
Parallel Fuzzy Segmentation of Multiple Objects*

Edgar Garduño1,† and Gabor T. Herman2

1Depto. Ciencias de la Computación, Instituto de Investigaciones en Matermáticas Aplicadas y en
Sistemas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Cd. Universitaria,
C.P. 04510, Mexico City, México
2Department of Computer Science, The Graduate Center, City University of New York, New York,
USA

Abstract
The usefulness of fuzzy segmentation algorithms based on fuzzy connectedness principles has
been established in numerous publications. New technologies are capable of producing larger-and-
larger datasets and this causes the sequential implementations of fuzzy segmentation algorithms to
be time-consuming. We have adapted a sequential fuzzy segmentation algorithm to multi-
processor machines. We demonstrate the efficacy of such a distributed fuzzy segmentation
algorithm by testing it with large datasets (of the order of 50 million points/voxels/items): a speed-
up factor of approximately five over the sequential implementation seems to be the norm.

Keywords
Segmentation; Fuzzy Set Theory; Distributed Systems; Multi-Processor Computers

1 Introduction
Segmentation of an image (i.e., the process of separating, extracting, defining and/or
labeling meaningful regions in an image) is an important process in many tasks in image
processing, analysis and visualization, for example, in biology and medicine [23]. Humans
have a powerful recognition and visual system that allows them to segment “well” an image
under all kinds of conditions. Contrary to this, segmentation is a very challenging task for
computers, and research in this field of computer science is prolific. Recently developed
algorithms based on the concept of fuzzy connectedness have been shown to produce
“good” results under various conditions of noise, texture and artifacts for a variety of
imaging technologies [5,7,8,11,25]. Their applications include studies to segment
automatically brain [28] and abdominal [29] MR images with the assistance of an atlas of
their corresponding regions, to segment MR images even if corrupted by variation of the
magnetic field [16], to segment vector-valued functions [11,30], to detect and quantify
multiple sclerosis in MR images [13,24,26], to segment images produced by PET [3], to
analyze the morphology of airway tree structures [12,15,22] and to segment datasets in
electron tomography [9].

Although the approach presented in this paper is quite general, our main motivation comes
from imaging and this controls our terminology. In particular, we use the word spel (short

*This work is supported in part by the National Institutes of Health (NIH) by Grant Number HL70472, by the DGAPA-UNAM under
Grant IN98054 and by a grant of the CONACyT, Mexico.
†To whom correspondence should be addressed. E-mail: edgargar@ieee.org.

NIH Public Access
Author Manuscript
Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

Published in final edited form as:
Int J Imaging Syst Technol. 2008 ; 18(5-6): 336–344. doi:10.1002/ima.20170.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

for spatial element) to refer to points/voxels/items in a dataset. An imaging system will
assign to all spels a value, the collection of spels with their associated values is referred to as
an image.

The aim of fuzzy segmentation is to assign, for each object that is believed to be contained in
the image and for any spel, a grade of membership of that spel in that object, whose value is
a real number in the closed range between 0 (nonmembership) and 1 (full membership)
[2,18,19,27]. When using fuzzy connectedness to achieve this, we introduce, for each object
that is believed to be contained in the image and for any pair of spels, a fuzzy spel affinity,
whose value is also a real number in the closed range between 0 and 1. As presented in the
next section, under some reasonable conditions, the set of fuzzy spel affinities will uniquely
determine a set of grades of membership. The authors of [5] proposed an efficient sequential
algorithm for obtaining these grades of membership from the fuzzy spel affinities: this
algorithm produces a segmentation considerably faster than previous algorithms for doing
such things, such as the one in [11].

The fast algorithm proposed in [5] has been used to segment three-dimensional images
produced by reconstruction algorithms from electron microscopic data (3DEM) of medium
size biological specimens [9]. However, it may need over a quarter of an hour to process
large specimens (consisting of over fifty million spels). Consequently, a further speed-up is
desirable. To achieve this, we have adapted the algorithm in [5] to a distributed-processing
scheme. The scheme that we followed is the so-called manager-worker (also known as
master-slave), in which there are several processors (the workers) processing subsets of the
dataset and there is a special processor (the manager) that controls how the other processors
carry out the segmentation of their corresponding subset, see Figure 1.

In the next section we give a concise presentation of the existing theory behind the
simultaneous segmentation of multiple objects and the efficient sequential algorithm
proposed in [5]. In Section 3 we introduce the distributed version of this algorithm. Section
4 presents an implementation of the algorithm using OpenMP™ [6,14] and its results using
two multi-processor-shared-memory (MPSM) machines. Finally, we conclude in Section 5
with a discussion of our results.

2 Theory and Sequential Algorithm
In this section we give a concise, but mathematically complete, description of the theory
behind the simultaneous segmentation of multiple objects and the efficient sequential
algorithm proposed in [5]. Since we are not making any new contributions here, we keep
this section as short as possible: we present only what is absolutely necessary to make our
paper self-contained. For motivation, examples and explanations of the ideas that are
introduced in the rest of this section, we refer the reader to [5] and its references.

Let V be an arbitrary nonempty finite set (its elements are the aforementioned spels) and let
M be an arbitrary positive integer (the number of objects believed to be contained in the
image). An M-semisegmentation of V is a function σ that maps each c ∈ V into a (M + 1)-
dimensional vector , such that

1. ,

2. for each m (1 ≤ m ≤ M), the value of is either 0 or , and

3. for at least one m (1 ≤ m ≤ M), .

Garduño and Herman Page 2

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

We say that an M-semisegmentation σ is an M-segmentation if, for every spel c, is
positive.

We call a sequence 〈c(0), ···, c(K)〉 of distinct spels a chain; its links are the ordered pairs
(c(k−1), c(k)) of consecutive spels in the sequence. The ψ-strength of a link is provided by the
appropriate value of a fuzzy spel affinity function ψ: V2 → [0, 1]. The ψ-strength of a chain
is the ψ-strength of its weakest link; the ψ-strength of a chain with only one spel in it is 1 by
definition. A set U(⊆V) is said to be ψ-connected if, for every pair of spels in U, there is a
chain in U of positive ψ-strength from the first spel of the pair to the second.

