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Abstract
This article describes a class of heteroscedastic generalized linear regression models in which a subset
of the regression parameters are rescaled nonparametrically, and develops efficient semiparametric
inferences for the parametric components of the models. Such models provide a means to adapt for
heterogeneity in the data due to varying exposures, varying levels of aggregation, and so on. The
class of models considered includes generalized partially linear models and nonparametrically scaled
link function models as special cases. We present an algorithm to estimate the scale function
nonparametrically, and obtain asymptotic distribution theory for regression parameter estimates. In
particular, we establish that the asymptotic covariance of the semiparametric estimator for the
parametric part of the model achieves the semiparametric lower bound. We also describe bootstrap-
based goodness-of-scale test. We illustrate the methodology with simulations, published data, and
data from collaborative research on ultrasound safety.
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1. INTRODUCTION
Varying-coefficient models have been widely studied with the aim of developing flexible
nonparametric regression models for various contexts. Hastie and Tibshirani (1993) formulated
the broad class of models that have the form

(1)

where μ is a given link function, xi = (xi1, …, xip)T represents the vector of primary covariates,
and β(zi) = (β1(zi), …, βp(zi))T represents an unknown vector function whose components
depend on additional observed variables zi. Cai, Fan, and Li (2000) developed rigorous
asymptotics using local polynomial regressions to estimate the functions βj (zi) (i.e., the varying
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coefficients), and developed a nonparametric likelihood ratio test of whether in fact the
coefficients are varying.

Semiparametric specializations of the model in (1) also have been studied. Hunsberger
(1994),Severini and Staniswalis (1994), and Carroll, Fan, Gijbels, and Wand (1997) considered
generalized partially linear models. Zhang, Lee, and Song (2002) and Ahmad, Leeahanon, and
Li (2005) considered partially linear varying-coefficient models with the identity link and
additive errors,

(2)

where E(εi |xi, vi, zi) = 0 and var (εi |xi, vi, zi) = σ2(zi). These authors presented semiparametric
estimators that combine non-parametric estimation of the smooth functions βj (·) with root-n–
consistent estimation of the parametric components, δ. Ahmad et al. (2005) established the
semiparametric efficiency of their estimator of δ in (2). Lam and Fan (2008) established root-
n asymptotic results for semiparametric quasi-likelihood in partially linear generalized
varying-coefficient models. Their results allowed the dimension of the parametric component
to increase with n at a certain rate.

In this article we consider a different partitioning of the model elements into parametric and
nonparametric components, in which the variation in coefficients is captured by a common
multiplicative scaling function w. We call the resulting class of models varying-scale
generalized linear models. For i = 1,…, n, consider responses yi, covariates xi and vi, and
auxiliary variables zi. The responses yi are assumed to follow a structural model of the form

(3)

where μ(·) is a known link function, β = (β1, …, βp)T is a vector of p regression parameters
subject to scale heterogeneity, δ = (δ1, …, δq)T is a vector of q additional regression parameters,
and w(·) is an unknown scaling function assumed only to be smooth in a sense defined later.
We consider the exponential family class of error models, so the models are a type of varying-
scale generalized linear model. Under regularity conditions and an identifiability constraint,
we establish the root-n consistency and asymptotic normality of the semiparametric estimator
of (βT, δT)T, and we show that these estimators achieve a semiparametric lower bound for
asymptotic variance.

We need to impose a constraint on either w(·) or β to ensure identifiability. For example,
suppose that we let z* denote a reference value for the auxiliary vector z such as the mean value
in the sample, and impose the constraint that w(z*) = 1. Then β is the gradient of μ−1{E(y|x,
z*)}as a function of x at the reference value z*. Equivalently, suppose that the first component
of β is assumed to be nonzero. Then we may set this component equal to 1 in the model,
absorbing its sign and magnitude into w(·), which is then unconstrained. We use the latter
constraint in the theoretical development. In general, we are able to make parametric inferences
about δ and any function of β that depends only on the ratios of its components. For any such
function, we obtain root-n–consistent semiparametric-efficient estimates. The approach
considered here a combination of local profile likelihood estimation and backfitting to estimate
the model. The approach and the large-sample theory adapts and extends results of Severini
and Wong (1992), Carroll et al. (1997), and Cai et al. (2000).
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Several special cases of the model in (3) are worth noting. If xi is a scalar constant, then the
model reduces to the generalized partially linear model of Hunsberger (1994) and others. If μ
(·) is the identity link function and xi is a nonconstant scalar, then the model in (3) coincides
with the model in (2). In such cases where β is a scalar, we do not obtain parametric inferences
for this parameter, because it is equivalent to a scaling of the nonparametric function w(·). If
δ = 0 in (3) and β is a vector, then we obtain a class of scaled link function models, fully
parametric versions of which were derived for heterogeneous binary and ordinal response data
by McCullagh and Nelder (1989, p. 154) and Xie, Simpson, and Carroll (1997) using latent
variable constructions. This class of models includes as a special case the generalized linear
models with unknown link functions considered by Weisberg and Welsh (1994) and Chiou
and Müller (1998) that allow the fixed, unknown link function to be estimated
nonparametrically. The resulting model is homoscedastic in that the link function is assumed
constant across all observations. In the more general varying-scale model of (3), the effective
link function μi (·) varies among different individuals depending on the covariate zi. More
generally, (3) is a class of varying-coefficient models in which a subset of the covariates have
effects that are adjusted in parallel through a nonparametric rescaling function. Further
generalizations are possible in which multiple subsets of the covariates are adjusted in parallel;
however, the model in (3) is sufficiently general to develop the fundamental idea of
semiparametric-efficient inferences about β and δ after adjusting for the heterogeneity
represented by w(zi).

