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Genome-wide Insights into the Patterns and Determinants
of Fine-Scale Population Structure in Humans

Shameek Biswas,1 Laura B. Scheinfeldt,1 and Joshua M. Akey1,*

Studying genomic patterns of human population structure provides important insights into human evolutionary history and the rela-

tionship among populations, and it has significant practical implications for disease-gene mapping. Here we describe a principal compo-

nent (PC)-based approach to studying intracontinental population structure in humans, identify the underlying markers mediating the

observed patterns of fine-scale population structure, and infer the predominating evolutionary forces shaping local population structure.

We applied this methodology to a data set of 650K SNPs genotyped in 944 unrelated individuals from 52 populations and demonstrate

that, although typical PC analyses focus on the top axes of variation, substantial information about population structure is contained in

lower-ranked PCs. We identified 18 significant PCs, some of which distinguish individual populations. In addition to visually represent-

ing sample clusters in PC biplots, we estimated the set of all SNPs significantly correlated with each of the most informative axes of vari-

ation. These polymorphisms, unlike ancestry-informative markers (AIMs), constitute a much larger set of loci that drive genomic signa-

tures of population structure. The genome-wide distribution of these significantly correlated markers can largely be accounted for by the

stochastic effects of genetic drift, although significant clustering does occur in genomic regions that have been previously implicated as

targets of recent adaptive evolution.
Introduction

Identifying, quantifying, and understanding genome-wide

patterns of population structure has been a major focus in

studies of human population genetics.1–4 The majority of

analyses have focused on broad-scale patterns of structure

among geographically diverse populations and have

conclusively shown that 85%–95% of human genetic vari-

ation is attributable to differences among individuals and

that 5%–15% is due to differences between populations.5,6

Such analyses have provided considerable insight into

human evolutionary history and the relationship among

human populations and, more practically, are important

for the design and analysis of disease mapping studies.7–11

More recently, however, there has been increased

interest in delineating levels of fine-scale population struc-

ture.5,12,13 Many of these studies have used principal-

component analysis (PCA) to probe population structure,

and their aims can be broadly divided into two primary

uses. First, PCA has been used for identifying and visual-

izing patterns of population structure, and typically these

studies have focused on the top two or three principal

components (PCs). The most well studied in this aspect

has been European ancestry14,15, where it has been demon-

strated that the first PC approximates a northwest-south-

east ancestry gradient.16,17 A more recent example, consist-

ing of a two-dimensional visual representation of PC1 and

PC2 from 3,192 European individuals, shows a strong

correlation with the actual geographical location of the

samples.17 In addition, analysis of another global dataset

consisting of 3,082 samples whose ancestry can be traced

to different geographic locations reveals widespread signa-

tures of structure that is visible in the top seven PCs.18
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The second primary use of PCA has been to identify small

panels of ancestry-informative markers (AIMs)19,20, which

are useful in correcting for stratification in genome-wide

association studies (GWAS).14,16,21 In these studies, only

the top few hundred markers correlated with a PC are iden-

tified and retained. However, a more exhaustive collection

of significantly correlated PC SNPs would facilitate a deeper

understanding of the evolutionary forces governing intra-

continental structure in humans.

Here, we apply PCA to a large global sample of individ-

uals from the Human Genome Diversity Project–Centre

d’Etude du Polymorphisme Humain (HGDP-CEPH) Panel.

We analyze 643,884 SNPs genotyped in 944 unrelated

individuals from 52 populations.22 The goals of our study

are twofold. The first is to rigorously estimate the number

of significant PCs in this dataset, as opposed to focusing on

the top two or three PCs. In doing so, we find that substan-

tial information exists about patterns of intracontinental

structure in lower-ranked, yet significant, PCs. The second

is to identify and analyze the set of markers significantly

correlated with particular PCs to make population-genetic

inferences about human evolutionary history. This

expanded set of markers is considerably larger than previ-

ously described panels of AIMs and provides a roadmap

to the genomic positions that drive signatures of fine-scale

population structure in humans.