An M-fuzzy graph is a pair (V,Ψ), where V is a nonempty finite set and Ψ = (ψ1,···, ψM) with
ψm (for 1 ≤ m ≤ M) being a fuzzy spel affinity. A seeded M-fuzzy graph is a triple (V,Ψ,)
such that (V,Ψ) is an M-fuzzy graph and = (S1, ···, SM), where Sm ⊆ V for 1 ≤ m ≤ M. Such
a seeded M-fuzzy graph is said to be connectable if

1. the set V is φΨ-connected, where φΨ(c, d) = min1≤m≤M ψm(c, d) for all c, d ∈ V, and

2. Sm ≠ ∅, for at least one m, 1 ≤ m ≤ M.

For an M-semisegmentation σ of V and for 1 ≤ m ≤ M, we define the chain 〈c(0), ···, c(K)〉 to

be a σm-chain if , for 0 ≤ k ≤ K. Furthermore, for W ⊆ V and c ∈ V, we use μσ,m,W (c)
to denote the maximal ψm-strength of a σm-chain from a spel in W to c. (This is 0 if there is
no such chain.)

Theorem
If (V,Ψ,) is a seeded M-fuzzy graph (where Ψ = (ψ1, ···, ψM) and = (S1, ···, SM)), then

i. there exists an M-semisegmentation σ of V with the following property: for every c
∈ V, if for 1 ≤ n ≤ M

(1)

then for 1 ≤ m ≤ M

(2)

ii. this M-semisegmentation is unique; and

iii. it is an M-segmentation, provided that (V,Ψ,) is connectable.

This theorem is proved in [5].

Suppose now that the set of nonzero fuzzy spel affinities for a particular class of problems is
always a subset of a fixed set A. Let K be the cardinality of the set A ∪ {1}, and let 1 = a1 >
a2 > ··· > aK > 0 be the elements of A ∪ {1}. The following efficient sequential algorithm
(proposed in [5] for finding, for a seeded M-fuzzy graph, the unique M-semisegmentation
that satisfies (i) of the theorem above) makes use, for 1 ≤ m ≤ M and 1 ≤ k ≤ K, of sets of
spels U[m][k]. We denote the M ×K table containing these sets by U.

Garduño and Herman Page 3

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

3 Distributed Algorithm
A simple way to visualize how Algorithm 1 works is to picture several armies, one for each
of the M objects, advancing and claiming parts of the image simultaneously. Hence, it is
tempting to mimic this behavior with several processors, one for each army. However, such
an approach would not be convenient, since in many practical applications there are only a
few objects (e.g., two or three) and the gain due to work distribution would not be
significant. Another approach partitions the dataset V into as many contiguous subsets as
there are processors, and each processors applies Algorithm 1 to its own subset. Since
Algorithm 1 passes information across subsets, this scheme makes it difficult to capture,
without excessive communication between the processors, the “blocking” aspect of
Algorithm 1. By this we mean that an army cannot march through a territory occupied by a
stronger army to get to a place where it could win the battle since at that place the other
army is weaker. To put this into the point of view of the defenders: they need to secure only
their borders, in that way the enemy cannot get into the interior. This blocking is achieved
by Algorithm 1 by looping through the k in a strict order (Step 10 onwards).

As we mentioned in the Introduction, we follow a different approach that in fact partitions
the dataset V into I subsets. However, instead of every available processor applying
Algorithm 1 to a corresponding subset, all the processors, except for one, apply to one of the
I subsets only the section of Algorithm 1 that searches for spels to occupy with strength k for
a given army m (Step 11 onwards). The control over the change of strength k (Step 10) is left
to a manager. Hence, there are I + 1 processors and we use P0 to refer to the manager and Pi,
1 ≤ i ≤ I, to refer to a worker. By following this approach, it is possible to take advantage of
using more processors than objects and still achieve the “blocking” aspect of Algorithm 1.

In this approach, the manager is responsible for creating (based on the input seeded M-fuzzy
graph (V,Ψ,)) I partial seeded M-fuzzy graphs (Vi,Ψ, i), for 1 ≤ i ≤ I, that the workers
need to carry out their work. The partial seeded M-fuzzy graphs (Vi,Ψ, i) are obtained from
the original seeded M-fuzzy graph (V,Ψ,) by partitioning the domain set V into I
nonoverlapping subsets (i.e., Vi ∩ Vj = ∅, for i ≠ j). Because the manager partitions the set
V, the sets Sm (recall that Sm, for 1 ≤ m ≤ M, in is a subset of V) need to be partitioned
appropriately; hence is divided into I entities i = (Si,1, ···, Si,M) such that, for 1 ≤ i ≤ I,
and Si,m = Vi ∩Sm. Also note that the Ψ = (ψ1,···, ψM) is not distributed among the
processors, each receives a copy of Ψ as part of the partial seeded M-fuzzy graph (Vi,Ψ, i).
We also divide up the table U by maintaining for worker Pi a table Ui[m][k] = Vi ∩U[m][k].

Since the manager has control over the loop of Step 10 in Algorithm 1, a worker Pi needs to
be continuously awaiting instructions from the manager to either initialize, or to carry out
the Steps 11–23 of Algorithm 1, or to transfer back the local result to P0. Such
communication takes place through an array of flags (one for each worker), named Signal,
shared between P0 and the workers. The flags can take any of the values: Init, Process,
Terminate and Finished. The last value is used by a worker to inform the manager that it has
finished with a request. The first three values are used by the manager to inform a worker
that it needs to carry out a given task; the manager assigns one of these values to the flag
only if its current value is Finished. Moreover, the manager also informs workers of the
level of strength k through a variable, named Strength, shared between P0 and the workers.

