
Genome-wide association of early-onset myocardial infarction
with common single nucleotide polymorphisms, common copy
number variants, and rare copy number variants

Myocardial Infarction Genetics Consortium

Genome-wide association studies have identified several single nucleotide polymorphisms
(SNPs) as reproducibly associated with risk of myocardial infarction (MI)1-3, a leading
cause of death and disability. We tested both SNPs and copy number variants (CNVs) for
association with early-onset MI in a large sample of 2,967 cases of early-onset MI and 3,075
matched controls. The design called for any variant with P < 0.001 to be tested for
replication in up to 18,822 additional individuals. SNPs at eight loci reached genome-wide
significance, two of which are newly identified: PHACTR1 (P = 6 × 10-10) and MRPS6/
KCNE2 (P = 2 × 10-9). We tested 554 common CNVs (> 1% frequency) for association with
MI; none met the pre-specified threshold for replication testing (P < 10-3), and the Q-Q plot
did not deviate from the null distribution. We identified 8,065 rare CNVs but did not detect
a greater CNV burden in cases as compared to controls, in genes as compared to the genome
as a whole, or at any individual locus. Common SNPs at eight loci were reproducibly
associated with risk of MI but a systematic well-powered test of common and rare CNVs
failed to identify additional associations to risk of MI.

Myocardial infarction (MI) is heritable4 and among the leading causes of death and
disability worldwide5. Whereas the majority of MIs occur in individuals >65 years old,
5-10% of new MIs occur in younger patients and these events are associated with
substantially greater heritability5,6. Thus, early-onset MI is a promising phenotype for
genetic mapping.

Genome-wide association studies (GWASs) of common SNPs have been reported for MI
and coronary artery disease1-3,7, with each study finding common SNPs on chromosome
9p21.3 associated with MI or coronary artery disease. In addition to 9p21.3, these papers
proposed at least eight other loci as harboring SNPs associated with coronary artery disease.
Some of these loci await definitive replication, but even if all were valid they would explain
a small fraction of the risk of MI.

Structural variants, another class of human DNA sequence variation, may account for some
of the unexplained heritability in MI and other common diseases8,9. Common CNVs have
been associated with Crohn’s disease10 and body mass index11 and rare CNVs have been
related to risk for autism12 and schizophrenia13-16. To our knowledge, no integrated
assessment of SNPs and CNVs in the same samples has been reported for MI or any other
trait. Several technological developments make such systematic surveys now possible
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including hybrid oligonucleotide microarrays17 and analytical methods18 to simultaneously
assess SNPs and CNVs genome-wide in each sample.

We designed a three-staged GWAS of early-onset MI with SNPs, common CNVs, and rare
CNVs (Figure 1). Stage 1 consisted of the Myocardial Infarction Genetics Consortium
(MIGen), a collection of 2,967 cases of early-onset MI (in men ≤50 years old or women ≤60
years old) and 3,075 age- and sex-matched controls free of MI from six international sites:
Boston and Seattle in the United States as well as Sweden, Finland, Spain, and Italy (Table 1
and Supplementary Methods). The mean age at the time of MI was 41 years among males
and 47 years among females.

Variants with P < 0.001 were advanced through two stages of replication (Figure 1, see
Methods for power calculations). In total, 1,441 SNPs, including a SNP at each of eight
loci recently proposed from GWA or candidate gene studies for coronary artery
disease3,7,19, were taken forward into Stage 2, an in silico analysis of these SNPs in four
recently completed GWA studies for MI. Stage 2 consisted of an effective symmetric
sample size of 3,942 cases of MI and 3,942 controls (Supplementary Methods and
Supplementary Table 1). Thirty-three SNPs were taken forward from Stage 2 into Stage 3,
consisting of an additional 6 studies with an effective symmetric sample size of 5,469 cases
of MI and 5,469 controls (Supplementary Methods and Supplementary Table 2). Stage 3
included 25 SNPs with the best combined statistical evidence in Stages 1 and 2 and 8 SNPs
from previously reported loci (Methods).

