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W ith the exception of rare mono-
genic disorders, most type 2 dia-
betes results from the interaction

of genetic variation at multiple different
chromosomal sites with environmental
exposures experienced throughout the
lifespan (1). This complex genetic archi-
tecture has important consequences for
understanding the pathophysiology of
type 2 diabetes, both for researchers seek-
ing mechanistic insight into disease pro-
gression and for clinicians hoping to
translate this new genetic information
into more effective patient management.

With nearly two dozen genes associ-
ated with type 2 diabetes, including some
genetic variants that appear to modify re-
sponses to commonly prescribed diabetes
medications and lifestyle interventions,
we may be on the verge of a new era in
which a patient’s individual genetic pro-
file can add useful information to clinical
care. Indeed, commercial companies are al-
ready offering genome-wide genetic profil-
ing that includes information related to
diabetes risk (2). Further advances in type 2
diabetes genetic discovery hold the prom-
ise, as yet unrealized, of enabling clini-
cians to individualize care for their
patients by basing their clinical decisions
on patient risk for disease progression,
propensity to develop specific complica-
tions, and likely response to different
medication classes. At present it is un-
known whether individual genetic infor-
mation may also serve to effectively
motivate patient behavior change, a cor-
nerstone of diabetes and pre-diabetes
management. In this review of polygenic
type 2 diabetes, we focus on recent dis-

coveries made via linkage analyses, candi-
date gene association studies, and
genome-wide association (GWA) scans
and highlight potential clinical applica-
tions of new genetic knowledge to risk
prediction, pharmacologic management,
and patient behavior. Monogenic diabetes
has recently been reviewed elsewhere (3).

Progress in gene discovery
Linkage studies and candidate genes.
In contrast to monogenic disorders,
where results from single mutations lead
to predictable phenotypes, the complex
genetic architecture of susceptible and
protective alleles in polygenic type 2 dia-
betes is more difficult to discern. Indeed,
accumulating data suggest that type 2 di-
abetes is likely a collection of many
closely related diseases with varying but
often overlapping primary mechanisms
that involve both impaired insulin secre-
tion and insulin resistance. Adding to the
challenge, type 2 diabetes is generally di-
agnosed later in life as a consequence of
significant interactions of life-long environ-
mental influences with multiple genetic fac-
tors. Because of the limited individual
impact of single genetic loci, a full under-
standing of the complex gene-gene and
gene-environment interactions in this dis-
ease has proven quite challenging.

In the first phase of diabetes gene dis-
covery, investigators used techniques
based on linkage analysis to identify po-
tential diabetes-associated genes. This ap-
proach, best suited for discovering genes
with strong effects within relatively small
family-based studies, involves genotyping
affected family members for a set of mark-

ers to identify regions that are co-
inherited more commonly in affected
family members and therefore potentially
point to a genomic region containing a
susceptibility locus.

One of the first successes in type 2
diabetes genetic research was a study con-
ducted in Icelanders that identified a link-
age peak on chromosome arm 5q (4).
Focusing on the various linkage peaks
identified in that initial study ultimately
led to the association of transcription fac-
tor 7–like 2 (TCF7L2) with an increased
risk of type 2 diabetes. Interestingly, the
TCF7L2 association does not explain the
originally observed linkage. In a subse-
quent case-control study of 3,774 Cauca-
sian subjects from Iceland, Denmark, and
the U.S., these investigators reported an
estimated allelic risk of 1.56 (P � 4.7 �
10�18) (5). The effect of the risk allele
appears to be additive; one allele confers
�40% relative risk of diabetes, whereas
two copies confer 80% relative risk (6).
This remains the largest effect size of all
known type 2 diabetes genes identified to
date. The precise mechanisms by which
TCF7L2 variants increase risk are not well
understood, although various lines of ev-
idence suggest that they involve the en-
teroinsular axis and impaired insulin
secretion and possibly reduced �-cell
proliferation (7,8).