At a given level of strength k a processor Pi should carry out Steps 11–23 of Algorithm 1,
but it may well occur that the information necessary to perform Step 14 is not available to
the worker Pi, since some c may be a member of C due to a d ∈ Uj[m][k] with j ≠ i. The
distributed version overcomes this problem by workers receiving information from other
workers and transferring information to them through the manager. Such information is

Garduño and Herman Page 4

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

transferred by means of two arrays of queues i and i for output and input, respectively.
The queue Qi contains triples (d,c,m) in which d ∈ Ui [m][k] and c ∈ Vj for a j ≠ i with ψm
(d,c) > 0. Conversely, the queue i contains triples (d,c,m) in which c ∈ Vi and d ∈ Uj [m]
[k] for a j ≠ i with ψm (d,c) > 0.

The partial seeded M-fuzzy graph (Vi,Ψ, i) is transferred to processor Pi during
initialization, at which time the data structures U, and for that processor are also
initialized. The manager informs a worker that it needs to initialize by setting the appropriate
flag in the array Signal to Init. Upon finishing the initialization, the worker sets its
appropriate flag in the array Signal to Finished (see Steps 2–15 of Algorithm 2), at which
point it is ready to work on its subset of V.

At every strength level k, the manager informs every worker that it needs to carry out work
on its subset Vi by setting the variable Strength to k and the flags in Signal to Process. After
receiving such a signal, the processor Pi performs work on the subset Vi that corresponds to
Steps 11–23 of Algorithm 1. Upon finishing this work, the processor Pi lets the manager
know that it has finished the work by setting the appropriate flag to Finished, see Steps 16–
43 of Algorithm 2.

The tasks of the manager are described in Algorithm 3. Knowing the total number (I +1) of
processors available, the manager produces from the input (V,Ψ,) the I partial M-fuzzy
graphs (Vi,Ψ, i) and signals to every worker Pi to initialize and then it waits until all the
workers have finished their initialization stage; see Steps 1–5 of Algorithm 3.

The manager needs to be certain that every worker has finished working on its
corresponding partial seeded M-fuzzy graph before advancing to the next level of strength.
After all the workers have finished their current process, Step 11, it is necessary to check
whether they have transferred information by checking the status of the queues i. When
the manager encounters a non-empty queue i, it transfers the information to the
appropriate input queue j, j ≠ i, Steps 12–15.

When the manager has finished looping through all the strength values k, it informs the
workers that their job is done by setting all the flags in the array Signal to Terminate, Steps
17–18. The final result produced by the manager is the M-semisegmentation from the M-
fuzzy graph (V,Ψ,). However, the partition of the M-fuzzy graph into I partial M-fuzzy
graphs results in the processor Pi producing σc only for c ∈ Vi. Consequently, upon
termination the manager needs to fetch from the workers these I partial M-
semisegmentations and produce the final M-semisegmentation σ, Step 19 of Algorithm 3.

4 Results
In order to test the distributed version of the Fast Sequential Fuzzy Segmentation (FSFS)
algorithm, we used two multi-processor-shared-memory (MPSM) machines. This type of
architecture can be implemented by gathering many processors in a single computer (a
typical configuration found in traditional supercomputers) or by using many computers (i.e.,
nodes) that share their resources over a dedicated network (a configuration found in modern
supercomputers). In our distributed version of the FSFS algorithm the transfer of
information between workers and the manager is frequent. To reduce the communication
overhead, it is desirable to carry out such transfers of information through variables stored in
common main memory. We used two multi-processor computers, a Silicon Graphics Inc.
Altix® that possesses twenty-four 64-bit Itanium® processors running at 1.5 GHz and has a
total main memory of 23.6 Gbytes and a computer based on the Multi-Core Intel®
technology that possesses two quad-core Xeon® E5430 processors running at 2.66 GHz
(resulting in 8 processors) and has a total main memory of 8 Gbytes.

Garduño and Herman Page 5

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

To take advantage of this computer architecture we used OpenMP™ [6,14,17]. OpenMP is
an Application Program Interface (API) for multi-platform shared-memory parallel
programming in C/C++ and FORTRAN. OpenMP is becoming the de facto standard for
parallelizing applications for shared memory multiprocessors. An important advantage of
OpenMP is that it is independent of the underlying hardware or operating system. The
OpenMP API uses a fork-join model of parallel execution, see Fig. 2. In OpenMP, a
program begins as a single thread of execution, called the initial thread. When any thread
encounters a parallel construct, the thread creates a team of itself and additional threads and
the original thread becomes the manager of this team. As for memory, OpenMP provides a
relaxed-consistency, shared-memory model. All OpenMP threads have access to the
memory. Importantly, each thread is allowed to have its own temporary view of the
memory. However, OpenMP is capable of creating many threads inside a parallel construct,
but these are not necessarily assigned to the same number of physical processors (i.e., multi-
threading). Clearly, this behavior is undesirable for us, because many threads can
overwhelm a processor and undermine its performance. Hence we made sure (by using
features of OpenMP) that we never request more threads than the available physical
processing units and that the threads are bound to physical processors.

In order to test the performance of the implementation of the distributed FSFS algorithm, we
used six images obtained by tomography of electron microscopic data. All of these datasets
represent spiny dendrites [1,21]. (Dendrites are the branch-like projections of a neuron
whose function is to conduct the electrical signals received and processed by the neuron.
Most principal neurons in the brain posses dendritic spines. These extend 1–2 microns from
the shaft of the dendrite to make synapses with passing axons. A spiny dendrite makes
synapses with a select few of the potential synaptic partners nearby.) For these tests M = 2:
we refer to the object that contains voxels in the spiny dendrite as the foreground and the
object that contains the rest of the voxels as the background. The images were obtained by
using a reconstruction algorithm on a series of images acquired by tilting the specimen
inside an Intermediate High Voltage Electron Microscope. The reconstruction assigns values
υ(c) to the spels c ∈ V of an image whose spels are voxels arranged so that their centers form
a portion of the simple cubic grid {(Δc1,Δc2,Δc3) | c1,c2,c3 ∈ ℤ} [11], see Table 1. We
selected these datasets because they were large enough to make the implementation of the
sequential FSFS algorithm use more than 5 minutes to process in a single-processor machine
with 2 Gbytes of memory.