After Stages 1, 2, and 3, we observed that SNPs at 8 loci were associated with MI at a pre-
specified threshold for genome-wide significance of P < 5 × 10-8 (corresponding to P < 0.05
after adjusting for ~ 1 million independent tests20) (Table 2). Six of the eight previously-
reported associations were confirmed (Table 2) with P ranging from 2 × 10-8 to 1 × 10-41.
As the Stage 2 samples were used to implicate some of these previous findings, the data we
present are not fully independent of prior reports. These six genetic association signals map
to 9p21.3, CXCL12, CELSR2/PSRC1/SORT1, MIA3, LDLR and PCSK93,7. Three of the
SNPs (those at the CELSR2/PSRC1/SORT1, LDLR, and PCSK9 loci) have been also
previously shown to relate to plasma low-density lipoprotein cholesterol, a causal risk factor
for MI7,21. The risk alleles at the eight loci ranged in frequency from 13% to 84%. Each
copy of the risk allele conferred excess odds of MI ranging from 13% to 28%.

Three of the loci previously suggested by Samani et al.3 did not meet our pre-specified
threshold of P < 5 × 10-8. Across Stages 1, 2, and 3, the statistical evidence was the
following: rs17228212 in SMAD3 (odds ratio 1.03, 95% confidence interval 0.99 - 1.07, P =
0.15); rs2943634 on 2q36 (odds ratio 1.05, 95% confidence interval 1.01 - 1.10, P = 0.01);
and rs6922269 in MTHFD1L (odds ratio 1.09, 95% confidence interval 1.05 - 1.14, P = 2 ×
10-5).

Two novel associations were observed with genome-wide significance: (i) in an intron of
phophastase and actin regulator 1 (PHACTR1) on chromosome 6 (rs12526453, odds ratio
1.13, P = 7 × 10-10) and (ii) in an intergenic region between mitochondrial ribosomal protein
S6 (MRPS6), solute carrier family 5 (inositol transporters) member 3 (SLC5A3) and
potassium voltage-gated channel, Isk-related family, member 2 (KCNE2) on chromosome
21 (rs9982601, odds ratio 1.19, P = 2 × 10-9). PHACTR1 is an inhibitor of protein
phosphatase 1, an enzyme that dephosphorylates serine and threonine residues on a range of
proteins22. MRPS6 encodes a subunit of the mitochondrial ribosomal protein 28S23.
SLC5A3 is a gene embedded within MRPS6 and encodes a protein that transports sodium
and myo-inositol in response to hypertonic stress24. KCNE2 encodes a subunit of a
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potassium channel and mutations in this gene cause inherited arrhythmias25. The
mechanisms by which gene(s) at these two loci lead to MI remain to be defined.

At two additional new loci (in an intron of WDR12 and near SYT7), the statistical evidence
for association across Stages 1, 2, and 3 was consistent (combined P for each at 4 × 10-7) but
did not meet our pre-specified genome-wide threshold (Table 2). These loci require follow-
up in additional samples.

Of the eight validated loci, non-coding SNPs at 9p21.3 have been the most widely
replicated, confer the largest effect size and are supported by the strongest statistical
evidence26. While it is possible that 9p21.3 SNPs act through as-yet unidentified coding
variants, non-coding SNPs may affect function by altering level of gene expression. Thus,
we explored whether the 9p21.3 SNP from our study might be related to mRNA level of
nearby genes in three biologically-relevant human tissues - liver, subcutaneous fat, and
visceral fat (Methods).

The MI-associated SNP at 9p21.3 (rs4977574) was strongly associated with mRNA level of
cyclin-dependent kinase inhibitor 2B (CDKN2B), a gene located ~89 kilobases from the
SNP. Compared with the mRNA level in a reference pool of individuals, carriers of the risk
G allele at 9p21.3 had about the same level of expression of CDKN2B in subcutaneous fat
tissue whereas carriers of the non-risk A allele had ~15% lower transcript level (P = 4 × 10-6

in 698 subcutaneous fat samples, Figure 2). The same SNP was also associated with
CDKN2B transcript level in visceral fat tissue (P = 1 × 10-4) but not associated in human
liver (P = 0.84). In each of the three tissues, this genotype was not associated with mRNA
level of other neighboring transcripts on 9p21.3 including CDKN2A, MTAP, or ANRIL (P
> 0.05 for each genotype-transcript association). CDKN2B, a downstream target of the
transforming growth factor beta pathway, has been shown to decrease cell survival27. These
results suggest the hypothesis that genetic variation at 9p21.3 leads to atherosclerosis
through CDKN2B.