Material and Methods

Data
We downloaded SNP genotypes for more than 650,000 markers

typed in 1043 individuals that compose the HGDP-CEPH panel.22

These individuals can be broadly classified into 52 populations
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and seven continental groups. We filtered the set of autosomal

SNPs to retain only those that had less than 10% missing data

and used an algorithm based on Hardy-Weinberg equilibrium to

impute missing genotype data. We excluded known first- and

second-degree relatives23 as well as three additionally ambiguous

samples (HGDP00980, HGDP00770, and HGDP00621). Our final

dataset consisted of 643,884 autosomal SNPs and 944 unrelated

individuals (Table S1 available online). The minor allele was re-

coded as 0 and the major allele as 1, and the diploid genotype

for a polymorphism in each individual was recoded as 0, 1, or 2.

Principal-Component Analysis
To deal with the computational limitations in performing

a singular-value decomposition (SVD) of large files (>2 GB) with

standard numerical packages such as lapack, we computed an

SVD of the 944 3 944 covariance matrix between individuals.

Before computing the covariance matrix, we normalized each

SNP genotype, X, by using the formula bX ¼ ðX� XÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�ð1� pÞ

p
,

where p ¼ X/2 is the allele frequency.24

Computing an SVD of the covariance matrix is equivalent to

doing a PCA. We also calculated the proportion of variance ex-

plained by the ith PC as vi ¼ l2
i =
P944

j¼1

l2
j , where li is the eigenvalue

associated with each PC. Instead of recovering the weights of the

SNPs by using algebraic manipulations of the PC and the original

genotypes, we used the proportion of variance explained by a linear

model yi ¼ m0 þ gj, where yi is the ith PC, m0 is the intercept, and gj is

the jth SNP genotype. For j¼ 1. 643,884, we computed the square

of the sample correlation coefficient R2
ij and used this statistic to

estimate the contribution of each SNP to the ith PC. We used the

statistical software R for the computations.25

Estimating the Significant Number of PCs
We computed the number of PCs significant at a threshold of p <

0.001 by using a parametric method based on the Tracy-Widom

(TW) statistic.24 To avoid the confounding effects of linkage

disequilibrium (LD) and to meet specific distributional assump-

tions, we randomly selected a subset of 1,799 unlinked SNPs

(spaced at least 1 Mb apart). A PCA of this subset was calculated

as previously described, and the eigenvalue, li, for each PC was

calculated. A TW statistic for each li was estimated, and empirical

p values were used for assigning significance. In addition, we used

two additional approaches to assess robustness in the inferred

number of significant PCs. In the first method, we used an

ANOVA framework to test each PC for a significant signature of

structure.20 The membership of each individual to one of the 52

populations was used as a covariate in the analysis. A p value

was computed with null permutations of p, from the model

yi ¼ m0 þ p, where p is the population label. Note that the p values

are not monotonically increasing for this approach and that we

therefore retained the smallest set of PCs that are all below the

p value threshold of 0.001 as significant. In the second method,

we estimated the test statistic, vi, which is the proportion of vari-

ance explained for each PC. We permuted genotypes of each

SNP across all individuals to compute a null covariance matrix

and then estimated null statistics, v0
i . We repeated this process

ten times and pooled all null statistics to compute p values.

Testing PCs for Clinal Variation
To identify clinal patterns of variation within continents, we

calculated the Spearman rank correlation, r, between the reported
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geographic coordinates of sampled individuals within each conti-

nent (on the basis of their population membership) and PC1.

Correlations were calculated with respect to latitude, longitude,

and the great-circle distance for each population from a common

reference point of 0� latitude and 0� longitude. The haversine26

formula was used for calculating the great-circle distance, D as

D ¼ 2�R�arctanð
ffiffiffi
a
p

,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� aÞ

p
, where a ¼ sin2ðf=2Þ þ cosðfÞ�

sin2ðl=2Þ,
R ¼ 6371 km is the radius of the earth, and (f,l) is the location

(latitude, longitude) in radians of an individual.