We consider the pair of voxels (c,d) to be face adjacent (notation: (c,d) ∈ ρ1) if the distance
between their centers is equal to Δ and to be face-edge adjacent (notation: (c,d) ∈ ρ2) if the
distance between their centers is less or equal to . As is common in practice (for
geometrical reasons), for voxels in the foreground we use face adjacency and for voxels in
the background we use face-edge adjacency [10].

The input seeded 2-fuzzy graphs (V, (ψ1,ψ2), (S1,S2)) to the algorithm were created as
follows [4,5,11,20]. A user, assisted with a graphical interface, selected seed voxels both for
the foreground (S1) and the background (S2). The seed voxels and the voxels adjacent to
them were used to estimate the means mi and standard deviations si of the sum (υ (c)+ υ (d))
and the means ni and standard deviations ti of the difference |υ (c) − υ (d)| for the two
objects. Using these, we defined

(3)

Garduño and Herman Page 6

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

For the experiments we used different configurations, from 1 worker thread (equivalent to
the sequential implementation of FSFS algorithm) up to seven worker threads for the Multi-
Core Intel® computer and twenty-three worker threads for the Altix® computer. In order to
verify that the distributed FSFS algorithm produces correct results, we compared the output
produced by every configuration of the distributed FSFS algorithm with that produced by
the sequential FSFS algorithm both visually, see Figure 3, and numerically (the outputs were
identical voxel by voxel).

The program was executed ten times (with independently selected seed spels) for every one
of the different configurations in order to obtain statistics of the execution times in seconds,
see Tables 2 and 3 for the 24- and 8-processor machines, respectively. For visualization
purposes only, we plotted the mean times of Tables 2 and 3 in Figure 4. From the plots, we
can see that the behavior of the distributed program indeed improves in speed when the
number of processors is increased, something that was expected. In the case of the Altix®

computer, however, the performance starts to deteriorate at about 17 worker-processors. The
reason for the reduction of speed at these configurations is due to the fact that the machine is
shared by several users most of the time using anywhere from 6 to 8 processors constantly.
Hence, using 16, or more, of the 24 processors forces the operating system to share the
processors among jobs and the performance for each job deteriorates.

Although the speed of the algorithm was, and is, our main interest, we also had the
opportunity of observing the behavior of the maximum amount of main memory used by the
implementation of the distributed FSFS algorithm in both computers. The total main
memory in the computers we used for the experiments allows us to run the aforementioned
datasets without the need of using virtual memory. Tables 4 and 5 show the maximum
amount of memory (in Mbytes) utilized by each configuration in both computers. In general,
the maximum amount of memory used by the distributed program diminishes when worker
processors are used. Such a behavior is explained by how the distributed algorithm works:
the way spels inserted into and are removed from the U arrays makes it likely that the
maximum memory that is needed at any one time to store all the Ui is less than that needed
to store the U in the sequential algorithm.

5 Discussion
There has been an immense effort by the computer science and engineering communities to
produce semi-automatic and automatic segmentation algorithms. An important requisite for
such algorithms is that they produce their results in nearly interactive time. Recently,
algorithms have been developed based on the concept of fuzzy connectedness that produce
“good” results under various conditions of noise, texture and artifacts for a variety of
imaging technologies. In particular, the authors in [5] have proposed an algorithm (FSFS)
that speeds up the performance of the Multi-Object Fuzzy Segmentation algorithm proposed
in [11]. However, new imaging technologies are capable of producing very large datasets,
and even the (sequential) FSFS algorithm takes a considerable amount of time to segment
some of these datasets. Hence, we devised a distributed version of the FSFS algorithm that
further improves its performance.

The distributed FSFS algorithm is designed for use on a multi-processor system, such as a
multi-processor-shared-memory machine. Such machines are common among
supercomputers. Typically, they are specialized computers that tend to be expensive.
However, the trend of recent years is that even desktop computers come equipped with
multi-core processors; with two cores being the most common nowadays. But, processor
companies such as Intel® have introduced quad-core processors allowing computer
manufacturers to offer multi dual- or quad-core processors. This means that in practice it is

Garduño and Herman Page 7

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

now possible to have multi-processor-shared-memory computers on desks. Taking
advantage of such configurations is desirable for computing-intensive tasks, such as fuzzy
segmentation.

In our approach, we used a manager that does not allow to move to a next level of strength
until after all the workers have finished their work at the current level of strength. This
approach can be further improved by doing a kind of “lookahead”; but that is more complex
and needs more memory and so we left it to be a matter of future research.

Acknowledgments
The authors want to thank Stuart W. Rowland for his valuable comments and the Supercomputing Center of the
D.G.S.C.A. at the U.N.A.M. for allowing the use of their facilities.

References
1. Andersen P. Neurobiology - A spine to remember. Nature. 1999; 399:19–21. [PubMed: 10331383]
2. Bandemer, H.; Gottwald, S. Fuzzy Sets, Fuzzy Logic, Fuzzy Methods with Applications. Wiley;

Chichester: 1995.
3. Carvalho, BM.; Garduño, E.; Herman, GT. Multiseeded fuzzy segmentation on the face centered

cubic grid. ICAPR ’01: Proceedings of the Second International Conference on Advances in Pattern
Recognition; London, UK. Springer-Verlag; 2001. p. 339-348.

4. Carvalho BM, Gau CJ, Herman GT, Kong TY. Algorithms for fuzzy segmentation. Pattern Analysis
and Applications. 1999; 2:73–81.

5. Carvalho BM, Herman GT, Kong TY. Simultaneous fuzzy segmentation of multiple objects.
Discrete Applied Mathematics. 2005; 151:55–77.

6. Chandra, R.; Menon, R.; Dagum, L.; Kohr, D.; Maydan, D.; McDonald, J. Parallel programming in
OpenMP. Morgan Kaufmann; San Francisco: 2000.