Candidate genes are previously dis-
covered genes that, based on their in-
ferred physiologic role, are hypothesized
to contribute to the disease of interest if
abnormal. In the case of type 2 diabetes,
genes related to glucose transport, �-cell
function, and insulin secretion would all
be considered reasonable candidates for
contributing to the genetic basis of dis-
ease. Association studies simply compare
the relative frequencies of each variant al-
lele in case and control subjects and de-
termine whether one is overrepresented
in disease. To date, four genes identified
using candidate gene association studies
have been convincingly associated with
type 2 diabetes:

PPARG. A proline-to-alanine change in
codon 12 (P12A) of the peroxisome
proliferator–activated receptor �
(PPARG) gene was the first genetic vari-
ant to be definitively implicated in the
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common form of type 2 diabetes
(9,10). Since this initial work, the pre-
ponderance of evidence has conclu-
sively supported the association of
PPARG with type 2 diabetes with an
odds ratio (OR) of �1.2 (11).

KCNJ11. The potassium inwardly rectify-
ing channel, subfamily J, member 11
(KCNJ11) gene, first described in the
context of neonatal diabetes, encodes
the �-cell K� channel and is function-
ally closely related to the sulfonylurea
receptor SUR1, encoded by ABCC8.
These genes are adjacent to each other
on chromosome 11. Work on this lo-
cus has confirmed that a less drastic
change in a gene implicated in a rare
monogenic subtype of diabetes (12)
can indeed contribute to its more com-
mon form: single nucleotide polymor-
phism (SNP) E23K of KCNJ11 has now
been convincingly associated with type
2 diabetes. Subsequent large-scale
studies and meta-analyses have consis-
tently associated the lysine variant with
type 2 diabetes with an OR of �1.15
(13,14).

WFS1. Another monogenic form of diabe-
tes is Wolfram syndrome, caused by
mutations in the Wolfram syndrome 1
(WFS1) gene. A recent evaluation of
common variants in 84 candidate
genes yielded two SNPs in WFS1 that
were robustly (P �10�7) but modestly
(OR �1.11) associated with type 2 di-
abetes in a case-control study compris-
ing �24,000 samples (15). This
association has reached genome-wide
significance through replication in in-
dependent cohorts (16), and the risk
variants appear to affect �-cell function
(17).

HNF1B. Further research on this MODY
(maturity onset diabetes of the young)
gene has produced a conclusive associ-
ation of an intronic SNP (rs757210) in
hepatocyte nuclear factor 1b (HNF1B)
(previously known as TCF2) with type
2 diabetes. A combined analysis of
�15,000 samples yielded an overall
OR of 1.12 and a P value of 	10�6

(18), with results replicated in two
other large-scale studies (19,20).

GWA studies. Recent dramatic in-
creases in the rate of diabetes gene discov-
ery have occurred with the advent of
GWA studies. This new approach has re-
sulted from the confluence of several key
scientific achievements: 1) successful se-
quencing of the entire human genome,
leading to 2) identification of the several

million SNPs (common variations in a
single base pair that explain the vast ma-
jority of human heterozygosity), which in
turn led to 3) genotyping of 3.8 million
SNPs in 270 DNA samples by the Inter-
national HapMap Project (HapMap) to
create a subset of haplotype-tagging SNPs
(so-called “tag SNPs” that can serve as ef-
ficient proxies for localizing variation
within narrow stretches of the genome).
These advances in our understanding of
the human genome proceeded in con-
cert with two additional key steps: 4)
the development of affordable, high-
throughput genotyping technologies
and 5) several large multicenter collec-
tions with well-characterized pheno-
types assembled and shared through
international collaborations.

The first GWA scan for type 2 diabe-
tes (and all others that followed) was val-
idated by the clear replication of the
TCF7L2 association (21). This study also
discovered a missense SNP in SLC30A8
(OR 1.26, P 	 10�6) and common vari-
ants in HHEX (OR 1.21, P 	 10�5) as
novel type 2 diabetes associations. The
recognition that SLC30A8 encodes a
�-cell zinc transporter expressed in insu-
lin-containing granules (22) and the
HHEX gene encodes a transcription factor
involved in early pancreatic development
(23) provided initial reassurance that the
GWA approach was useful for identifying
functionally relevant loci.

Shortly after this first GWA study,
three other groups conducted high-
density GWA analyses and shared results
ahead of publication. Published jointly,
these studies confirmed the known
TCF7L2, KCNJ11, and PPARG loci as well
as the HHEX and SCL30A8 findings; they
also identified CDKAL1 (OR 1.12, P 	
10�10), IGF2BP2 (OR 1.14, P 	 10�15),
and CDKN2A/B (OR 1.20, P 	 10�14) as
new type 2 diabetes loci (24–26). CD-
KAL1 (CDK5 regulatory subunit associ-
ated protein 1-like 1) is hypothesized to
lead to �-cell degeneration by modulating
CDK5/CDK5R1 activity.