Identifying Significantly Correlated SNPs
We used the square of the sample correlation coefficient, R2, to test

the null hypothesis of no association between an SNP and a PC.

For all 643,884 SNPs, we permuted the genotype ten times to

obtain the null distribution of R2, which we then pooled

across all SNPs to get a p value for each hypothesis test. To account

for multiple hypothesis tests, we controlled the false-discovery

rate. The p value threshold was defined as p < 1/(number of

polymorphic SNPs) in each continent, such that only one false

positive was expected by chance. If all SNPs were polymorphic

within a continent, this translates to an uncorrected p value of

1.5 3 10�6.

We analyzed the genome-wide distribution of significant SNPs

by dividing the autosomal genome into nonoverlapping 500 kb

bins. For the ith bin, we estimated the probability pi of observing

xi or more significantly correlated SNPs by using the hypergeomet-

ric distribution, which takes into account the number of signifi-

cant SNPs in the bin, the number of SNPs in the bin, the total

number of significant SNPs across all bins, and the number of

nonsignificant SNPs across all bins. In addition, because the use

of the hypergeometric distribution in the presence of LD is an

approximation to the ideal case of independently sampled signif-

icant SNPs, we confirmed the robustness of the results by two

independent analyses based on the Poisson distribution and Wal-

lenius’ noncentral hypergeometric distribution, which yielded

similar estimates for the proportion of SNPs located in and out

of clusters (data not shown).

Using Significantly Correlated SNPs to Confirm

Stratification
In order to verify that the set of SNPs correlated with PC1 also

shows the same pattern of variation across the samples as PC1

from the biplot, we used the program Structure (version 2.0).27

For example, the 11,811 SNPs that were significantly correlated

with PC1 in Africa were run through the model-based clustering

algorithm implemented in Structure, and for different values of

K (number of clusters), the results were plotted with the program

distruct (version 1.1).28

Coalescent Simulations
We used the coalescent simulation program ms to test the effects of

SNP-ascertainment strategies, levels of population structure, and

sample size on the estimated number of correlated markers.29

We used previously described demographic parameters related to

population splitting and bottlenecks.30 Two continents represent-

ing Africa and Europe were simulated under different conditions,

which involved varying the number of samples and/or the

number of subpopulations within each continent. To obtain confi-

dence intervals around the number of markers correlated to PC1 at

a p value < 0.01 in each continent, we simulated 100 replicates.
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We modeled ascertainment bias by using a double-hit ascertain-

ment strategy, in which SNPs were discovered in four randomly

sampled chromosomes from one of the European subpopulations,

which is generally consistent with one of the discovery strategies

of HapMap SNPs.31 The discovered SNPs were then ‘‘genotyped’’

in all individuals, and the ascertained and complete sets of

markers were independently subjected to PCA as described above.

In the second set of simulations, we increased the number of chro-

mosomes in each continent from 200 to 1000 to evaluate the

effect of sample size on the number of correlated markers.

A sample ms command line argument is included below, which

generates 100,000 unlinked SNPs in two continents, each contain-

ing 1000 chromosomes split among four populations.

ms 2040 100000 -s 1 -I 8 250 250 250 250 250 250 250 290

-en 0.0005 1 0.24 -en 0.0005 2 0.24 –en 0.0005 3 0.24

-en 0.0005 4 0.24 -en 0.000975 5 0.077 -en 0.000975 6 0.077 -en

0.000975 7 0.077 -en 0.000975 8 0.077 -ej 0.0009875 8 7 -ej

0.0009875 7 6 -ej 0.0009875 6 5 -en 0.00475 5 0.00746 -en

0.004875 5 0.077 -en 0.0075 1 0.0625 -en 0.007625 1 0.24 -en

0.0075 2 0.0625 -en 0.007625 2 0.24 -en 0.0075 3 0.0625 -en

0.007625 3 0.24 -en 0.0075 4 0.0625 -en 0.007625 4 0.24 -ej

0.024 4 3 -ej 0.024 3 2 -ej 0.024 2 1 -ej 0.025 5 1 -en 0.0425 1 0.12

Integrating Results from Genome-wide Scans
Results from ten recent genome-wide scans were analyzed, and

722 regions that were identified as targets of selection in two or

more scans were retained (for more details, see Akey et al.32).