To illustrate the effect of varying scale, Figure 1(a) presents binary data on the occurrence of
ultrasound-induced lung hemorrhage in pigs as a function of age (in weeks) and acoustic
pressure in mega-pascals (MPa). The symbols indicate presence or absence of a lesion after
exposure. The data come from an experiment described by O’Brien et al. (2003) and are
modeled by a semiparametric varying-scale logit model in Section 6 for age-dependent risk of
lesion occurrence. Letting ED100p denote the acoustic pressure corresponding to a 100p% risk
of lesions, the solid line represents the age-dependent ED50 curve for risk of lesions, and the
dashed line represents the ED05 curve. These are contours of the fitted probability surface
corresponding to 5% and 50% probability levels. The nonparallelism of the curves is a
reflection of the varying scale as a function of age. Figure 1(b) demonstrates the age-
dependence of the lesion odds ratio associated with a 1-MPA increase in acoustic pressure.
Further details of the analysis are given in Section 6.

The rest of the article is organized as follows. Section 2 presents the estimation framework and
a profile local-likelihood algorithm for performing the estimation. Section 3 provides the main
results on the large-sample theory. Section 4 describes a bootstrap-based goodness-of-fit–type
of test for varying scales. Section 5 presents simulation studies to illustrate the empirical
performance of the proposed estimation and testing methodologies. Section 6 applies the
varying-scale modeling approach to data from the ultrasound risk assessment and also to
Efron’s toxoplasmosis data (Efron 1986). Section 7 discusses further issues. Proofs are given
in the Appendix and online supplemental materials.

2. ESTIMATION METHOD
Let (yi, xi, vi, zi), for i = 1, 2, …, n, be independently and identically distributed copies of
random variables (y, x, v, z). For simplicity, henceforth we consider the case in which z = z is
one-dimensional. Extension to multivariate z involves no fundamentally new ideas; see Section
7 for further comments. We develop estimates and asymptotic distribution theory assuming
that the conditional density of yi has the form
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(4)

with respect to a fixed measure, where ψi is a twice-differentiable monotone function of

(5)

a(·) and b(·, ·) are fully specified, φ is a possible fixed dispersion parameter, ,
and wi = w(zi), where w is an unknown smooth function subject to conditions given in Section
3. Let ℓ(μi, yi) denote the log-likelihood function of the ith observation in (4), and let

, the log-likelihood of all the observations. The conditional density in (4)
is standard for generalized linear models (McCullagh and Nelder 1989), but the regression
model in (5) is more general than previously considered.

We present an alternating local profile-likelihood type of algorithm for carrying out the
estimation of β and δ in (4) and (5), making only smoothness assumptions about the unknown
function w(·). The algorithm iteratively cycles between fitting parametric components θ =
(βT, δT)T and fitting nonparametric scales wi while holding the other fixed.

Let β*, δ*, and w*, denote the true parameter values and scale function. The model is identifiable
only if β* ≠ 0, so we assume that the first component of β* is nonzero. Then we may
reparameterize, setting the first component equal to 1 and leaving w unconstrained. Thus we
assume that , where β is a (p − 1)-dimensional vector. Corresponding to the form of
β*, write , where in the sequel, xi denotes the last p − 1 components of the primary
covariate vector.

Denote by w(0)(·) the true scale function assuming that β has first component set equal to 1. To
estimate the function nonparametrically for a fixed θ, we proceed by analogy with the
approaches of Carroll et al. (1997), Carroll, Ruppert, and Welsh (1998), and Cai et al.
(2000). Given a point z0, approximate w(0)(t) in the neighborhood of z0 by a linear function,
w(0) (t) ≈ λ0 + λ1(t − z0). Assume that w(0)(t) is second-order differentiable. The vector λ =
(λ0, λ1)T depends on z0, the form of the function w(0)(·), and the parameter vector θ = (βT,
δT)T. Given prior values for θ and w(0) write the local likelihood function at z0 as

(6)

where η = (η1, …, ηn)T, η̃ = (η̃1, …, η̃n)T, Kb(·) = K(·/b)/b, K(·) is a symmetric kernel function,
and b = bn > 0 is a bandwidth. Denote by λ̂θ = λ̂θ(z0) = {λ ̂0,θ (z0), λ ̂1, θ (z0)}T the set of values
that maximize the local likelihood function ℓLO(λ) for each given θ = (βT, δT)T. This λ̂θ (z0) is
the local maximum likelihood estimate of parameters λ at z0. For fixed θ = (βT, δT)T, the
nonparametric scale function w(0)(·) at z0 is estimated by ŵθ (z0) = λ ̂0, θ. Further background
on local likelihood estimation was given by Fan and Gijbels (1996).
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Next, consider estimation of the regression parameters β and δ. Suppose that for a given θ,
ŵθ(zi) is obtained from maximizing the local likelihood function (6) at the value zi, and

 is its first-order derivative with respect to θ. We consider estimates of θ = (βT, δT)T

obtained by solving the following equations, which are constructed from an efficient score
function as described by, for example, Severini and Wong (1992) and Bickel, Klaasen, Ritov,
and Wellner (1993),

(7)

Here τ (s) = μ′(s)/a″{u(s)}, u(s) = {(a′)−1 ○ (μ)}(s), a(·) is as defined in (4), and μ(·) is the link
function. In a canonical link model, τ (s) ≡ 1. See the Appendix for a construction of the efficient
score function  * and the derivation of (7). Note that for any fixed θ in the neighborhood of
the true θ0, ŵθ(z0) is a consistent estimator of w(0), and its derivative with respect to θ,

, is a consistent estimator of a term related to the projection obtaining the efficient score
function; see Section 3 and the online supplemental materials for further details.