Other GWA scans have corroborated
the HHEX and SCL30A8 associations, in-
dependently detected the CDKAL1 signal
(27), and identified variants in the FTO
gene that were associated with an obesity
phenotype linked specifically to glycemic
dysregulation (28,29). In the combined
meta-analyses “Diabetes Genetics Repli-
cation And Meta-analysis” (http://www.
well.ox.ac.uk/DIAGRAM/), the separate
type 2 diabetes GWA scans from four
leading groups (24–27) were analyzed to

yield six new loci (JAZF1, CDC123-
CAMK1D, TSPAN8-LGR5, THADA, AD-
AMTS9, and NOTCH2-ADAM30)
associated with type 2 diabetes at ge-
nome-wide statistical significance (30).
The putative functional mechanisms by
which currently identified genes may affect
type 2 diabetes risk are listed in Table 1. To
date, most genetic variants identified in type
2 diabetes relate to �-cell function rather
than insulin resistance (31).

As of yet, most GWAs have been con-
ducted in European ancestry populations.
Because minor genetic variation accumu-
lates over time, ancestral groups that be-
came geographically separated many
generations ago may yield different GWA
scan results. Thus, a major next step for
type 2 diabetes genetic research is to ex-
tend association studies to samples from
populations with differing mutational
and demographical histories (32). Studies
in other populations may reveal novel
susceptibility loci such as KCNQ1, first
discovered in Asian populations and un-
commonly found in European popula-
tions (33). Moreover, as we move toward
the clinical application of genetic infor-
mation for individualized diabetes care,
race/ethnic-specific results may be
needed to optimally interpret an individ-
ual’s genetic risk.

Clinical application of diabetes
genetic information
By discerning structure in the patterns of
gene variation, subtle phenotype differ-
ences may be recognized in ways that
cannot be achieved with current pheno-
typing methods. The rapid increase in
GWA-related publications has fueled ex-
pectations that genetic factors can be used
to construct susceptibility profiles that
will help in the prediction, prevention,
and treatment of type 2 diabetes, thereby
ushering in a new era of “personalized
medicine.” In the following sections we
outline the current knowledge base and
potential clinical implications of diabetes
genetic testing in four clinical care
domains.
1) Predicting risk of developing diabetes.
A major clinical role for genetic testing in
medicine has been to predict an individ-
ual’s risk for developing disease. This
works particularly well in monogenic dis-
orders with Mendelian inheritance and
reliable penetrance. Examples include
testing for the BRCA genes in breast and
ovarian cancer and preconception testing
for carrier status in parents at risk for cys-
tic fibrosis. Such genetic testing holds two
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core principles: that the genetic testing
improves risk prediction beyond readily
available data such as family history,
physical exam findings, and basic labora-
tory tests, and that the test results provide
“clinically actionable” information.

Given the strength of the evidence
from landmark studies of diabetes pre-
vention (34–36), identifying patients in
the pre-diabetic stage for intensive life-
style management or metformin therapy
has the potential to significantly reduce
the incidence and subsequent morbidity
and mortality of type 2 diabetes. With this
potential benefit in mind, researchers
have investigated whether genetic testing
can improve the identification of high-
risk patients. Of the genes confirmed to
date, TCF7L2 has the highest OR for pre-
dicting diabetes. Among pre-diabetic
subjects enrolled in the Diabetes Preven-
tion Program (DPP), for example, patients

with the risk-conferring TT genotype (at
rs7903146) of TCF7L2 had an 81% in-
creased risk of progressing to diabetes
over 3 years (hazard ratio 1.81 [95% CI
1.21–2.70], P � 0.004) compared with
patients with the CC allele (6). This cor-
responds to an incidence of 18.5 new di-
abetes cases per 100 patient-years versus
10.8 per 100 patient-years for patients
without the TT allele. However, only
�10% of patients with pre-diabetes have
the TT genotype, limiting the applicabil-
ity of this test.

The generally weak effects of other
risk-associated gene loci discovered thus
far has led researchers to combine all con-
firmed gene loci into aggregate measures
of diabetes risk. In the past year, four
studies have been published that have ag-
gregated diabetes risk-associated genetic
loci to predict diabetes risk in different
populations. For example, Lyssenko et al.