To evaluate the cumulative effect of these eight SNPs on risk for MI, we constructed an MI
genotype score comprised of the 8 SNPs, modeling the number of risk alleles carried by
each individual in the MIGen GWAS (Stage 1). In logistic regression models including age,
gender, and principal components of ancestry, individuals in the top quintile of MI genotype
score had a two-fold increased risk for MI compared with bottom quintile (odds ratio 2.05,
95% confidence interval 1.74 to 2.42; P = 4 × 10-25, Table 3). The MI genotype score
confers risk of a magnitude comparable to other established risk factors such as plasma low-
density lipoprotein cholesterol (odd ratio 1.62, 95% confidence interval 1.17 - 2.25 for top
versus bottom quintile as previously reported28).

While the GWA approach has met with some success in MI, these variants, in sum, explain
a small fraction of the variance; the current MI genotype score explains only 2.4% of the
variance in risk for early-onset MI. Thus, we tested the hypothesis that systematic
assessment of structural variants, common and rare, might identify additional loci
contributing to MI.

We first used the CANARY algorithm18 to test 554 commonly segregating CNVs (> 1%
frequency) for association with early-onset MI in 2,783 cases and 2,865 controls that passed
sample quality control for CNV analysis (Methods). The estimated genomic control lambda
for the entire set of CNVs was ~1.23; for 316 CNVs with allele frequency greater than 5%,
lambda was ~1.05. We did not observe any CNV with evidence for association surpassing
our pre-specified threshold for replication of P < 0.001. In fact, the strongest association (P
= 0.002, Supplementary Table 3) did not pass the Bonferroni correction for 554 tests, let
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alone genome-wide significance for SNPs. A plot of the observed versus expected P value
distribution did not show deviation from the null distribution (Figure 3).

To detect rare CNVs, we used Birdseye18 and restricted analysis to autosomal deletions and
duplications that were both rare (< 1% frequency in our samples) and large (greater than
100kb). After stringent quality control filtering (Supplementary Methods), the analysis
included 5,955 individuals and 8,065 CNVs (39% deletions). The mean number of rare
CNVs per individual was 1.35 and the median was 1.

Using the same methods recently described in a successful study of schizophrenia14, we
evaluated case/control differences in rare CNVs across three parameters: the overall burden
of rare CNVs genome-wide, the number of genes overlapped by rare CNVs, and the total
kilobase extent of rare CNVs. Controlling for sample collection site, there were no case/
control differences in genome-wide rare CNV rate (P = 0.39), the number of genes
intersected by rare CNVs (P = 0.74) or the total kilobase extent of rare CNVs (P = 0.77).
Furthermore, there were no differences in rare CNV rate when restricting analysis to only
gene-intersecting rare CNVs (P = 0.55), deletions (P = 0.57) or duplications (P = 0.34).
Searching for specific loci with increased rates of rare CNVs in cases versus controls, only 4
regions showed uncorrected P values of P < 0.01; however, the lowest P value after
correction for multiple testing was P = 0.96.

In conclusion, we screened common SNPs and CNVs both common and rare for association
with early-onset MI in a large sample. Our study suggests four main conclusions. First, there
are eight gene regions at which common SNPs are associated with MI with genome-wide
significance and replication, two of which were newly implicated by this study. Second, at
9p21.3, we show that the SNP with the best statistical evidence for MI risk is also correlated
with expression of a neighboring gene - CDKN2B - in human fat tissue. Third, whereas the
effects of the individual SNPs are modest, the overall effect (in a comparison of extreme
quintiles) of an eight SNP score (two-fold increased risk for MI) is comparable in predictive
value to plasma LDL cholesterol28.

Fourth, and in contrast to the positive results for genetic mapping of MI via SNP analysis,
we were unable to detect common or rare CNVs associated with risk for MI. The current
analysis is directly comparable to a recent study of schizophrenia that found convincing
evidence for rare CNVs associated with disease both at specific loci and for three specific
genome-wide burden measures14: both studies are of similar sample size, used the same
genotyping platform, and were analyzed by the same methods and by the same analyst. The
different results indicate that the genetic architecture of MI may be different than
schizophrenia (based on natural selection, genetic complexity or other factors), and that the
remaining inherited risk for MI must be due to some combination of common SNPs for
which we do not yet have sufficient power, CNVs not measured in our analysis, rare point
mutations, and non-additive interactions. However, by systematically measuring all forms of
genetic variation in appropriate samples, it should be possible to identify the architecture of
each trait and increase information about the pathophysiology of disease.