The estimating equations (7) can be solved by an iteratively reweighted least squares algorithm.
At each step, update the estimates of θ= (βT, δT)T by

(8)

where

(9)

Note that  is an estimate of the covariance matrix of the efficient score function
 * (see Sec. 3).

The proposed estimation method can be implemented by the following generic algorithm,
iterating between two modules:

• Estimating regression parameters. Fix the current set of scale variable weights and

their first derivatives (with respect to θ), say  and , and use (8) to update
the estimates of the regression parameters β ̂new and δ ̂new.
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• Estimating scale function. Fix the current estimates of θ, say θ ̂curr. Maximize (6) to
update the estimate of the scale variable function w(zi) by  and its

derivative with respect to θ by .

In the first module, (8) is a variant of the iteratively reweighted least squares algorithm. In the
second module, (6) is essentially fitting a (univariate) varying-coefficient model (Hastie and
Tibshirani 1993). Existing algorithms for fitting varying-coefficient models can be used. In the
examples in Section 6, we use a modified version of the algorithm of Cai et al. (2000) to update
the w estimates.

The semiparametric estimates β ̂ and δ ̂ obtained from this algorithm are root-n consistent and
asymptotically efficient under the exponential family modeling assumptions, whereas the
estimate ŵ (zi) has the standard nonparametric asymptotic rate of convergence. The asymptotic
results are given in the next section. This asymptotic distribution theory also provides the basis
for large-sample semiparametric inferences.

3. SEMIPARAMETRIC EFFICIENCY
In this section we develop large-sample theory under the framework of the preceding section.
These asymptotic results are developed under the regularity conditions given herein. These
may not be the weakest possible conditions, but they provide a mild set of sufficient conditions
often satisfied in practice. Rigorous treatments of semiparametric efficiency for the profile
likelihood method in various settings have been given by Severini and Wong (1992), Lin and
Carroll (2006), Claeskens and Carroll (2007), and Lam and Fan (2008). We use a similar
approach in the present setting.

Throughout we use a symmetric kernel function and assume that independent observations
follow the model defined by (4) and (5). We denote the true values of the parameter vectors
by β0 and δ0. In addition, we assume the following:

1. For the symmetric kernel function K(t), the terms υ;2 = ∫t2 K(t) dt, ν0 = ∫{K(t)}2 dt,
and ν2 = ∫ t2 {K(t)}2 dt are all finite.

2. The functions μ(·) and a(·), as well as the true scale function w(0)(·), have continuous
third-order derivatives.

3. Let , , , and  be admissible sets of response variable y and covariate variables
x, v, and z. Assume that y has finite fourth moment. In addition, inf{fz(t)} > 0, where
the infimum is over t ∈  and fz(t) is the marginal density for z.

To state our main results, we introduce the following notation. Write γ (t) = E[(η (0))2

τ1{w(0)(z)η (0)+ η̃ (0)}|z = t], γ1(t) = E([τ1{w(0)(z)η (0) + η̃ (0)} η(0)]x|z = t), and γ̃1(t) = E
([τ1{w(0)(z)η(0) + η̃(0)} η (0)]v|z = t), where η(0) = xTβ0, η̃(0) = vTδ0, and τ1(s) = μ′(s) τ (s). Write
J = diag{1, b}, H = fz(z0) γ (z0) diag{1, υ2}, and Λ = fz(z0)γ(z0) diag{ν0, ν2}, where diag{s1,
…, sk} represents a k × k diagonal matrix of elements s1, …, sk. In addition, define

 and  for any fixed constants r > 0
and r̃ > 0.

For any given β ∈ Bn(r) and δ ∈ B̃n(r̃), the following theorem provides a -convergence
result for the local maximum likelihood estimator (MLE) λ̂θ = λ̂θ (z0), which maximizes local
likelihood function (6).
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Theorem 1
Suppose that the bandwidth b = O(n−ξ), 1/6 < ξ < 1/4, and H is nonsingular. Under conditions
1–3, and for any given β ∈ Bn(r) and δ ∈ B̃n(r̃), we have

The proof of the theorem, together with the asymptotic expansions of λ̂β and , up to the
order of op(n−1/2), are provided in the online supplemental material. The theorem implies that
for any fixed θ in the neighborhood of the true θ0, ŵθ(z0) is a consistent estimator of w(0)

(z0).

Write μwxv = η (0)({m(z)}T, {m̃(z)}T)T, where m(z) = w(0)(z){γ (z)}−1γ1(z) and m̃ (z) = {γ
(z)}−1(z), and

The next two theorems state that the estimators from the estimating equations (7) for the
regression parameters θ = (βT, δT)T are root-n consistent, asymptotically normally distributed,
and asymptotically efficient.