(37) genotyped 16 SNPs and examined
clinical factors in 16,061 Swedish and
2,770 Finnish subjects. Type 2 diabetes
developed in 2,201 (11.7%) of these sub-
jects during a median follow-up period of
23.5 years. The addition of specific ge-
netic information to clinical factors only
slightly improved the prediction of future
diabetes, with an increase in the area un-
der the curve (AUC) from 0.74 to 0.75
(P � 10–4).

Using data from the Framingham Off-
spring Study, Meigs et al. (38) tested a
“genotype score” approach that summed
the number of risk-conferring alleles from
a panel of the 18 loci known to be associ-
ated with type 2 diabetes (Table 1). Using
this approach, patients that developed di-
abetes (255 of the 2,377 participants
studied over 28 years of follow-up) had
higher genotype scores (17.7 
 2.7 vs.
17.1 
 2.6 among those that did not de-

Table 1—Type 2 diabetes–associated genes

Gene region Function Marker Description
Risk
allele OR P

TCF7L2 Transcription factor; transactivates proglucagon
and insulin genes

rs7903146 Intronic T 1.37 1.0 � 10�48

PPARG Transcription factor involved in adipocyte
development

rs1801282 Missense: P12A C 1.19 1.5 � 10�7

KCNJ11 Kir6.2 K�channel; risk allele impairs insulin
secretion

rs5219 Missense: E23K T 1.14 6.7 � 10�11

WFS1 Endoplasmic reticulum transmembrane protein rs10010131 Intron-exon junction G 1.15 4.5 � 10�5

HNF1B Transcription factor involved in pancreatic
development

rs757210 Intronic A 1.12 5 � 10�6

SLC30A8 �-Cell zinc transporter ZnT8; insulin storage
and secretion

rs13266634 Missense: R325W C 1.12 5.3 � 10�8

HHEX Transcription factor involved in pancreatic
development

rs1111875 7.7 kb downstream C 1.13 5.7 � 10�10

CDKAL1 Homologous to CDK5RAP1, CDK5 inhibitor;
islet glucotoxicity sensor

rs7754840 Intronic C 1.12 4.1 � 10�11

IGF2BP2 Growth factor binding protein; pancreatic
development

rs4402960 Intronic T 1.14 8.9 � 10�16

CDKN2A/B Cyclin-dependent kinase inhibitor and p15
tumor suppressor; islet development

rs10811661 125 kb upstream T 1.20 7.8 � 10�15

FTO Alters BMI in general population rs8050136 Intronic A 1.17 1 � 10�12

JAZF1 Transcriptional repressor; associated with
prostate cancer

rs864745 Intronic T 1.10 5.0 � 10�14

CDC123-CAMK1D Cell cycle/protein kinase rs12779790 Intergenic region G 1.11 1.2 � 10�10

TSPAN8-LGR5 Cell surface glycoprotein implicated in
gastrointestinal cancers

rs7961581 Intronic C 1.09 1.1 � 10�9

THADA Thyroid adenoma; associates with PPARG rs7578597 Missense: T1187A T 1.15 1.1 � 10�9

ADAMTS9 Secreted metalloprotease expressed in musle
and pancreas

rs4607103 38 kb upstream C 1.09 1.2 � 10�8

NOTCH2 Transmembrane receptor implicated in
pancreatic organogenesis

rs10923931 Intronic T 1.13 4.1 � 10�8

KCNQ1 Pore-forming subunit of voltage-gated K�

channel (KvLQT1); risk allele impairs insulin
secretion

rs2237892 Intronic C 1.49 1.7 � 10�42

Grant and Associates
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velop diabetes, P 	 0.001), which corre-
sponded to a sex-adjusted OR for diabetes
that increased by 12% per each incremen-
tal increase in risk allele number. How-
ever, in a model including age, sex, family
history, BMI, fasting glucose, systolic
blood pressure, HDL cholesterol, and
triglycerides, the area under the receiver-
operating characteristic curve (AUC) test-
ing the ability to discriminate risk of
diabetes was 0.900 without the genotype
score and 0.901 with the score (P �
0.49), indicating that the genotype score
provided only a slightly better prediction
of risk than knowledge of common risk
factors alone. Other studies using the
same 18 genetic loci approach have
yielded similar results: Among partici-
pants in the Rotterdam study, adding the
18 polymorphisms to a predictive model
based on age, sex, and BMI only increased
the AUC from 0.66 (0.63–0.68) to 0.68
(0.66–0.71) (39); and in a case-control
study from the Genetics of Diabetes Audit
and Research Tayside Study, the AUC in-
creased from 0.78 to 0.80 (40).