Approximately 46,000 SNPs from these regions were present in

the Illumina panel, which were used in the analysis.

Results

Estimating the Number of Significant PCs

in the HGDP-CEPH Data

Researchers often use PCA to visualize population structure

by constructing biplots of PCs that explain the most

amount of variation in the data.20,33 However, whereas

previous work has primarily focused on the first two PCs,

there is potentially much more information about popula-

tion structure in additional PCs. Therefore, as a first step in

analyzing the HGDP-CEPH data, we determined overall

levels of structure in the entire dataset by estimating the

number of PCs that explained more variation than ex-

pected by chance. There are a number of statistical

approaches for determining the number of significant

PCs. Here we used a test based on the TW distribution24

and identified 18 significant PCs by using all 944 individ-

uals. We also employed two additional methods to estab-

lish the robustness of the TW distribution and found

similar results (Table S2). A detailed description of how

these three methods were implemented is described in

the Material and Methods. Thus, although the exact

number of significant PCs varies depending on the specific

test used, they all clearly show that lower-ranked PCs,

which are not routinely studied, contain considerable

information about population structure.

To visualize the potential information contained in the

lower PCs, in Figure 1 we plotted PC1 versus PC2 and

PC10 versus PC11. The plot of PC1 versus PC2 captures
The Am
allele frequency variation on a global scale and follows

a coarse approximation of the geographical arrangement

of the populations that are present in the samples. This

plot recapitulates results from previously reported empir-

ical studies22, and the shape of the curve has been noted

earlier both in empirical studies of genetic data and also

from more theoretical explorations of various sampling

schemes and population-genetic models.34,35

The biplot of PC10 versus PC11, however, represents

a finer-scale change in allele frequency differences; it

primarily separates the Kalash samples along PC10 and the

American samples along PC11. This inference of local and

regional structure is representative of the general pattern

seen for lower-ranked significant PCs and is well supported

by simulation and empirical results from recent studies.18,31

Thus, the above results demonstrate that considerable

information about fine-scale population structure is con-

tained in lower-ranked PCs that explain more variation

than expected by chance. In the following text, we apply

this methodology to continental groups in the HGDP-

CEPH data. Importantly, we also identify SNPs that are

significantly correlated with these PCs, which allows more

detailed inferences about the evolutionary forces shaping

such fine-scale patterns of human population structure.

Significant Fine-Scale Population Structure

Is Observed on All Continents

To explore intra-continental structure in more detail, we

performed PCA separately on individuals grouped into

seven continents: Africa (AF), America (AM), Central and

South Asia (CSA), East Asia (EA), Europe (EU), Middle

East (ME), and Oceania (OC). For each continent, the

number of PCs that are significant according to the TW

distribution is shown in Table 1. Note that there are not

as many significant lower-ranked PCs within continents

as were observed for the global sample. Intuitively, this

makes sense because the low-ranked significant PCs in

the global analysis correspond to the higher-ranked PCs

identified in the continental analysis.

Figure 2 provides a visual summary of consecutive

biplots of the top five significant PCs from Africa. Similar

PC plots are available for the remaining continents in

Figures S1–S6. In the first plot, we confirm some of the

salient features reported in results from previous

studies.22,36 The African hunter-gatherer (Biaka, Mbuti

Pygmies, and San) and the pastoral (Youruba, Mandenka,

and Bantu) samples cluster separately along PC1, whereas

along PC2 the primary distinction is within the hunter-

gatherer group, between the Biakas and the Mbutis. The

third component separates the San, and the fourth and

fifth components partition the pastoral populations, with

the Bantu NE group in particular.