7. Ciesielskia KC, Udupa JK, Saha PK, Zhuge Y. Iterative relative fuzzy connectedness for multiple
objects with multiple seeds. Computer Vision and Image Understanding. 2007; 107:160–182.
[PubMed: 18769655]

8. Dellepiane SG, Fontana F, Vernazza GL. Nonlinear image labeling for multivalued segmentation.
IEEE Transactions on Image Processing. 1996; 5:429–446. [PubMed: 18285129]

9. Garduño E, Wong-Barnum M, Volkmann N, Ellisman M. Segmentation of electron tomographic
data sets using fuzzy set theory principles. Journal of Structural Biology. 200810.1016/j-jsb.
2008.01.017

10. Herman, GT. Geometry of Digital Spaces. Birkhäuser; Boston: 1998.
11. Herman GT, Carvalho BM. Multiseeded segmentation using fuzzy connectedness. IEEE

Transactions on Pattern Analysis and Machine Intelligence. 2001; 23:460–474.
12. Liu J, Udupa JK, Odhner D, McDonough JM, Arens R. System for upper airway segmentation and

measurement with MR imaging and fuzzy connectedness. Academic Radiology. 2003; 10:13–24.
[PubMed: 12529024]

13. Nyúl LG, Udupa JK. MR image analysis in multiple sclerosis. Neuroimaging Clinics of North
America. 2000; 10:799–815. [PubMed: 11359726]

14. OpenMP Architecture Review Board, OpenMP application program interface version 2.5, tech.
report, OpenMP Architecture Review Board, 2005.

15. Palágyi K, Tschirren J, Hoffman EA, Sonka M. Quantitative analysis of pulmonary airway tree
structures. Computers in Biology and Medicine. 2006; 36:974–996. [PubMed: 16076463]

16. Pednekar AS, Kakadiaris IA. Image segmentation based on fuzzy connectedness using dynamic
weights. IEEE Transactions on Image Processing. 2006; 15:1555–1562. [PubMed: 16764280]

17. Quinn, MJ. Parallel Programming in C with MPI and OpenMP. McGraw-Hill Education Group;
2004.

18. Rosenfeld A. Fuzzy digital topology. Information and Control. 1979; 40:76–87.

Garduño and Herman Page 8

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

19. Rosenfeld A. On connectivity properties of greyscale pictures. Pattern Recognition. 1983; 16:47–
50.

20. Saha PK, Udupa JK, Odhner D. Scale-based fuzzy connected image segmentation: Theory,
algorithms, and validation. Computer Vision and Image Understanding. 2000; 77:145–174.

21. Sosinsky G, Martone ME. Imaging of big and messy biological structures using electron
tomography. Microscopy Today. 2003; 11:8–14.

22. Tschirren J, Hoffman EA, McLennan G, Sonka M. Intrathoracic airway trees: Segmentation and
airway morphology analysis from low-dose CT scans. IEEE Transactions on Medical Imaging.
2005; 24:1529–1539. [PubMed: 16353370]

23. Udupa, JK.; Herman, GT. 3D Imaging in Medicine. 2. CRC Press, Inc.; Boca Raton, Florida: 1999.
24. Udupa JK, Nyul LG, Ge YL, Grossman RI. Multiprotocol MR image segmentation in multiple

sclerosis: Experience with over 1,000 studies. Academic Radiology. 2001; 8:1116–1126.
[PubMed: 11721811]

25. Udupa JK, Saha PK. Fuzzy connectedness and image segmentation. Proceedings of the IEEE.
2003; 91:1649–1669.

26. Udupa JK, Wei L, Samarasekera S, Miki Y, van Buchem A, Grossman RI. Multiple sclerosis
lesion quantification using fuzzy-connectedness principles. IEEE Transactions on Medical
Imaging. 1997; 16:598–609. [PubMed: 9368115]

27. Zadeh LA. Fuzzy sets. Information and Control. 1965; 8:338–353.
28. Zhou Y, Bai J. Atlas-based fuzzy connectedness segmentation and intensity nonuniformity

correction applied to brain MRI. IEEE Transactions on Biomedical Engineering. 2007; 54:122–
129. [PubMed: 17260863]

29. Zhou Y, Bai J. Multiple abdominal organ segmentation: an atlas-based fuzzy connectedness
approach. IEEE Transactions on Information Technology and Biomedicine. 2007; 11:348–352.

30. Zhuge Y, Udupa JK, Saha PK. Vectorial scale-based fuzzy-connected image segmentation.
Computer Vision and Image Understanding. 2006; 101:177–193.

Garduño and Herman Page 9

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 1.
Scheme showing how a dataset that is originally processed by a single processor (left) can be
divided into several smaller blocks and processed by several worker-processors controlled
by a manager-processor (right).

Garduño and Herman Page 10

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 2.
Scheme of the fork-join parallelism used by the distributed FSFS algorithm using
OpenMP™. In Algorithm 3, distribution of data is done in Steps 1–5 and combining partial
results is done in Step 19.

Garduño and Herman Page 11

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Garduño and Herman Page 12

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Garduño and Herman Page 13

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Garduño and Herman Page 14

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Garduño and Herman Page 15

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Garduño and Herman Page 16

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 3.
Visualizations of the output of the FSFS algorithm applied to dataset A. The upper row
shows a single section of (a) the original 3D dataset, (b) output of the sequential and (c)
distributed versions, respectively. The lower row shows a 3D representations of (d) the
original dataset, (e) output of the sequential and (f) distributed versions of the FSFS

algorithm (the latter images were produced by surface rendering the set of voxels).

Garduño and Herman Page 17

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 4.
Plots showing the average times that (a) the Altixreg; computer and (b) the Multi-Core Intel®
computer took to process the six datasets in Table 1.

Garduño and Herman Page 18

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Garduño and Herman Page 19

Table 1

Dimensions of the images used for testing the distributed FSFS algorithm.

Dataset Dimensions (voxels)

A 359 × 764 × 245

B 310 × 860 × 186

C 464 × 862 × 141

D 334 × 621 × 201

E 314 × 744 × 140

F 424 × 824 × 151

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Garduño and Herman Page 20

Ta
bl

e
2

Ti
m

e,
 in

 se
co

nd
s,

us
ed

 b
y

th
e

di
st

rib
ut

ed
 F

SF
S

al
go

rit
hm

 ru
nn

in
g

on
 th

e
A

lti
x®

 c
om

pu
te

r f
or

 th
e

si
x

di
ff

er
en

t i
m

ag
es

 a
nd

 v
ar

io
us

 n
um

be
r o

f w
or

ke
r

pr
oc

es
so

rs
.