Taken together, the results of these
genetic predication studies indicate that
genetic information may have the greatest
yield before other risk factors have ap-
peared (e.g., at birth or in youth, provided
this leads to actionable interventions) and
also that genetic prediction tools may
only prove useful once many more mark-
ers are discovered. While future genetic
predication tools may serve a valuable
role in identifying particularly high-risk–
patient subgroups, for current diabetes
prevention efforts, individualized genetic
information to guide therapy or motivate
behavior change may have the most clin-
ical impact among patients who have al-
ready been identified as at-risk for
diabetes by other methods.
2) Predicting diabetes-related compli-
cations. The rate of progression to car-
diovascular disease, renal dysfunction,
retinopathy, and other diabetes-related
complications is known to differ among
patients with similar diabetes duration
and glycemic control, raising the possibil-
ity that individuals may have a genetic
predisposition to specific complications.
For example, the heritability of creatinine
clearance is estimated to be �0.63 (41)
and that of glomerular filtration rate may
be as high as 0.75 even when controlled
for A1C (42). While there have been some
promising initial studies in the areas of
cardiovascular disease (43) and microvas-
cular complications (44), this area has yet
to yield clinically applicable results.

3) Response to treatment and pharma-
cogenomics. In addition to predicting
risk for diabetes or related complications,
a more detailed understanding of an indi-
vidual’s genetic background may help
guide treatment. Although many genes
have now been reproducibly associated
with type 2 diabetes, much less is known
about gene-drug interactions. Similarly,
the putative genetic predisposition of se-
lected individuals to the development of
side effects is presently unexplored. The
promise of this clinical application of ge-
netic testing is that we can choose the
“right” treatment for the “right” patient,
based on both expected response and
propensity for adverse side effects.

PPARG. An early focus of type 2 diabetes
pharmacogenetic studies has been the
common functional PPARG P12A vari-
ant, since this nuclear receptor is the
known drug target of the thiazo-
lidinediones (TZDs). Four published
studies have examined the effect of
PPARG P12A on the response to TZDs.
Blüher et al. (45) found that among 131
diabetic subjects treated for 26 weeks
with pioglitazone, the percentage of re-
sponders (defined as a �20% decrease
in fasting glucose or a �15% decrease
in A1C) did not differ between proline
homozygotes and alanine carriers. Sim-
ilarly, in the TRIPOD (Troglitazone in
Prevention of Diabetes) study, the
P12A variant did not predict failure to
increase insulin sensitivity in response
to troglitazone (46). In the DPP cohort,
no effect of PPARG P12A or five other
PPARG polymorphisms was seen in re-
sponse to troglitazone therapy (47). In
contrast, when Kang et al. (48) exam-
ined the response of 198 type 2 diabetic
patients to rosiglitazone, they found
that 15 carriers of the P12A polymor-
phism had a better response to TZD
therapy than Pro12Pro homozygotes.
Patients with the alanine allele had a
larger reduction in fasting glucose and
A1C than those without the allele, al-
though the sample size was small.
Thus, knowledge of allelic variation at
this locus does not yet offer a rationale
for therapeutic choices.

KCNJ11. A monogenic form of permanent
neonatal diabetes offers an illustrative
paradigm for pharmacogenetic testing.
Carriers of specific mutations at
KCNJ11 can be safely transitioned from
insulin to sulfonylurea therapy (49). In
contrast, the impact of the KCNJ11 ge-
netic variation on the effectiveness of

sulfonylurea therapy in common type 2
diabetes is unclear. Sesti et al. (50)
genotyped KCNJ11 in 525 Caucasian
type 2 diabetic patients and investi-
gated whether failure to respond to sul-
fonylurea therapy (defined as fasting
plasma glucose �300 mg/dl despite
combined sulfonylurea-metformin
therapy and appropriate diet) was due,
in part, to the risk allele. The authors
found carriers to have a relative risk of
failure of 1.45 compared with E23E
homozygotes. Also, the risk allele was
associated with an earlier onset of dia-
betes and worse metabolic control in
nonresponders. These results stand in
contrast to those of the UKPDS (UK
Prospective Diabetes Study), in which
the authors found no significant asso-
ciation of the E23K variant with re-
sponse to sulfonyurea therapy in 364
newly diagnosed type 2 diabetes pa-
tients (13).