Theorem 2

Suppose that A−1 is positive definite. Let ŵθ (·) and  be the local MLE and its first
derivative with respect to θ. Then, under conditions 1–3, a solution θ ̂ = θ ̂new to estimation
equations (7) exists in probability and satisfies ||θ ̂new− θ0|| = Op(n−1/2). In addition, as n → ∞,

We also can estimate the asymptotic covariance matrix A consistently by An(θ)|θ = θ ̂, where
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Theorem 3
Under the regularity conditions specified in Theorem 2, the matrix A−1 is the information lower
bound for the parametric part. Thus the estimator obtained from (7) is asymptotically efficient.

Proofs of Theorems 2 and 3 are given in the Appendix and the online supplemental material.

4. BOOTSTRAP TEST OF VARYING SCALE
Within the varying-scale modeling framework, it is useful to be able to test parametrically
scaled models versus a nonparametric scale as a means of testing goodness of fit. We consider
three levels of complexity in the varying-scale model:

(M1) wi ≡ 1

(M2) , for known functions tj (·) and unknown parameters ψj

(M3) wi = w(zi), for unknown smooth function w.

The scale weight model (M1) corresponds to a unscaled model. Model (M2) covers many
parametric-scale weight models, including polynomial models of order p with

. Model (M3) is a nonparametric scale weight model. We assume that
all functions tj (·) and w(·) have second-order derivatives. Model (M1) is nested within model
(M2), and model (M2) is typically nested within model (M3). It may be of interest to test a
hypothesis of a constant scale model (M1) versus a varying-scale model, with scale weight
form being either parametric (M2) or nonparametric (M3). It also may be of interest to test a
hypothesis of a parametric scale weight model (M2) against the nonparametric scale weight
model (M3).

In addition to the foregoing hypothesis-testing problems, we also may be interested in testing
any of these varying-scale models against a partially linear varying-coefficient model,

(M4) 

In particular, we might want to test the varying-scale model (3) with a scale weight form in
either (M3) or (M2) against the partially linear varying-coefficient model (M4), which has a
separate nonparametric varying coefficient. Note that models (M2) and (M3) are nested within
the larger partially linear varying-coefficient model (M4).

A heuristic testing procedure is based on the likelihood ratio statistic Tn = 2{ℓ(μ ̂H1, y) − ℓ
(μ ̂H0, y)}, where ℓH0and ℓ H1 are the regular likelihood functions and μ ̂ H0 and μ ̂ H1 are the
maximum likelihood estimates (or the local maximum likelihood estimates in nonparametric
case) of μ under the corresponding null and alternative hypotheses, H0 and H1. In the tests with
parametric models in both H0 and H1 [e.g., non–scale model (M1) versus parametric scale
model (M2)], the test based on Tn is just the regular likelihood ratio test and is straightforward.

In the tests that involve the nonparametric forms [e.g., model (M3) or model (M4) or both],
the standard chi-squared approximation fails (because the effective number of parameters tends
to infinity). In this case Tn becomes the so-called “generalized likelihood ratio” test statistic
and the so-called “Wilks phenomenon.” (See Fan, Zhang, and Zhang 2001 for a theoretical
treatment of such problems in varying-coefficient models.) Eubank and Hart (1992) and Aerts,
Claeskens, and Hart (1999) studied similar test problems in linear regression models.

Here we consider a bootstrap approach facilitate model testing. This approach is similar to the
bootstrap methods described by Cai et al. (2000) and others in the varying-coefficient models
literature. Suppose that ŵi is an estimate of the scale weight function at zi under the varying-
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scale model under H0. We bootstrap n sets of ( ) from the n sets of (xi, vi, zi, ŵi);
then simulate  from the model under the null hypothesis H0, using the estimates under H0.
When the varying-scale model under H0 is a fully parametric model, this simulation is exactly
the same as the parametric bootstrap method. We fit the simulated data to both models under
H0 and H1, and compute the test statistic . Repeating the bootstrap numerous times (say,
N), the N values of  can be used to compute the distribution of the test statistic under H0.
The p value is the percentile of this simulated null distribution, where Tn is the cutoff value

(i.e., ).

The empirical evidence in our simulation studies in Section 5 suggests very reasonable
performance for this bootstrap procedure. It also shows evidence of the Wilks phenomenon
(chi-squared approximation) on the bootstrapped likelihood ratio test statistic .

In hypothesis-testing problems of regression parameters β and δ, we can use either the
likelihood ratio or Wald-type or score tests when the w(·)’s are modeled parametrically. When
the w(·)’s are modeled nonparametrically, we suggest using Wald-type or score tests, which
are supported by the results given in Theorem 2 of Section 3.

5. SIMULATION STUDIES
In this section we use simulation studies to illustrate the empirical performance of the proposed
estimation and testing methodologies. Consider the logistic varying-scale model

(9)

where H (u) = exp(u)/{1 + exp(u)}. Let the auxiliary variable zi follow a uniform distribution
on [0, 1], and let the covariate variables xi and vi be normally distributed. In particular, in our
simulations we simulate (U1, U2, U3) from a three-dimensional multivariate normal
distribution with mean (0, .5, 1), variance (1, 1, 2), and correlations (1/2, , 1/3) between
the first and second elements, the first and third elements, and the second and third elements.
Then set z = Φ(U1), x = U2, and v = U3. This setting is similar to that in the simulations of
Zhang et al. (2002), among others, in which trigonometric functions are used for the unknown
function in nonparametric regressions, the auxiliary variable is uniformly distributed, and
covariates are normally distributed. Assume the true regression coefficients δ0 = −3.50, δ1 =
2.00, β0 = 1.25, and β1 = 1.00. We repeatedly simulate data sets of size n = 250 and data sets
of size n = 400 from this model. We use these simulated data and additional simulations to
illustrate the performance of various parametric and nonparametric varying-scale models. The
simulated data sets contain four columns: the responses y and the covariates x, v, and z.