Clinal Variation Is a Common Feature

of Intracontinental Structure

Many theoretical models of population structure, such as

isolation-by-distance and stepping-stone models, predict
erican Journal of Human Genetics 84, 641–650, May 15, 2009 643



Figure 1. Change in Scale of Differentiation from Global to Local along PCs
The top panel shows a biplot of PC1 versus PC2, and the bottom panel is a biplot of PC10 versus PC11. Filled circles represent all 944
samples and are colored according to the continent of origin (indicated in the legend). In the bottom panel, brown filled circles are
used for highlighting the Kalash population.
clinal patterns of genetic variation.37–40 To explore such

patterns, we tested the correlation of PC1 with the

geographical coordinates of sample locations for all conti-

nents by using Spearman’s rank correlation coefficient (see

Material and Methods). Table 2 summarizes the results of

Table 1. Number of Significant PCs in Each Continental
Grouping

Continent Populations Number of Significanta PCs

All 52 18

Africa 7 4

America 5 4

Central and South Asia 9 5

East Asia 17 4

Europe 8 2

Middle East 4 5

Oceania 2 1

a p < 0.001
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this test and demonstrates that significant evidence of

clinal variation is observed for all continents (except a

lack of correlation with latitude in the Middle East). Note

that when one excludes ‘‘outlier’’ populations, such as

the Kalash and Hazaras, which are thought to be more

isolated and thus might deviate from simple isolation-

by-distance or stepping-stone models more than the

others,5,41,42 the magnitude of the observed correlations

increases (data not shown).

Identifying SNPs Significantly Correlated with PCs

Although PC biplots give a snapshot of the composite

genome-wide patterns of variation, they do not provide

information about the specific SNPs and genomic loca-

tions driving such signatures of population structure. To

this end, we identified SNPs that are significantly corre-

lated with individual PCs. The correlation of each SNP

with a single PC can inform us about local changes in

ancestry along the genome. One variant of this approach
2009



Figure 2. Intracontinental Population Stratification in Africa
The 102 African samples are represented as filled circles, and the color legend for the predefined population labels is indicated within
each plot.
has been successfully applied to describing sets of AIMs

that are used to control for confounding in association

studies.14,16,21 One selects these AIMs by retaining only

the top few informative SNPs that can accurately recon-

struct the global patterns of structure.

We extended this approach to look at the set of all SNPs

that are significantly correlated to PCs. This enlarged set of

SNPs, in addition to encompassing the set of AIMs, allows

us to begin to make inferences about how evolutionary

processes such as genetic drift and adaptation have

impacted the more dynamic but locally restricted signa-

tures of structure along the genome. The number of SNPs

significantly correlated with the top two PCs in each conti-

nent is listed in Table 3.

We were additionally interested in discovering whether

information captured along the top PCs is recapitulated

by the set of markers correlated to them. In the African

samples, we analyzed the subset of most-informative

SNPs correlated to PC1 and PC2 by using the program

Structure.27 As discussed above, our analysis of African
The Am
samples demonstrates a separation of hunter-gatherers

and pastoral groups along PC1. Figures S7 and S8 show

the Structure-generated clustering profile of African indi-

viduals at K ¼ 2 for PC1 and K ¼ 3 for PC2. Both plots

recreate the stratification profile in Figure 2, where the

Bantu, Mandenka, and Yoruba samples cluster together

separately from the Pygmy and San samples in the PC1

profile. In addition, the cluster coefficients for PC2 indicate

that Mbuti Pygmies are distinct from the San and Biaka (see

Figure S8).

