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Escherichia coli mazEF is a toxin-antitoxin gene module that mediates cell death during exponential-phase
cellular growth through either reactive oxygen species (ROS)-dependent or ROS-independent pathways. Here,
we found that the stationary-phase sigma factor o> was responsible for the resistance to mazEF-mediated cell
death during stationary growth phase. Deletion of rpoS, the gene encoding o> from the bacterial chromosome,
permitted mazEF-mediated cell death during stationary growth phase.

Toxin-antitoxin systems have been found on the chromo-
somes of many bacteria (8, 10, 23, 27). One of the best studied
among these chromosomal toxin-antitoxin systems is Esche-
richia coli mazEF, which was the first to be described as regu-
latable and responsible for bacterially programmed cell death
(2). E. coli mazEF is located downstream from the rel4 gene
(18, 20), specifying for ppGpp synthase (28). mazF specifies the
stable toxin MazF, while mazE specifies the labile antitoxin
MazE, degraded in vivo by the ATP-dependent CIpPA serine
protease (2). MazF is a sequence-specific endoribonuclease
that preferentially cleaves single-stranded mRNAs at ACA
sequences (36, 37) and thereby inhibits translation (3, 37).
MazE counteracts the action of MazF. Because MazE is a
labile protein, prevention of MazF-mediated action requires
the continuous production of MazE. Therefore, stressful
conditions that prevent the expression of the chromosomally
borne mazEF module permit the formation of free MazF and
thereby cell death. These stressful conditions include (i) the
use of antibiotics that are general inhibitors of transcription
and/or translation such as rifampin, chloramphenicol, and
spectinomycin (31); (ii) extreme amino acid starvation, leading
to the production of ppGpp that inhibits mazEF transcription
(2, 7); and (iii) DNA damage caused by thymine starvation (32)
as well as by DNA-damaging agents like mitomycin C or nali-
dixic acid (11). The use of these antibiotics and other stressful
conditions are well known to cause bacterial cell death (1, 5);
we found that such cell death takes place through the action of
the mazEF module (31, 32). All the groups of stressful condi-
tions were found to trigger mazEF-mediated cell death by
preventing the continuous synthesis of MazE and thereby re-
ducing its level (2, 31, 32). We were surprised to find that
mazEF-mediated cell death occurs at the exponential stage of
growth but does not occur during stationary phase (11).

We have recently reported that the activation of E. coli
mazEF by using stressful conditions causes the generation of
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reactive oxygen species (ROS) (15). ROS have been previously
implicated in programmed cell death in eukaryotes (21, 29),
including in yeast (12, 17), in the life span of several organisms
(25, 33), in the senescence of bacteria (6), and in the mode of
action of some antibiotics (13-15). It was previously reported
that the stationary-phase sigma factor o5, encoded by rpoS (16,
19), positively regulates the formation of catalase and is re-
sponsible for the elevated levels of this enzyme during station-
ary growth phase (24, 34, 35). Since catalase detoxifies ROS,
we asked whether resistance of stationary-phase cells to
mazEF-mediated cell death was caused by the elevated levels
of catalase produced at that time. So, we tested whether de-
leting rpoS from E. coli cells would lead to their death through
the mazEF system during stationary growth phase. Indeed, as
we have predicted, in ArpoS cells we observed mazEF-medi-
ated cell death even during stationary phase of growth.

We used strain MC410relA ™ and its AmazEF::kan derivative
(9) and strain MC4100rel4 " ArpoS, which we constructed by P1
transduction from E. coli strain K-38ArpoS::tet (kindly pro-
vided by Shosh Altuvia), and its AmazEF derivative, which we
constructed by PCR deletion (4). We used plasmid pQEkatE
(15), bearing the catalase-specifying katE gene, which is con-
tinuously expressed in the strains described here.

We grew the bacteria in liquid M9 minimal medium with 1%
glucose and a mixture of amino acids (10 p.g/ml each) (22) and
then plated them on rich LB agar plates, as we have described
previously (11).