In fitting a nonparametric varying-scale model, we need to select bandwidth as in any
nonparametric model fitting. Fitting 200 data sets of sizes n = 250 and 400 to model (9) with
unknown w(·), Figure 2 depicts the average mean integrated squared errors (MISEs) of the
estimated weight function ŵ (zi) and the average mean squared errors (MSEs) of regression
parameter estimates as a function over a range of grid values of bandwidth. The figure shows
that the performance is fairly robust to the bandwidth choice over a reasonable range.

Silverman (1986, pp. 45–46) suggested an empirical formula to compute the bandwidth in
density estimation, which also is closely related to the default choice of bandwidth in R
(Venables and Ripley 2002, pp. 127). In our current simulation setting, the empirical bandwidth
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choice would be around .10. Although it may not be the optimal choice, this empirical
bandwidth choice seems to be acceptable in terms of estimating the both nonparametric and
parametric elements of the varying-scale models. Note that the main focus of a varying-scale
model is on the parametric elements. To avoid adding to the computing burden (especially in
bootstrap) and theoretical complications of cross-validation, henceforth we use Silverman’s
empirical formula to select our bandwidths.

We now consider the performance of various varying-scale models in parameter estimation.
We study the following varying-scale forms: (a) the unscaled model w(zi) ≡ 1, (b) the quadratic
model , (c) the cubic model , and (d) the
nonparametric w(zi) for unknown form of w(·). As discussed earlier, the scaling weight function
is unique only up to a positive constant multiplier, and we can place a constraint on either the
scale function w(·) or the parameters. For convenience, we set a constraint that β0 ≡ 1.25 (true
value), so that we can directly compare the estimates of other parameters to their true values.

In addition to the varying-scale models, we also fitted (e) a partial linear varying-coefficient
model,

(10)

Here β0(zi) and β1(zi) correspond to δ0 + w(zi)β0 and w(zi)β1 in model (9). The regression
parameter δ1 is estimated by solving a semiparametrically efficient estimating equation similar
to, but slightly simpler than, (7) (see also Lam and Fan 2008). If model (10) were a Gaussian
model with an identity link function, then this estimator of δ1 would be the equivalent to the
efficient estimators considered by Ahmad et al. (2005).

Models (a)–(e) are nested sequentially from simplest to most complex. Figure 3 shows boxplots
of model deviance estimates and estimates of all identifiable regression parameters. The
unscaled and quadratic varying-scale models perform worse than the others. In each of the
cubic nonparametric varying-scale models and the varying-coefficient model, the parameter
estimates are more or less on the target. Clearly, both the cubic and nonparametric scale forms,
as well as the varying-coefficient model, can more or less recover the shape of the true scale
weight function in model (9), but the larger (or more complex) partially linear varying-
coefficient model does not appear to give better results over the smaller (or simpler) cubic and
nonparametric varying-scale models. From a model selection standpoint, we likely would
prefer the simpler varying-scale model models, which also have nice parametric interpretations
and root-n inference on β. We also have examined the boxplots of MSEs of the parameter
estimates (not shown in the article), which point to the same conclusion.

We use the testing procedures described in Section 4 to test between various models. The first
half of Table 1 summarizes the p values of testing four pairs of nested models: the quadratic
varying-scale model (b) versus the cubic varying-scale model (c), the cubic varying-scale
model (c) versus the nonparametric scale model (d), the nonparametric scale model (d) versus
the partially linear varying-coefficient model (e). We calculate these from 120 simulated data
sets of size n = 400 from the true varying-scale model (9). At significance level α = .05, most
often we would reject the null quadratic model against the alternative cubic model; however,
about 95% of time, we would conclude the simpler null varying-scale models in the last three
tests. The numbers reported in the last row are consistent with the theoretical developments on
p value functions and testing powers. In fact, because the null model under H0 is roughly true
in the final three tests, the p value function theory (see, e.g., Fraser 1991) suggests that the
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second, third, and forth values in the last row should be roughly around 5%. Also, because in
the first test the alternative cubic model is roughly true, the first number in the last row, 90%,
is roughly the power of the test (see, e.g., Beran 1986).

To further study the performance of these tests, we consider the alternative that the data are
not from a varying-scale model, but from a partially linear regression varying-scale model (10)
with true coefficients

and

Using 120 data sets of size 400 simulated from this model, we test the same four pairs of the
varying-scale or varying-coefficient models. The second half of Table 1 summarizes the p
values of these tests. When testing the varying-scale models (c) or (d) against the partially
linear varying coefficient model (e), most often the p values are <5%, suggesting to reject the
null varying-scale models at significant level α = 5%. Again from Beran (1986), we know that
the last two numbers in the last row are roughly the powers of the corresponding tests. The
results in Table 1 also show that in this setting, we are likely to separate the (c) cubic from the
(b) quadratic varying-scale models but unlikely to distinguish the (c) cubic and the (d) non-
parametric varying-scale models.

Using the bootstrap samples, we draw a QQ plot in each sample set by plotting the standardized

bootstrap test statistic  against the standard normal quantiles. Here  is
the bootstrap sample mean of . Almost all of the QQ plots (not shown here) suggest that
a* is consistent with a normal distribution, providing clear evidence of the Wilks phenomenon.
When testing a parametric model against a varying-coefficient model, the Wilks phenomenon
suggests that Tn can be standardized to asymptotically a standard normal by its mean and
variance; the mean of Tn goes to infinity, and its variance is about the twice of the mean (see
Fan et al. 2001).