Factors Affecting the Number of Correlated Markers

Table 3 shows that there is substantial variation in the

number of correlated SNPs across continents. For example,

Africa has the highest number SNPs significantly corre-

lated with PC1. On the other hand, Europe has a paucity

of PC1-correlated SNPs, which is curious because it is an

order of magnitude lower than Central and South Asia

despite similar levels of structure measured by average FST

values (Table 3). Differences in the observed number of
erican Journal of Human Genetics 84, 641–650, May 15, 2009 645



Table 2. Summary of Clinal Patterns of Variation with PC1

Continent Sample Size

Longitude Latitude Haversine Distance

r p Value r p Value r p Value

Africa 102 �0.76 2.2 3 10�16 0.74 2.2 3 10�16 �0.60 2.1 3 10�11

America 64 0.91 2.2 3 10�16 �0.91 2.2 3 10�16 �0.90 6.5 3 10�26

Central and South Asia 201 �0.39 1.0 3 10�8 �0.25 2 3 10�4 �0.39 1.0 3 10�8

East Asia 229 �0.51 2.7 3 10�16 �0.89 2.2 3 10�16 �0.15 1.9 3 10�2

Europe 158 �0.44 6.5 3 10�9 �0.86 2.2 3 10�16 �0.95 1.0 3 10�78

Middle East 162 �0.66 2.2 3 10�16 �0.03 7.1 3 10�1 �0.65 1.8 3 10�20

Oceania 28 0.85 1.3 3 10�8 �0.85 1.32 3 10�8 0.85 1.38 3 10�8
correlated markers among continents could result from

a number of factors, such as differing magnitudes of

intra-continental population structure, ascertainment

bias, and sample size.

To investigate these issues, we performed coalescent

simulations by using demographic parameters derived

from a previously described calibrated model of human

history in three populations with ancestry from the

HapMap panel.30 In our simulations, we modeled intra-

continental structure in two continents, corresponding

to Africa (high structure; mean FST ¼ 0.048) and Europe

(low structure; mean FST ¼ 0.005) and sampled 1000 chro-

mosomes from each continent. We then followed the

same procedure that was used with the empirical data to

perform within-continent PCA. Note that our primary

purpose here is to investigate factors influencing the

number of PC-correlated markers in the context of a demo-

graphic model broadly consistent with major features of

human genomic variation, not with the exact demo-

graphic history per se.

The salient conclusions of these simulations can be

summarized as follows. First, as expected, higher levels of

population structure lead to more significantly correlated

SNPs. Specifically, the proportion of PC1-correlated

markers was approximately five times larger in Africa

(mean ¼ 0.0574; 95% CI ¼ 0.0518-0.062) than in Europe

(mean ¼ 0.0103; 95% CI ¼ 0.0098-0.0107). Additionally,

the simulations demonstrate that ascertainment bias of

SNP markers can have large consequences on the estimated

proportion of significantly correlated PC SNPs. In partic-

ular, ascertainment bias tends to overestimate levels of

Table 3. Summary of Markers Correlated with PC1 and PC2

Continent

Number of

Populations

Sample

Size

Number

PC1-Correlated

Markers

Number

PC2-Correlated

Markers

Average

FST

Africa 7 102 11811 1446 0.070

America 5 64 4217 3226 0.107

Central and

South Asia

9 201 5239 2469 0.034

East Asia 17 229 6759 122 0.051

Europe 8 158 513 121 0.035

Middle East 4 162 2123 658 0.027

Oceania 2 28 2382 13 0.118
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population structure, particularly in the continents where

SNPs were not initially discovered. The mean proportion of

correlated markers in Africa was 0.105 (95% CI ¼ 0.088-

0.122), whereas in Europe it was 0.0201 (95% CI ¼
0.0193-0.021). This observation is due to the bias toward

discovering common alleles43–45, and the resulting over-

representation of SNPs with a higher sampling variance

of allele frequencies. Finally, sample sizes can also influ-

ence the number of correlated markers. Specifically,

when the total number of chromosomes in Africa increases

from 200 to 1000, the proportion of correlated markers

also increases (data not shown).