ABCC8. A recent trial by Feng et al. (51)
offers a glimpse of what future pharma-
cogenetic testing may entail. In this
study, 1,464 recently diagnosed Chi-
nese type 2 diabetic patients were
treated for 8 weeks with the sulfonyl-
urea gliclazide. In this cohort, Ser/Ser
homozygotes at ABCC8 A1369S (a lo-
cus known to be closely correlated with
KCNJ11 E23K that encodes sulfonyl-
urea receptor SUR1) had a 26.1% de-
crease in fasting plasma glucose
compared with a 31.6% decrease in
Ala/Ala homozygotes (which translates
into a significant difference of �0.7
mmol/l or 12.6 mg/dl between geno-
typic groups).

TCF7L2. To investigate potential interac-
tion of TCF7L2 with drug therapy, the
recently published Go-DARTS (Genet-
ics of Diabetes Audit and Research Tay-
side) study genotyped 6,516 U.K.
participants for TCF7L2 and found that
the T allele was overrepresented in in-
dividuals requiring insulin treatment
and underrepresented in the patients
managed by diet alone. The authors
concluded that TCF7L2 variants may
be associated with increased disease se-
verity and therapeutic failure (52). An-
other recent publication from the same
group reported the effect of TCF7L2 ge-
notypes on therapeutic response in 901
diabetic patients treated with sulfonyl-
urea and 945 patients treated with met-
formin. Carriers of the risk TCF7L2
variants were more likely to fail with
sulfonylurea but not metformin ther-
apy as measured by A1C �7% within
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3–12 months after treatment initiation
(53). This finding further supports the
hypothesis that TCF7L2 variants are
important in �-cell function. Finally,
studies from the DPP on participants
with impaired glucose tolerance and el-
evated fasting glucose reveal that the
lifestyle preventive intervention was ef-
fective in reducing the genetic risk con-
ferred by the high-risk homozygous
genotype to the level of their wild-type
counterparts (6).

OCT1. One new research area involves the
variability in medication transport and
metabolism. Recently, Shu et al. (54) ex-
amined the hepatic transport of met-
formin and found that organic cation
transporter 1 (OCT1), which participates
in the hepatic uptake of metformin, may
contribute to variation in response to
metformin. These authors reported a re-
duced effect of metformin on AMP ki-
nase phosphorylation in Oct1-deficient
mouse hepatocytes and poor absorption
of metformin in Oct1-deficient mice.
They also showed that the OCT1 re-
duced-function allele in healthy human
subjects is predictive of higher glucose
levels during an oral glucose tolerance
test. Thus, this complementary area of
pharmacogenetic investigation holds
great promise in explaining the human
variability in drug response.

SLCO1B1. Although there are few studies
addressing genetic predisposition to
adverse reactions for glycemic-specific
drug classes, in clinical practice the ma-
jority of type 2 diabetic patients are
treated with statins (55). A recent publi-
cation provides the first example of dia-
betes-related gene–side ef fect
associations. These investigators con-
ducted a GWA study using �300,000
markers in 85 subjects with definite or
incipient myopathy and 90 control sub-
jects, all of whom were taking 80 mg of
simvastatin daily (56). This analysis iden-
tified a single strong association of myop-
athy with the rs4363657 SNP located
within SLCO1B1, a gene encoding the or-
ganic anion–transporting polypeptide
OATP1B1, which was previously shown
to regulate the hepatic uptake of statins.
The OR for myopathy was 4.5 (95% CI
2.6–7.7) per copy of the C allele and 16.9
(4.7–61.1) in CC compared with TT ho-
mozygotes. These findings imply that
more than 60% of these statin-induced
myopathy cases could be attributed to
the C variant.