The empirical evidence in simulation studies demonstrates that the proposed estimation and
testing procedures work well in these settings. They can be used to estimate parameters and to
select between varying-scale models or between a varying-scale model and a varying-
coefficient model. A varying-scale model focuses on parametric components of the model,
which has nice parametric interpretations. If in a test there is no significant difference between
a varying-scale model and a larger, more complex varying-coefficient model, then the more
parsimonious varying-scale model is preferred.

6. APPLICATIONS
6.1 Application to Ultrasound Risk Assessment Data

O’Brien et al. (2003) reported on an experiment in pigs to assess the risk of lesions in the lung
due to focused ultrasound as a function of the ultrasound energy level (acoustic pressure in
MPa). As secondary issue in this study was to investigate the age dependence of the risk. Figure
1(a) shows the observed incidence of lesions for pigs exposed to ultrasound beams focused at
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the lung surface. The scatterplot shows the age and acoustic pressure exposure level for each
pig, and the plotting symbol indicates whether or not a lesion was present. A regression analysis
of interest is to evaluate whether the lung damage is related to the acoustic pressure (in MPa)
and age (in weeks). Furthermore, at any given age (in weeks), it also is of interest to know the
increased risk (odds ratio) of lesions with a unit increase in the acoustic pressure, as well as
the effective dose (ED) level of the acoustic pressure that may result in lesions.

Because in addition to the main age effect, a complicated interaction effect of age on the effect
of acoustic pressure is expected, we fit the varying-scale model

(11)

To the data here the binary response yj indicates whether the j th pig has lesions in the lung or
not, vj is age (in weeks), and xj is the acoustic pressure (in MPa). The varying-scale weight
wj = w(zj) is an unknown nonparametric function of the age variable, where for convenience
we use a transformed age variable zj = (vj − min(v))/max(v) (with values between 0 and 1)
instead of the original age vj (with values between 2 and 70). To ensure the parameters are fully
identifiable, we set β0 = 1. The result of the significance test H0: β1 = 0 against H1: β1 ≠ 0 is
not affected whether we use constraint β0 = 1 or constraint w(z*) = 1 for a reference value z*.
Moreover, ewjβ1 is the increased odds of risk per MPa increase in the acoustic pressure at age
vj, and its value also is not affected by the choice of the constraint.

Because of the coefficient w(zj) in the varying-scale model (11), both the main effect for age
and the interaction between age and acoustic pressure are nonlinear and are modeled non-
parametrically. Constraining β0 = 1, it follows from the preceding results that parametric root-
n inferences can be applied to all of the remaining parameters δ0, δ1, and β1. These estimates
and their standard errors, computed from the semiparametric large-sample theory, are given in
Table 2.

The linear effect for age and the interaction term representing the age-dependent effect of
acoustic pressure are highly significant. We considered replacing the linear function δ0 +

vjδ1 in (11) by the quadratic , but the test of H0: δ2 = 0 was not significant, with
a p value of .541. We also compared the varying-scale model (11) to the simpler parametric
model,

(12)

where γ = (γ0, γ1, γ2, γ12)T are unknown parameters. Model (12) is nested within model (11)
provided linear functions are included in the space of w. A bootstrap likelihood ratio test was
performed as described in Section 5. The results, given in Table 3, indicate a significant
deviation from the fully parametric model, so the expansion to the semiparametric model was
warranted.

Figure 1(a) represents the nonparametric varying-scale model (11) by the calculated contours
for 5% and 50% risk of lesions. For a given age, these curves give the ED05 and ED50. The
plot clearly shows the nonlinear age dependence of the risk of lesions. The acoustic pressures
corresponding to 50% risk are much higher than the levels used in conventional human
diagnostic applications. Figure 1(b) plots the increased odds of risk of lesions, per MPa increase
in acoustic pressure, against the age (solid line), together with the corresponding pointwise
95% confidence intervals (dotted lines). The plot shows that per MPa increase in acoustic
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pressure more than doubles the risk in lesions. In addition, the risk increase is the highest (more
than three fold) in young pigs (age < 10 weeks), intermediate in older pigs, and lowest in
middle-aged pigs (see O’Brien et al. 2003 for further discussion).

6.2 Application to Toxoplasmosis Data
The toxoplasmosis data set (Efron 1986, p. 710, table 1) contains the proportions of subjects
testing positive for toxoplasmosis in 34 cities of El Salvador, the annual rainfall in the 34 cities,
and the sample sizes of tested subjects. Efron (1978) used an ordinary logistic regression model
to model the positive incidence rate as a function of rainfall in the j th city μj and found that a

cubic regression on rainfall  was highly significant, where

 and xj is the annual rainfall in the j th city. Efron (1986)
reanalyzed the data using a binomial double-exponential model with the same cubic model for
the incidence rate and a quadratic model for the overdispersion parameter

; this gave a method for modeling heterogeneity and

overdispersion. Here  and nj is the sample size of tested
subjects in the j th city. Efron (1986) found that the “effective size” njφj was quite different
from the actual sample size nj for many cities. Ganio and Schafer (1992) proposed a diagnostic
tool for testing overdispersion in binomial and Poisson models. They studied the toxoplasmosis
data in more detail under several dispersion models using double-binomial model–based as
well as quasi-likelihood–based inferences. Their final model is the “simple” ordinary

overdispersion logistic model with  and var(yj) = nj μj (1 − μj)/
φ, where yj is the total number of incidences in the j th city and φ is an unknown overdispersion
parameter that is the same across all 34 cities.