In summary, we find that three factors, the amount of

population structure, the SNP ascertainment strategy,

and the sample size, play a role in determining the total

number of PC-correlated markers and can explain the

small number of PC-correlated markers in Europe, and

they probably contribute to the variation in the number

of PC-correlated markers among continents.

Genomic Distribution of Markers Significantly

Correlated with PC1

Identifying sets of PC-correlated SNPs allows fine-scale

mapping of genomic regions contributing to population

structure. In addition to providing an informative set of

markers that can be used in correcting for population strat-

ification in genome-wide association studies, broad sets of

PC-correlated SNPs will facilitate inferences on the evolu-

tionary forces shaping patterns of intracontinental struc-

ture. The relative contribution of genome-wide stochastic

effects mediated through genetic drift and locus-specific

effects, such as selection, are difficult to separate; however,

clustering of PC-correlated SNPs might be indicative of the

locus-specific effects of positive selection46 or recombina-

tion-rate heterogeneity.

To begin to explore these issues, we searched for clusters

of significantly correlated PC1 SNPs by dividing the

genome into nonoverlapping 500 kb bins and testing

whether each bin contained significantly more PC-corre-

lated markers than expected on the basis of the

total number of SNPs in the bin (see Material and

Methods). Figure 3 shows the genomic distribution of

PC1-correlated SNPs for all continents. The number of

significant (p < 1.8 3 10�6) SNP clusters ranged from
, 2009



Figure 3. Genomic Distribution of PC1-Correlated SNPs
The genome was divided into nonoverlapping 500 kb bins (x axis), and each bin was tested for whether it contained more PC1-correlated
SNPs than expected by chance (y axis). p values are plotted as�log10 (p). Panels represent the seven continents, and the dashed red line
corresponds to a p value of 1.8 3 10�6.
approximately 30 to 120 across continents (Table 4),

whereas we would expect less than one significant bin by

chance at this threshold. Furthermore, the percent of

PC1-correlated SNPs located in clusters ranged from 7%

to 35% (Table 4), and on average almost 80% of all markers

were present outside of clusters. Thus, although there is

some evidence for clustering of significantly correlated

PC1 SNPs, in general they are widely distributed
The Am
throughout the genome, consistent with a predominant

role of genetic drift in mediating patterns of fine-scale

human structure.

To better understand the potential causes of the iden-

tified clusters in more detail, we first compared the aver-

age recombination rate between bins with and with-

out evidence of significant clustering. The average

recombination rate in bins with clusters of PC1-correlated
erican Journal of Human Genetics 84, 641–650, May 15, 2009 647



SNPs is significantly smaller than that in bins without clus-

ters (1.32 and 1.56 cM/Mb, respectively; p ¼ 1 3 10�6).

Thus, as expected, the interaction of genetic drift and local

recombination rates probably contributes to the observa-

tion of clusters of PC1-correlated SNPs.

Next, we tested whether more clustered PC1 SNPs were

located in putatively selected genomic regions than would

be expected by chance. We integrated the results from ten

recent genome-wide scans for selection and identified 722

loci (see Material and Methods) that were supported in two

or more studies.29 Table 4 summarizes the salient details of

PC1-correlated SNPs in clusters and selected regions, and

for each continent we found that significantly more clus-

tered PC1 SNPs were also present in selected regions than

was expected by chance. Note that we have excluded

Europe from this analysis because the number of PC1-

correlated SNPs prevents robust inferences. Despite this

enrichment, most PC1-correlated SNPs were located

outside of clusters, and of those that were in clusters, the

majority were not located in putatively selected regions.

Thus, although the results of Table 4 suggest that selection

might contribute to fine-scale population structure, it is

likely to be of less importance than genetic drift.