4) Can individual genetic information
change behavior? Weight loss and in-
creased physical activity are the corner-
stones of therapy for patients with
diabetes and pre-diabetes. Results from
the DPP and other studies have conclu-
sively demonstrated the efficacy of inten-
sive lifestyle modifications to prevent or
delay diabetes onset. However, adherence
in the highly selected DPP intervention
group was suboptimal, with only 38% of
patients achieving weight loss goals and
58% maintaining physical activity goal by
study end (34). Thus, even in the ideal
circumstances of a rigorous clinical trial,
consistent adherence to lifestyle modifi-
cation remains a difficult clinical chal-
lenge. At present, it is not known to what
extent individual genetic risk information
can be applied to patients with pre-
diabetes to motivate significant behavior
change.

Given the suboptimal effectiveness of
current efforts to implement DPP-like
lifestyle programs, providing individuals
at risk for diabetes with new tools to im-
prove their motivation and adherence,
such as their individual diabetes genotype
scores, has the potential for substantial
clinical impact. To date, no studies have
examined the clinical impact of such dia-
betes-related genetic testing. However,
two trials in other areas provide some ev-
idence to support the potential impact of
knowing one’s personal “genetic risk” sta-
tus. In a study of 162 patients with a fam-
ily history of Alzheimer’s disease,
participants who learned that they were
ε4-positive (at increased risk for Alzhei-
mer’s disease) were significantly more
likely than �4-negative participants to re-
port Alzheimer’s disease–specific health
behavior change (including changes in
diet and exercise) 1 year after disclosure
(adjusted OR 2.73 [95% CI 1.14–6.54],
P � 0.02) (57); and among patients with
a family history of familial hypercholes-
terolemia, subjects randomly assigned to
receive genetic testing results to confirm
their familial hypercholesterolemia diag-
nosis had increased confidence in the ef-
ficacy of medical therapy versus patients
diagnosed via traditional testing, suggest-
ing that personal genetic information can
have a positive influence on patient per-
ceptions of how to achieve disease control
(58).

CONCLUSIONS — This is an era of
rapid and exciting scientific advancement
in type 2 diabetes genetics and genomics.
Newly identified diabetes-associated loci

are being discovered and may open new
vistas for elucidating the underlying
pathophysiology of this complex disease.
Understanding the complex interactions
among genetic profiles, individual life-
styles, and environmental factors lies at
the core of effective diabetes treatment.
Attempts to integrate such knowledge
into clinical practice are still in the early
stages, and as a result many gaps in
knowledge about organization, clinician,
and patient needs must be filled before
the clinical benefit of this advancement
can be fully realized (59).

Three points remain to be empha-
sized: 1) The current set of type 2 diabetes
allele variants may explain as little as
5–10% of the genetic basis for type 2 di-
abetes. The SNPs identified thus far signal
important chromosomal “neighbor-
hoods,” but future fine-mapping studies
and functional gene assessments will be
necessary to pinpoint the true underlying
causal mechanisms. Moreover, because
current genotyping techniques do not ad-
dress structural variants (e.g., copy num-
ber polymorphisms), have not captured
rare variants, and have left as much as
20% of common SNPs in the genome sub-
optimally covered (with a higher percent-
age of uncovered regions in the more
diverse African population), the full ge-
netic architecture of type 2 diabetes re-
mains largely unexplored. 2) Given the
relatively large sample sizes of collabora-
tive GWA studies published to date, we
are unlikely to find new polymorphisms
with effect sizes as large or larger than
TCF7L2 rs7903146 (at least among pop-
ulations of European ancestry). Nonethe-
less, as study sample sizes continue to
increase, we should expect to find many
more SNPs of modest effect sizes in the
range of most currently known genes (OR
1.1–1.2). 3) The addition of aggregated
genotype information does not substan-
tially improve upon current diabetes pre-
diction tools. Thus, the future clinical
application of diabetes genetic testing
may lie in predicting downstream compli-
cations, tailoring drug therapy, or moti-
vating behavior change, domains for
which we currently have a paucity of data.

We are fortunate to practice medicine
at the start of a new era (60). Novel biol-
ogy remains to be discovered in relation
to the effects of inherited DNA variation
on human phenotypic diversity in general
and metabolic traits in particular. How-
ever, enthusiasm for the potential of new
genetic knowledge must be tempered
with the recognition that current findings,
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even in the aggregate, provide only mod-
est clinically applicable new information.
Just as each person with type 2 diabetes
has a unique phenotype that reflects a
complex interaction between genetic vari-
ation and environmental factors, the ef-
fective clinical care of such a patient will
require the skillful integration of new ge-
netic risk information with the traditional
patient care skills that have been em-
ployed for ages.
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