METHODS
Study design and samples

We conducted a genetic association study with three stages as displayed in Figure 1. Stage 1
consisted of the Myocardial Infarction Genetics Consortium (MIGen), a collection of 2,967
cases of early-onset MI (in men ≤50 years old or women ≤60 years old) and 3,075 age- and
sex-matched controls free of MI from six international sites: Boston and Seattle in the
United States as well as Sweden, Finland, Spain, and Italy (Table 1). At each site, MI was
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diagnosed on the basis of autopsy evidence of fatal MI or a combination of chest pain,
electrocardiographic evidence of MI, or elevation of one or more cardiac biomarkers
(creatine kinase or cardiac troponin). The mean age at the time of MI was 41 years among
male cases and 47 years among female cases.

We took forward SNPs into two stages of replication (Stages 2 and 3, Figure 1). 1441 SNPs
were tested in Stage 2 based on two criteria: i) strength of statistical evidence in Stage 1
(1433 SNPs from loci with P < 10-3 in Stage 1) or ii) belonging to one of eight reported loci
from recent genome-wide association studies for coronary artery disease (a common SNP
from each of 9p21.3, near CXCL12, SMAD3, MTHFD1L, MIA3, near CELSR2/PSRC1/
SORT1, 2q36, and PCSK9)3,7.

Stage 2 consisted of in silico comparisons with four recently completed GWAS for MI
consisting of a symmetric effective sample size of up to 3,942 cases of MI and 3,942
controls. These studies included the Wellcome Trust Case Control Consortium Coronary
Heart Disease study3, German MI Family Study I3, PennCATH, and MedStar
(Supplementary Table 1). In each Stage 2 study, the analysis was restricted to the phenotype
of MI with an age of onset threshold of <66 years for men or women. Although this age
cutoff is slightly less restrictive than that used in Stage 1, this cutoff is at or below the mean
age of first MI in the US (65 years for men and 70 years for women).

Thirty-three SNPs were taken forward to Stage 3, which consisted of genotyping an
additional 6 studies with a symmetric effective sample size of up to 5,469 cases of MI and
5,469 controls. These six studies included Acute MI Gene Study/Dortmund Health Study,
Verona Heart Study29, Mid-America Heart Institute Study30, Irish Family Study31,
German MI Family Study II, and INTERHEART32 (European ancestry and South Asian
ancestry each analyzed separately) (Supplementary Table 2). Stage 3 was comprised of 25
SNPs with the best combined statistical evidence for MI from Stages 1 and 2 (P < 10-5) and
the eight previously-reported SNPs discussed above. In each Stage 3 study, the analysis was
restricted to the phenotype of MI and in four of the six studies, an age of onset threshold was
established at <66 years for men or women.

Genotyping
In Stage 1, we studied 727,496 directly genotyped SNPs (Affymetrix 6.0 GeneChip) that
passed quality control filters as described in the Supplementary Appendix. In addition, we
used these genotyped SNPs and the phased chromosomes from the HapMap CEU sample to
impute genotypes for an additional 1,830,248 SNPs with MACH 1.0 software. In previous
work, we have demonstrated that imputation is accurate (average concordance rate of 97.9%
between imputed and genotyped data for the same SNP) when using MACH 1.0 in samples
of European ancestry with the HapMap CEU phased chromosomes as reference33.

Stage 2 studies were genotyped on either the Affymetrix GeneChip Human Mapping 500K
Array Set or Affymetrix 6.0 GeneChip and imputation of HapMap SNPs was performed
using either IMPUTE or Mach 1.0 software (Supplementary Table 1).

In Stage 3, genotyping was attempted for 33 SNPs in five studies using the iPLEX
MassARRAY platform (Sequenom). In the sixth study, German MI Family Study II, SNPs
were genotyped using the Affymetrix 6.0 array.

Association of individual SNP genotypes with MI
In Stage 1, we tested the association of early-onset MI with a combined set of ~2.5 million
SNPs (directly genotyped and imputed) using a logistic regression model that accounted for
age, gender, and study site. The estimated genomic control λ1000 was low at 1.01,
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suggesting little residual confounding due to population stratification. Imputed genotypes
were tested for association after accounting for uncertainty using the “PROPER” option in
the IMPUTE software package.

In addition, we evaluated an alternate method to account for potential confounding by
population stratification within samples of European ancestry. We conducted principal
component analysis as implemented in PLINK software to define axes of ancestry within the
six Stage 1 studies34. The first two principal components separated individuals into clusters
that matched study site labels and revealed the well-known north-south cline in allele
frequencies across Europe (Supplementary Figure 1). Logistic regression analysis with the
first two principal components as covariates (instead of study site) led to nearly identical
association results (correlation in association statistics was 0.99). In Stages 2 and 3, within
each study, we examined the association of SNPs with MI using logistic regression after
adjustment for age and gender.