Discussion

We have performed a detailed analysis of intra-conti-

nental structure in 944 individuals from seven conti-

nents. We find significant evidence for population struc-

ture within each continental group, and hence local,

small-scale differentiation is a ubiquitous feature of

even closely related human populations. Furthermore,

the magnitude of intra-continental structure, as assessed

either by mean FST or the number of significant PCs,

varies among continents. Obviously, this might reflect

Table 4. Distribution of PC1-Correlated SNPs Found in
Clusters and in Selected Regions

Continent

Number of

Clusters

Percent

SNPs in

Clustersa

Percent

SNPs in

Selected

Regionsb

Percent

Clustered

SNPs in

Selected

Regionsc
Enrichment

p Valued

Africa 61 7.0 8.9 18.0 2.2 3 10�16

America 120 35.2 6.9 8.2 8.8 3 10�3

C/S Asia 83 18.7 13.3 30.0 2.2 3 10�16

East Asia 95 19.1 8.7 14.0 3.0 3 10�13

Middle East 29 11.1 15.9 42.0 2.2 3 10�16

Oceania 57 28.8 6.8 8.9 1.1 3 10�2

a Denotes the percentage of all PC1-correlated SNPs found in clusters.
b Denotes the percentage of all PC1-correlated SNPs that are located in

putatively selected regions of the genome (see text).
c Denotes the percentage of all PC1-correlated SNPs that were found in

clusters and also map to putatively selected regions.
d P value resulting from a test of whether more PC1-correlated SNPs in clus-

ters were also present in selected regions than expected by chance.
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genuine differences in the degree of fine-scale structure;

however, additional variables such as the set of sampled

populations, sample sizes, and ascertainment bias of

markers preclude definitive interpretations from this

data set. One particularly interesting observation was

the strong signature of clinal variation in essentially

every continental group (Table 2). Although correlations

between patterns of human genetic variation and geog-

raphy have previously been described in European

samples, to our knowledge the general extension of

such correlations to additional continents has not been

appreciated.

In addition to characterizing patterns of intra-conti-

nental structure, we also identified the SNPs contributing

to the predominant axes of variation. Contrary to previous

work, which has primarily focused on small sets of AIMs

that serve as proxies for population structure in genome-

wide association studies, we have analyzed the entire set

of SNPs correlated to the top two PCs. It is important to

note that this set is not exhaustive because the main

features of the PC biplot are recapitulated in all continents

when the correlated markers are excluded from the anal-

ysis (data not shown). Rather, it is a conservative estimate

of the number of markers that make the largest contribu-

tion to genetic variation between populations within

continents.

We observed that within continents, the range of signif-

icantly PC1-correlated SNPs spanned an order of magni-

tude among continental groups. To explain the variation,

we performed extensive coalescent simulations to test

the effects of different characteristics of the data. Taken

together, levels of population structure, the number of

samples, and ascertainment bias influence the number of

correlated markers. Although the effects of ascertainment

bias can be mitigated through the use of data from

complete sequencing projects such as the ‘‘1000 Genomes’’

project, more fundamental issues such as the optimal

study design for sampling individuals and populations

require further investigation.

We were particularly interested in the distribution of PC-

correlated SNPs and whether they were clustered into

discrete regions or evenly distributed throughout the

genome. Interestingly, we did find that PC1-correlated

SNPs in clusters were enriched for loci previously impli-

cated as targets of positive selection (Table 4). Nevertheless,

the majority of PC-correlated SNPs were broadly distrib-

uted throughout the genome. Thus, although positive

selection might contribute to patterns of fine-scale popula-

tion structure, the stochastic effects of genetic drift are

most likely the predominant force governing intra-conti-

nental patterns of population structure in the HGDP

samples.

In summary, now that we have increasingly dense cata-

logs of genetic variation, the details of fine-scale human

population structure are becoming tractable.14–17,47–50 As

microsatellite and SNP data give way to full resequencing

data, the testing of increasingly refined hypotheses about
, 2009



fine-scale human population structure should yield new

insights into the history and relationships among human

genomes.

Supplemental Data

Supplemental Data include eight figures and two tables and can be

found with this article online at http://www.ajhg.org/.
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