T
im

e
(s

ec
) D

at
as

et

N
o.

 P
ro

ce
ss

or
s

A
B

C
D

E
F

1
98

8.
22

4±
39

.0
52

66
6.

40
4±

25
.8

06
77

0.
44

4±
21

.1
03

52
4.

96
5±

33
.5

88
40

8.
38

6±
28

.8
77

79
5.

80
6±

40
.3

89

2
55

2.
70

5±
11

.9
43

38
2.

59
5±

1.
48

7
44

0.
82

1±
17

.1
66

27
3.

63
3±

22
.0

86
20

0.
33

3±
14

.0
40

43
8.

32
8±

27
.2

68

3
37

9.
61

1±
8.

22
1

34
6.

78
3±

10
.6

78
35

4.
80

2±
5.

44
0

23
9.

57
9±

3.
54

4
16

0.
99

6±
10

.7
05

32
4.

33
9±

6.
40

8

4
33

2.
42

0±
12

.9
57

30
5.

42
1±

11
.2

92
30

1.
41

2±
6.

12
7

19
9.

76
1±

4.
90

5
14

1.
08

6±
3.

13
2

26
8.

38
9±

14
.5

94

5
31

3.
24

7±
7.

88
5

25
4.

71
7±

7.
98

6
27

0.
08

0±
4.

71
6

17
8.

26
4±

5.
27

2
14

0.
81

5±
3.

73
2

25
3.

56
4±

1.
84

9

6
27

0.
32

4±
3.

41
7

23
5.

51
9±

8.
79

5
24

8.
16

3±
1.

47
3

16
6.

98
6±

2.
51

2
11

7.
84

2±
0.

39
1

21
6.

21
8±

4.
06

9

7
22

2.
57

4±
6.

96
5

21
1.

39
9±

7.
17

8
21

6.
99

5±
2.

63
0

15
4.

12
1±

5.
58

4
10

5.
57

2±
2.

86
2

19
1.

64
7±

4.
37

5

8
22

0.
42

7±
4.

39
7

21
1.

89
9±

2.
34

0
21

5.
37

0±
7.

61
4

14
3.

73
0±

1.
80

7
10

0.
06

8±
2.

81
2

18
7.

09
9±

3.
10

8

9
21

1.
00

0±
4.

04
7

18
6.

77
0±

6.
03

5
19

4.
08

0±
1.

82
3

13
0.

81
1±

0.
08

0
94

.1
75

±3
.4

89
18

3.
94

3±
4.

17
6

10
20

0.
76

0±
3.

77
8

17
7.

56
3±

1.
27

6
19

0.
90

9±
4.

06
4

12
1.

84
4±

1.
19

1
91

.3
60

±0
.7

74
17

5.
81

5±
3.

10
7

11
17

0.
94

2±
4.

49
0

17
4.

97
2±

2.
66

1
16

9.
01

2±
3.

32
5

12
5.

21
5±

2.
30

2
80

.6
58

±3
.7

25
17

0.
54

7±
8.

09
2

12
17

9.
18

1±
11

.0
25

17
1.

51
8±

14
.3

12
17

7.
48

0±
10

.9
24

13
1.

21
6±

39
.8

57
86

.4
48

±2
.8

10
16

6.
26

0±
13

.3
83

13
17

3.
18

1±
6.

81
8

15
8.

87
8±

57
.7

65
17

3.
83

05
63

±1
4.

23
4

11
9.

57
4±

26
.7

31
10

3.
55

5±
17

.4
54

16
1.

16
9±

20
.3

94

14
16

5.
97

7±
7.

51
2

15
2.

73
7±

16
.8

92
16

9.
84

66
13

±6
9.

58
2

12
4.

23
0±

28
.0

70
11

0.
02

7±
24

.1
06

15
6.

55
8±

5.
26

5

15
15

5.
84

2±
7.

92
2

15
2.

36
7±

15
.8

76
17

2.
66

38
58

±5
4.

06
1

12
3.

89
6±

41
.5

82
12

6.
78

8±
73

.0
99

15
0.

92
5±

32
.3

35

16
15

2.
89

4±
57

.2
30

23
4.

61
3±

51
.0

83
16

5.
16

95
23

±4
7.

78
0

11
2.

21
5±

69
.1

49
24

7.
66

1±
64

.0
66

14
8.

27
±6

7.
33

4

17
14

8.
06

8±
78

.8
82

25
6.

02
9±

39
.9

25
16

2.
42

87
71

±4
9.

70
3

20
2.

53
4±

63
.4

85
23

2.
10

9±
10

.6
49

17
0.

16
9±

39
.1

15

18
21

5.
89

4±
72

.1
08

35
5.

91
8±

79
.7

08
16

0.
60

0±
74

.2
45

26
5.

46
6±

40
.2

00
26

9.
69

8±
18

.8
26

33
8.

27
0±

33
.5

97

19
28

4.
30

2±
56

.9
12

34
3.

97
4±

25
.8

98
19

8.
86

0±
45

.1
11

31
4.

02
9±

69
.6

70
30

5.
99

1±
12

.4
20

34
8.

80
7±

5.
26

1

20
35

7.
80

6±
42

.6
06

42
9.

28
1±

30
.8

50
19

2.
41

0±
53

.2
19

39
7.

40
7±

40
.7

03
35

7.
94

3±
29

.0
01

43
6.

98
6±

19
.9

60

21
37

9.
99

1±
58

.1
68

43
7.

02
9±

37
.4

02
22

5.
40

5±
68

.8
74

36
5.

81
3±

52
.5

41
35

3.
18

6±
11

.1
83

45
8.

09
3±

54
.9

59

22
45

8.
39

4±
37

.1
95

45
2.