We used two meta-analytic methods to summarize the statistical evidence for each SNP
across Stages 1, 2, and 3. We combined odds ratios for a given reference allele on a
logarithmic scale weighted by the inverse of their variances using a fixed-effects model. We
also combined evidence for association solely on the basis of P values. For each study, we
converted the two-sided P value to a z-statistic and assigned a sign to reflect the direction of
the association given the reference allele. Each z-score was then weighted with the squared
weights summing to 1 and each sample-specific weight being proportional to the square root
of the effective number of individuals in the sample. We summed the weighted z-statistics
across studies and converted the summary z-score to a two-sided P value.

Expression quantitative trait analyses
To evaluate whether the 9p21.3 variant also served as an expression quantitative trait locus
with putative cis regulatory effects on gene expression traits, we profiled expression levels
of 39,280 transcripts and genotyped 782,476 SNPs in 955 human liver samples35. In
addition, we evaluated these same transcripts and genotyped 557,240 SNPs in human
subcutaneous fat (n=701) and visceral fat samples (n=848). Liver samples were either
postmortem or surgical resections from organ donors. The fat samples were collected from
subjects undergoing Roux-en-Y surgery between 2000 and 2007. The transcript level in each
sample was compared with the mean level in a control mRNA pool of 100 randomly-
selected samples. A ratio of the sample transcript level over that in control pool was first
calculated and then log transformed. We tested if mean log-ratios differed across 9p21.3
genotype groups using the Kruskal Wallis test.

MI genotype score
We modeled the cumulative number of MI risk alleles carried by each participant in Stage 1.
We constructed a score from the eight SNPs exceeding P < 5 × 10-8 in Table 2. The score
was composed of allelic dosage (observed counts of 0, 1, or 2 for genotyped SNPs, or
fractional allele counts between 0.0 and 2.0 estimated from the imputation procedure for
imputed SNPs), weighted by the effect size of that allele on the MI phenotype (to minimize
a potential “winner’s curse”, the effect size was drawn from the combined Stage 1 + 2 + 3
evidence), and summed across SNPs. We tested the association of genotype score with MI
using logistic regression models after accounting for age, gender, and two principal
components of ancestry. We set the lowest quintile of MI genotype score as the referent
group and estimated the increase in odds for MI associated with the remaining quintile
groups.

Statistical analyses were conducted using either PLINK software or in R.
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Common and rare CNV analysis
Utilizing a previously defined copy number polymorphism map based on HapMap, we
genotyped a set of polymorphic (greater than 1% sample frequency) autosomal deletion and
duplication variants using the CANARY algorithm18. We first conducted quality control
filtering at the sample level. We assessed the initial 6,042 samples for quality in copy-
number genotyping using three quality metrics reported by the Birdseye method. We
measured the average copy number genome estimates reported by the Birdseye Hidden
Markov Model18, and we removed any sample which showed excessively high or low
average copy number estimates (> 3 standard deviations than the average genome-wide).
Second, we measured the variability in SNP and copy number polymorphism probe
intensities, with each standardized per chromosome. We removed any sample with excessive
variability in these estimates on average genome-wide (> 3 standard deviations than the
average genome-wide). Next, we removed any sample where more than 2 chromosomes
failed any of these three metrics (> 3 standard deviations in estimated copy number or
excessive SNP or CNV variability for chromosome). Finally, for samples that had 1 or 2
chromosomes failing these measures, rather than failing the sample, we treated the data as
missing. As a result, 5,648 samples were copy number genotyped with CANARY
software18.

We genotyped these samples for the previously defined set of 1,315 copy number
polymorphisms characterized on the HapMap sample17. As an initial quality control step,
we removed any variant where more than 10% of the copy calls were uncertain (confidence
score > 0.1) or missing. In addition, we focused on a set of polymorphisms where at least
one allele had a frequency greater than 1%. This restricted our analysis to 614 copy number
polymorphic regions. An additional 59 CNVs were removed for inconsistent genotyping.
Thus, we focused on a set of 554 copy number variable regions observed to be polymorphic
and well genotyped in a set of 2,783 cases and 2,865 controls that passed copy-number
sample quality control.

Association testing was performed using a logistic regression model, where copy number
was used as a predictor of early-onset MI. We included two principal components that
estimated fine-scale population stratification as covariates in the model. Analyses were
conducted using PLINK software.