We extend the model of Ganio and Schafer (1992) for the positive incidence rate to a varying-
scale model,

(13)

and keep the same overdispersion model, var(yj) = nj μj (1 − μj)/φ. Here the scale weight wj =
w(zj), with zj as defined in the previous paragraph, is a function of the sample size nj of tested
subjects in the j th city. The model defined by (13) adapts for heterogeneity in the data by
adjusting the samples size in each city through the scale weight wj, whose function is very
much similar to the effective sample size described by Efron (1986) and Xie et al. (1997).

When (a) wj ≡ 1, the varying-scale model (13) is the same as that of Ganio and Schafer
(1992). Besides this, we consider three addition scale weight wj forms: (b) quadratic

, (c) cubic , and (d) nonparametric regression wj =
w(zj) for unknown form of w(·). To avoid complications, in the case of nonparametric scale,
we assume that the overdispersion parameter is fixed or estimated from an external source.
Under this assumption, the semiparametric inference results developed in Section 3, except for
the efficiency result, still hold.

Table 4 lists the parameter estimates of the cubic regression model for the incidence rate. The
first column of nonscaled model corresponds to the model of Ganio and Schafer (1992), and
the last column is from Efron’s double-binomial fit (Efron 1986). It is clear that the cubic
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regression on rainfall is highly significant across all models. Constraint w(z0) = 1 is set at z0 =
−.06, which corresponds to the sample size of the eighth city, n8 = 19 (the closest to the mean
sample size of the 34 cities).

Table 5 presents the model deviances of all four models (a)–(d), as well as three respective
tests of the three varying-scale models (b)–(d) versus the ordinary, overdispersion logistic
model (a). Likelihood ratio statistics Tn were adjusted for overdispersion by modifying the
statistic as T ̃n = Tnφ ̂, where φ ̂ is the estimated overdispersion parameter under the alternative
model. For the tests among the parametric models, the standard chi-squared asymptotics apply.
Both chi-squared asymptotic based and bootstrap-based p values are obtained. For the test
involving the nonparametric varying-scale model, only bootstrap p value is obtained. Because
overdispersion exists, the bootstrap method in Section 4 is modified as follows. First, obtain
the bootstrap samples and compute the bootstrap likelihood ratio test statistic  as described

in Section 4. Then, toincorporate overdispersion, modify the test statistic  and compute

the p value by . Here φ ̂ is an (external) consistent estimator of the
overdispersion parameter φ. At significance level α = .05, neither the parametric quadratic nor
the cubic scale models offers a significant improvement over the simple overdispersion model
(a). But the nonparametric scale model in (d) with bootstrap testing leads to a significant result:
The bootstrap p value is <α = .05, indicating significant improvement over the nonscaled model
(a). This suggests that the nonparametric scaled link model has captured some of the
heterogeneity in the toxoplasmosis data.

We also compared model (13) with the fully nonparametric varying-coefficient model,

(14)

where all four coefficients β0(zj), β1(zj), β2(zj), and β3(zj) are unknown smooth functions of
zj. Based on the bootstrap testing method described in Section 4, the p value is .167, after
adjusting for overdispersion. This suggests that the more parsimonious varying-scale model
(13) is adequate for these data.

7. DISCUSSION
The varying-scale model (3) provides an effective approach to tackling variations in
magnitudes of regression coefficients for heteroscedastic data. It has a regular regression term,
while allowing the other to have coefficients with varying magnitudes for different
observations. Further extensions, such as allowing a finite number of different levels of scaling,
at the cost of additional complexity in the analysis, are clearly possible.

Although the theoretical results given in Section 3 can be directly extended to multivariate z
variables, there remains the challenge of the “curse of dimensionality” in fitting multivariate
nonparametric regression in the literature. To avoid such a problem in practice, we may use
generalized additive models to model the nonparametric scale variable function w(·). We may
also use a single-index model for the scale variable function, that is, let w(z) = w(zTα) with a
constraint ||α|| = 1. (See, e.g., Li 1991;Härdle, Hall, and Ichimura 1993;Carroll et al. 1997 for
single-index models and an interpretation of the parameters α.) In either case, the proposed
algorithm and theoretical results will remain the same or can be extended in a straightforward
manner.
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APPENDIX: EFFICIENT SCORE AND PROOF OF THEOREM 3
Here we provide a construction of the efficient score function and sketch the proof of the
semiparametric lower bound of Theorem 3. Proofs of Theorems 1 and 2 are provided in the
online supplemental material for this article.

Construction of Efficient Score Function  *

Let g(x, v, z) be the joint density of (x, v, z). The joint density of (y, x, v, z) is

(A.1)

where ψ = u(w(0)(z)η(0) + η̃ (0)). Define P = {model (A.1) with given  and density
function g(·)}. Then, by the standard argument (e.g., Bickel et al. 1993), the tangent space of
the non-parametric model P is {[y − μ{w(0) (z)η(0) + η̃ (0)}]τ {w(0)(z) η (0) + η̃(0)} η(0) a*(z)| for
all a* ∈ L2}. Thus the efficient score function is
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* =  – {projection of  onto P}, where

 is the score function for θ0. Note that

the MSE  achieves its
minimum when a*(z) = ({m(z)}T, {m̃ (z)}T)T. Thus the efficient score is

(A.2)

For each β and δ, replacing w(0)(·), m(·) and m̃ (·) by their estimators in  * leads to estimating
equations (7).