29
2±

58
.7

30
26

7.
46

8±
39

.5
58

41
6.

87
9±

40
.3

89
34

7.
49

3±
11

.8
24

53
5.

99
8±

26
.7

07

23
50

5.
80

2±
65

.7
19

46
5.

03
5±

51
.1

46
33

8.
66

7±
18

.8
41

42
7.

28
4±

27
.2

95
36

5.
18

7±
10

.3
39

58
2.

99
0±

19
.6

86

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Garduño and Herman Page 21

Ta
bl

e
3

Ti
m

e,
 in

 se
co

nd
s,

us
ed

 b
y

th
e

di
st

rib
ut

ed
 F

SF
S

al
go

rit
hm

 ru
nn

in
g

on
 th

e
M

ul
ti-

C
or

e
In

te
l®

 c
om

pu
te

r f
or

 th
e

si
x

di
ff

er
en

t i
m

ag
es

 a
nd

 v
ar

io
us

 n
um

be
r o

f
w

or
ke

r p
ro

ce
ss

or
s.

T
im

e
(s

ec
) D

at
as

et

N
o.

 P
ro

ce
ss

or
s

A
B

C
D

E
F

1
31

0.
11

5±
0.

11
7

23
6.

75
3±

0.
14

7
26

2.
69

0±
0.

95
9

18
4.

58
6±

0.
08

5
14

2.
01

3±
0.

76
8

25
5.

99
9±

0.
15

0

2
18

8.
55

8±
3.

42
2

15
8.

62
2±

2.
70

1
16

1.
53

7±
2.

09
8

10
9.

50
2±

2.
12

0
82

.4
83

±1
.3

06
15

2.
70

4±
2.

07
4

3
13

4.
57

0±
1.

07
8

13
5.

59
2±

0.
62

7
13

2.
91

7±
0.

82
8

95
.1

47
±0

.6
82

61
.4

74
±0

.5
90

11
0.

71
4±

1.
15

0

4
11

3.
72

8±
0.

85
0

11
0.

97
7±

0.
35

0
11

1.
98

7±
0.

37
7

74
.2

10
±0

.2
36

52
.1

23
±0

.3
12

92
.9

30
±0

.4
97

5
11

1.
37

9±
0.

93
7

92
.1

56
±0

.8
24

99
.8

33
±0

.4
34

63
.9

09
±0

.6
02

52
.3

59
±0

.1
43

87
.3

49
±0

.3
41

6
94

.9
41

±1
.2

91
85

.2
43

±0
.7

13
91

.0
04

±1
.1

91
59

.9
58

±0
.5

06
42

.5
42

±0
.5

72
75

.1
85

±1
.0

08

7
78

.3
13

±1
.1

48
76

.5
04

±0
.3

43
81

.1
79

±0
.9

67
55

.8
77

±0
.4

34
38

.1
67

±0
.3

10
66

.7
55

±0
.2

89

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Garduño and Herman Page 22

Ta
bl

e
4

M
ax

im
um

 a
m

ou
nt

 o
f m

em
or

y
us

ed
 b

y
bo

th
 th

e
se

qu
en

tia
l F

SF
S

an
d

th
e

di
st

rib
ut

ed
 F

SF
S

al
go

rit
hm

s w
he

n
pr

oc
es

si
ng

 th
e

si
x

di
ff

er
en

t d
at

as
et

s i
n

th
e

A
lti

x®
 c

om
pu

te
r.

M
em

or
y

(M
by

te
s)

D
at

as
et

N
o.

 P
ro

ce
ss

or
s

A
B

C
D

E
F

1
3,

14
8.

00
1,

75
9.

00
2,

71
5.

00
1,

83
7.

00
1,

63
0.

00
2,

32
9.

00

2
2,

90
9.

00
1,

63
5.

00
2,

53
7.

00
1,

70
9.

00
1,

52
1.

00
2,

15
5.

00

3
2,

82
4.

00
1,

61
6.

00
2,

47
4.

00
1,

71
2.

00
1,

48
0.

00
2,

12
1.

00

4
2,

80
9.

00
1,

51
7.

00
2,

45
2.

00
1,

65
6.

00
1,

47
7.

00
2,

09
6.

00

5
2,

76
0.

00
1,

51
9.

00
2,

46
0.

00
1,

61
6.

00
1,

47
6.

00
2,

06
1.

00

6
2,

73
0.

00
1,

45
6.

00
2,

37
8.

00
1,

59
4.

00
1,

43
3.

00
2,

01
5.

00

7
2,

75
2.

00
1,

49
0.

00
2,

38
0.

00
1,

57
8.

00
1,

43
5.

00
2,

01
2.

00

8
2,

74
0.

00
1,

45
9.

00
2,

36
7.

00
1,

57
4.

00
1,

41
9.

00
1,

99
5.

00

9
2,

70
7.

00
1,

44
8.

00
2,

37
2.

00
1,

56
0.

00
1,

41
7.

00
2,

00
5.

00

10
2,

69
4.

00
1,

45
1.

00
2,

38
0.

00
1,

58
1.

00
1,

41
4.

00
2,

00
8.

00

11
2,

70
1.

00
1,

44
6.

00
2,

34
6.

00
1,

56
5.

00
1,

41
1.

00
1,

97
4.

00

12
2,

70
6.

00
1,

43
7.

00
2,

37
1.

00
1,

56
9.

00
1,

40
9.

00
1,

97
9.

00

13
2,

68
8.

00
1,

43
2.

00
2,

34
4.

00
1,

55
8.

00
1,

41
4.

00
1,

98
0.

00

14
2,

68
2.

00
1,

44
3.

00
2,

39
7.

00
1,

56
3.

00
1,

41
4.

00
1,

99
4.

00

15
2,

68
1.

00
1,

44
0.

00
2,

37
4.

00
1,

57
4.

00
1,

40
6.

00
1,

99
8.

00

16
2,

70
4.

00
1,

45
2.

00
2,

36
2.

00
1,

56
7.

00
1,

41
0.

00
1,

97
5.

00

17
2,

68
0.

00
1,

42
2.