To detect rare CNVs, we used a Hidden Markov Model, as implemented in the Birdseye
package, and focused on rare (less than ~1% sample frequency) and large (greater than
100kb) autosomal deletions and duplications. Using methods recently described14, we
evaluated case/control differences in rare CNVs across three parameters: genome-wide CNV
rate, number of genes intersected by CNVs, and the total kilobase extent (see
Supplementary Methods).

Statistical power
Given our inability to identify CNVs associated with MI, we estimated our statistical power
for such discovery. For common CNVs, we had 78% power to detect a CNV of 25%
frequency and effect size of 1.20 at an alpha of 0.001 in 3,000 cases and 3,000 controls.

For rare CNVs, we approximated by simulation the statistical power to detect a CNV with a
population frequency for the deletion of 1/8000 (i.e., so it would be observed in 1/4,000 live
births). We set the relative risk to 20.0 (i.e. the effect size seen for several rare variants
associated with schizophrenia14) and the population disease prevalence to 1/100. We
simulated 10,000 datasets for 2,920 cases and 3,035 controls under this model. Using
Fisher’s exact test to account for small cell sizes, for a type I error rate of 0.01 (1-sided test)
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we had 97 % power. The mean case frequency was ~0.5%, the mean control frequency was
~0.02%. For a similarly rare variant but with a relative risk of 10.0, the average case
frequency was ~0.25% (control frequency still ~0.02%) and power was lower at 54%.

These simulations suggest that we had good power to detect loci with large effects, although
this assumes perfect sensitivity and specificity for detection. For very large deletions, at
least, we expect sensitivity to detect such CNVs would be high. However, we may have
missed additional loci with CNVs that are less penetrant, rarer, or smaller.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study Design
The genome-wide association study consisted of three stages with an evaluation of common
single nucleotide polymorphisms, common copy number variants, and rare copy number
variants in Stage 1. The design called for all variants with a P < 0.001 to be taken forward to
Stage 2. As only SNPs met this criterion, 1441 SNPs were taken forward to Stage 2. A total
of 33 SNPs were tested in Stage 3. Statistical evidence for association was combined across
Stages 1, 2, and 3 using meta-analysis.
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Figure 2. CDKN2B messenger RNA expression in subcutaneous fat tissue stratified by rs4977574
genotyped on 9p21.3
The CDKN2B transcript level in each of 848 subcutaneous fat samples was compared with
the mean level in a control mRNA pool of 100 randomly-selected samples. A ratio of the
sample transcript level over that in control pool was first calculated and then log-
transformed. This percent change is shown on the y-axis with the genotype at rs4977574
shown on the x-axis. Note that the G allele represents the risk allele for MI with each copy
of the G allele increasing risk for MI by 28%.

Page 17

Nat Genet. Author manuscript; available in PMC 2009 September 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 3. Plot of observed versus expected P value distribution for association of 554 common
copy number variants with early-onset myocardial infarction
The CANARY algorithm was used to test 554 commonly segregating CNVs (> 1%
frequency) for association with early-onset MI in 2,783 cases and 2,865 controls that passed
sample quality control for CNV analysis (Methods). The estimated genomic control lambda
for the entire set of CNVs was ~1.23; for 316 CNVs with allele frequency greater than 5%,
lambda was ~1.05. We did not observe any CNV with evidence for association surpassing
our pre-specified threshold for replication of P < 0.001. The observed versus expected P
value distribution did not show deviation from the null distribution.
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Table 3
Quintiles of allelic dosage score comprised of eight validated MI single nucleotide
polymorphisms and risk for early-onset myocardial infarction

Quintile of MI Genotype Score Odds ratio 95% confidence interval

Quintile 1 1.0 (reference group)

Quintile 2 1.10 0.93 - 1.29

Quintile 3 1.41 1.20 - 1.65

Quintile 4 1.60 1.36 - 1.89

Quintile 5 2.05 1.74 - 2.42

P for association of MI genotype score with early-onset MI: 4 × 10-25

The eight validated MI polymorphisms are as shown in Table 2 and include PHACTR1 rs12526453, SLC5A3/MRPS6/KCNE2 rs9982601, 9p21.3
rs4977574, CXCL12 rs1746048, CELSR2/PSRC1/SORT1 rs646776, MIA3 rs17465637, LDLRs rs1122608, and PCKS9 rs11206510. Risk of
early-onset MI was assessed in the 2,967 cases and 3,075 controls from Stage 1.
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