to be updated, an element of the correspond-

ing gs is chosen at random, and a new value is drawn from

a normal distribution centered on the current value,

leading to gs*. Applying Equation (B1) to gs* results in

a new set of haplotype probabilities ps�

0 . Note that

although gs and gs* only differ by one element, each

element of ps
0 and ps�

0 differs. The advantage of updating

in this way is that the elements of ps�

0 are always between

0 and 1 and sum to 1. Grand mean haplotype probabilities

are updated in the same way.

Updating Between-Study Haplotype Frequency

Variance, sHap

Because this parameter must always be positive, it is up-

dated on the log scale. This is also achieved via a normal

distribution centered on the current (log) value.

Updating SNP Log-OR b Values

These are updated using a normal distribution centered on

the current value.

Supplemental Data

Supplemental Data include four figures and five tables and can be

found with this article online at http://www.ajhg.org/.

Acknowledgments

This work was supported by Medical Research Council research

grant G0600580. L.S. was supported by a Wellcome Trust Senior

Research Fellowship in Clinical Science. A.D.H. holds a British

Heart Foundation Senior Research Fellowship (FS05/125).

Received: December 23, 2008

Revised: February 23, 2009

Accepted: April 3, 2009

Published online: April 30, 2009

Web Resources

The URLs for data presented herein are as follows:
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Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.

nlm.nih.gov/Omim
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