00
2,

33
3.

00
1,

56
2.

00
1,

40
6.

00
1,

97
7.

00

18
2,

68
9.

00
1,

44
8.

00
2,

34
2.

00
1,

55
2.

00
1,

41
0.

00
1,

98
6.

00

19
2,

70
4.

00
1,

43
0.

00
2,

34
1.

00
1,

56
1.

00
1,

41
7.

00
1,

97
7.

00

20
2,

68
1.

00
1,

46
4.

00
2,

37
3.

00
1,

57
0.

00
1,

40
8.

00
1,

99
6.

00

21
2,

67
5.

00
1,

44
0.

00
2,

39
1.

00
1,

55
8.

00
1,

41
5.

00
1,

98
8.

00

22
2,

68
7.

00
1,

43
7.

00
2,

34
3.

00
1,

56
0.

00
1,

40
6.

00
1,

96
7.

00

23
2,

70
9.

00
1,

42
8.

00
2,

34
0.

00
1,

55
4.

00
1,

41
6.

00
1,

96
7.

00

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Garduño and Herman Page 23

Ta
bl

e
5

M
ax

im
um

 a
m

ou
nt

 o
f m

em
or

y
us

ed
 b

y
bo

th
 th

e
se

qu
en

tia
l F

SF
S

an
d

th
e

di
st

rib
ut

ed
 F

SF
S

al
go

rit
hm

s w
he

n
pr

oc
es

si
ng

 th
e

si
x

di
ff

er
en

t d
at

as
et

s i
n

th
e

M
ul

ti-
C

or
e

In
te

l®
 c

om
pu

te
r. M

em
or

y
(M

by
te

s)

D
at

as
et

N
o.

 P
ro

ce
ss

or
s

A
B

C
D

E
F

1
1,

88
7.

00
1,

05
4.

00
1,

62
8.

00
1,

10
1.

00
97

7.
00

1,
39

7.
00

2
1,

76
8.

00
97

4.
00

1,
53

4.
00

1,
03

6.
00

91
6.

00
1,

30
3.

00

3
1,

72
0.

00
98

0.
00

1,
50

3.
00

1,
01

1.
00

89
4.

00
1,

27
9.

00

4
1,

70
1.

00
93

6.
00

1,
49

4.
00

99
3.

00
88

6.
00

1,
25

3.
00

5
1,

69
2.

00
93

3.
00

1,
50

4.
00

1,
00

1.
00

89
6.

00
1,

26
3.

00

6
1,

70
2.

00
90

6.
00

1,
46

7.
00

97
8.

00
88

1.
00

1,
24

4.
00

7
1,

69
2.

00
91

7.
00

1,
46

2.
00

97
1.

00
87

6.
00

1,
23

4.
00

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Garduño and Herman Page 24

Algorithm 1

The Fast Sequential Fuzzy Segmentation (FSFS) algorithm of [5].

1: for c ∈ V do

2: for m ← 0 to M do

3:

4: for m ← 1 to M do

5: for k ← 1 to K do

6: U[m][k] ← ∅

7: for c ∈ Sm do

8:

9: U[m][1] ← Sm

10: for k ← 1 to K do

11: for m ← 1 to M do

12: while U[m][k] ≠ ∅ do

13: remove a spel d from U[m][k]

14:

15: while C ≠ ∅ do

16: remove a spel c from C

17: t ←min(ak, ψm (d,c))

18:
 if then do

19: remove c from each set in U that contains it

20: for n ←1 to M do

21:

22:

23: insert c into the set U[m][l], where l is the integer such that al = t

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Garduño and Herman Page 25

Algorithm 2

Tasks performed by the worker processor Pi

1: while Signali ≠ Terminate do

2: if Signali = Init then

3: retrieve (Vi,Ψ, i)

4: for c ∈ Vi do

5: for m ← 0 to M do

6:

7: for m ← 1 to M do

8: for k ← 1 to K do

9: Ui[m][k] ← ∅

10: for c ∈ Si,m do

11:

12: Ui[m][1] ← Si,m

13: i ← i ← ∅

14: Signali ← Finished

15: if Signali = Process then

16: k ← Strength

17: while i ≠ ∅ do

18: remove (d,c,m) from i

19: t ← min(ak,ψm (d,c))

20:
 if σmc<t and then do

21:
 if then do

22: remove c from each set in Ui that contains it

23: for n ← 1 to M do

24:

25:

26: insert c into the set Ui[m][l], where l is such that al = t

27: for m ← 1 to M do

28: while Ui[m][k] ≠ ∅ do

29: remove a spel d from the set Ui[m][k]

30:

31: i = i ∪ {(d,c,m) | c ∈ Vj for j ≠ i and ψm (d,c) > 0

32: while C ≠ ∅ do

33: remove a spel c from C

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Garduño and Herman Page 26

34: t ←min(ak,ψm (d,c))

35: if σ0c<t then do

36: remove c from each set in Ui that contains it

37: for n ← 1 to M do

38:

39:

40: insert c into the set Ui[m][l], where l is such that al = t

41: Signali ← Finished

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Garduño and Herman Page 27

Algorithm 3

Tasks performed by the manager processor Po

1: (I +1) ← number of processors available

2: calculate (Vi,Ψ, i), for 1 ≤ i ≤ I

3: for i ← 1 to I do

4: Signali ← Init

5: wait until Signali = Finished, for 1 ≤ i ≤ I

6: k = 1

7: while k ≤ K do

8: Strength ← k

9: for i ← 1 to I do

10: Signali ← Process

11: wait until Signali = Finished, for 1 ≤ i ≤ I

12: for i ← 1 to I do

13: while Qi ≠ ∅ do

14: remove a (d,c,m) from Qi

15: if c ∈ Vj then insert (d,c,m) into j

16: if i = ∅, for 1 ≤ i ≤ I, then k ← k +1

17: for i ← 1 to I do

18: Signali ← Terminate

19: combine the I partial M-semisegmentations into the final σ

Int J Imaging Syst Technol. Author manuscript; available in PMC 2009 May 13.