Proof of Theorem 3
The form of the efficient score function  * is given in (A.2). The Fisher information lower
bound is E{  *  *T}, which is equal to A−1 (see Bickel et al. 1993). The theorem follows.
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Figure 1.
(a) A plot of observed incidence of lesions for pigs exposed to ultrasound. Age is age at time
of experimental exposure; acoustic pressure is computed in MPa for the pleural surface of the
lung. The solid curve is the age-dependent ED50 (acoustic pressure exposure corresponding
to 50% risk), implied by a fitted varying-scale logit model. The dashed curve is the estimated
ED05, which corresponds to 5% risk. (b) A plot of the increase odds of risk of lesions, per MPa
increase in acoustic pressure, against the age (solid line), together with the corresponding point
wise 95% confidence intervals (dotted lines).

Xie et al. Page 18

J Am Stat Assoc. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
The average MISE of the nonparametric varying scale estimates ŵ and the average MSE of
the parameter estimates δ̂0, δ̂1, and β ̂1 against bandwidth values from .01 to .15. The first row
is based on 200 simulated data of size n = 400; the second row, on 200 simulated data of size
n = 250.
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Figure 3.
Side-by-side boxplots of model deviances and regression parameter estimates δ̂0, δ̂1, and β ̂1
for fitting the (a) unscaled, (b) quadratic, (c) cubic, (d) nonparametric varying-scale models,
and (e) the partially linear varying-coefficient model. The first row is based on 600 simulated
data of size n = 400; the second row, on 600 simulated data of size n = 250.
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Table 2
Parameter estimates and standard errors in the varying-scale model for ultrasound risk

Parameter δ0 δ1 β1

Estimate −8.6205 .0655 .7080

Standard error (.7575) (.0077) (.0706)
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Table 3
Bootstrap likelihood ratio test of parametric model versus semiparametric model for the ultrasound data

Fitted model Null model Deviance Difference of deviances p value*

Parametric model 271.99

Varying-scale model Parametric model 254.34 17.65 0

*
Based on 1,000 bootstrap runs.

J Am Stat Assoc. Author manuscript; available in PMC 2009 May 13.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Xie et al. Page 24
Ta

bl
e 

4
Pa

ra
m

et
er

 e
st

im
at

es
 o

f v
ar

yi
ng

-s
ca

le
 m

od
el

s f
or

 th
e 

to
xo

pl
as

m
os

is
 d

at
a

Pa
ra

m
et

er
N

on
sc

al
ed

Q
ua

dr
at

ic
C

ub
ic

N
on

pa
ra

m
et

ri
c

D
ou

bl
e-

bi
no

m
ia

l

β 0
.0

99
 (.

14
2)

.0
03

 (.
13

2)
−.

04
0 

(.0
57

)
−.

05
3 

(.0
4)

−.
07

1 
(.1

4)

β 1
−.

44
8 

(.2
16

)
−.

82
9 

(.2
67

)
−.

48
4 

(.1
36

)
−.

65
7 

(.0
7)

−.
62

0 
(.2

3)

β 2
−.

18
7 

(.1
27

)
−.

21
6 

(.1
06

)
−.

16
5 

(.0
75

)
−.

22
0 

(.0
44

)
−.

17
0 

(.1
1)

β 3
.2

13
 (.

08
9)

.2
98

 (.
09

2)
.2

03
 (.

05
7)

.3
04

 (.
03

3)
.2

72
 (.

09
)

N
O

TE
: T

he
 n

um
be

rs
 in

 p
ar

en
th

es
es

 a
re

 st
an

da
rd

 e
rr

or
s.

J Am Stat Assoc. Author manuscript; available in PMC 2009 May 13.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Xie et al. Page 25
Ta

bl
e 

5
D

ev
ia

nc
e-

ba
se

d 
te

st
s o

f u
ns

ca
le

d 
lo

gi
st

ic
 m

od
el

 v
er

su
s v

ar
yi

ng
-s

ca
le

 m
od

el
s

Sc
al

e 
m

od
el

s
N

ul
l m

od
el

D
ev

ia
nc

e
D

iff
er

en
ce

 o
f d

ev
ia

nc
es

D
iff

er
en

ce
 o

f d
eg

re
es

 o
f

fr
ee

do
m

p 
va

lu
e

N
on

sc
al

ed
62

.6
05

Q
ua

dr
at

ic
N

on
sc

al
ed

55
.2

97
7.

30
8

2
.1

09
(.1

54
* )

C
ub

ic
N

on
sc

al
ed

50
.8

17
11

.7
88

3
.0

60
(.0

95
* )

N
on

pa
ra

m
et

ric
N

on
sc

al
ed

49
.3

41
13

.2
64

.0
37

*

* Th
e 

p 
va

lu
e 

w
as

 c
om

pu
te

d 
fr

om
 1

,0
00

 b
oo

ts
tra

p 
sa

m
pl

es
. A

ll 
ot

he
r p

 v
al

ue
s w

er
e 

co
m

pu
te

d 
us

in
g 

th
e 

ch
i-s

qu
ar

ed
 a

pp
ro

xi
m

at
io

n.

J Am Stat Assoc. Author manuscript; available in PMC 2009 May 13.