Nalidixic acid, mitomycin C, trimethoprim, rifampin, serine
hydroxamate, chloramphenicol, spectinomycin, Trizma base,
sodium dodecyl sulfate, DNase, and RNase were obtained
from Sigma (St. Louis, MO). Lysozyme was obtained from the
United States Biochemical Corporation (Cleveland, OH). Am-
picillin was obtained from Biochemie GmbH (Kundl, Austria).
Carbonylated proteins were detected using the chemical and
immunological reagents from the OxyBlot oxidized protein
detection kit (Chemicon, Temecula, CA). Nitrocellulose mem-
branes were obtained from Pall Corporation (New York). Lu-
minol and p-coumaric acid were obtained from Sigma (St.
Louis, MO), hydrogen peroxidase solution was obtained from
Merck (NJ), and AnaeroGen bags were obtained from Gami-
dor Diagnostics (Petach Tikva, Israel).
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FIG. 1. The effect of E. coli rpoS on mazEF-mediated cell death during stationary growth phase following the inhibition of transcription or translation.
MC4100relA™ (WT) and its derivatives, MC4100rel4 " AmazEF::kan (AmazEF), MC4100relA™ ArpoS::tet (ArpoS), MC4100relA™ ArpoS::tet carrying plas-
mid pQEkatE (ArpoS+KatE), and MC4100relA* ArpoSAmazEF (ArpoS AmazEF) were grown aerobically at 37°C until stationary phase (ODgy, = 1.3
to 1.4). Stressful conditions were induced by incubation of cells at 37°C, without shaking them, with rifampin (20 pg/ml) for 10 min (A); spectinomycin
(1 mg/ml) for 10 min (B); chloramphenicol (50 wg/ml) for 20 min (C); or serine hydroxamate (0.2 mg/ml) for 1 h (D); for the rest of the experimental
details, see the text. The results represent the ratio of CFU of treated cells versus that of untreated cells. (E) CFU/ml of all untreated strains at stationary

phase.
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FIG. 2. The effect of E. coli RpoS on mazEF-mediated cell death
during stationary phase following DNA damage. Strains described in
the legend to Fig. 1 were grown aerobically at 37°C until stationary
phase (ODgy, = 1.3 to 1.4). Stressful conditions were induced by
incubation of cells at 37°C, without shaking them, with trimethoprim (5
pg/ml) for 1 h (A); nalidixic acid (1 mg/ml) for 10 min (B); or mito-
mycin C (0.25 pg/ml) for 10 min (C). For the rest of the experimental
details, see the text.

We studied the effects of using various stressful conditions
on cell viability during stationary phase under aerobic condi-
tions as follows. We diluted (1/100) an overnight culture in M9
medium and grew the cells while shaking them (160 rpm) in
the same medium at 37°C either until they reached exponential
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FIG. 3. The effect of E. coli rpoS on mazEF-mediated cell death during
stationary phase under anaerobic conditions. Strains described in the legend
of Fig. 1 were grown under anaerobic conditions until the stationary phase
(ODg, = 1.3 to 1.4). Stressful conditions were induced by incubation of cells
at 37°C, without shaking them, with rifampin (10 pg/ml) for 10 min (A);
spectinomycin (1 mg/ml) for 10 min (B); or trimethoprim (5 pg/ml) for 1 h
(C©). For the rest of the experimental details, see the text.
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FIG. 4. mazEF-mediated carbonylation of cellular protein during stationary growth following the induction of mazEF by various stressful conditions.
MC4100relA™ (WT) and its derivatives MC4100relA " AmazEF (AmazEF), MC4100relA™ ArpoS::tet (ArpoS), and MC4100relA ™ ArpoSAmazEF (ArpoS
AmazEF) were grown to either exponential or stationary phase. Stressful conditions were induced as described in the legends to Fig. 1 and 2. Cells that
were either not treated or treated under stressful conditions were lysed as we have described previously (15). In these lysates, we examined the level of
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growth phase (optical density at 600 nm [ODg,], 0.6) or until
they reached stationary growth phase (for about 16 h; ODy,
about 1.6). When the cultures reached either exponential or
stationary growth phase, we incubated aliquots of the cells at
37°C for 10 min without shaking them. We then submitted the
cell aliquots to various stressful conditions (described in the
legends to the figures), plated the cells on LB agar, and incu-
bated them at 37°C overnight. For each strain, we determined
the ratio of CFU of treated cells versus that of untreated cells.

We studied the effects of using various stressful conditions
on cell viability during stationary phase under anaerobic con-
ditions as follows. We grew the cells in 15-ml tubes containing
10 ml of M9 medium while standing and without shaking them
in an anaerobic jar containing AnaeroGen bags at 37°C. We
incubated the cells for 3 to 4 days until the cultures reached an
ODgyo of 1.4. We then transferred 1-ml samples to 1.5-ml
Eppendorf tubes and incubated them further in the anaerobic
jar at 37°C for 10 min. After incubating the cells, we induced
stressful conditions under anacrobic conditions, as described in
a figure legend (see Fig. 3). The cells were centrifuged, washed,
diluted, plated, and incubated in the anaerobic jar at 37°C
for 20 h.

Deletion of rpoS permitted E. coli mazEF-mediated cell
death during stationary growth phase. We have reported pre-
viously that E. coli mazEF-mediated cell death occurs during
exponential phase but not during stationary phase (11). Here,
we studied the role of the stationary-phase sigma factor o,
encoded by rpoS (16, 19, 30), for two reasons as follows. (i) o°
positively regulates the formation of catalase, an ROS-detox-
ifying enzyme, and is responsible for the elevated levels of this
enzyme during stationary phase. (ii) We found previously (15)
that catalase prevents mazEF-mediated cell death induced by
inhibitors of transcription or translation. So, we tested whether
deleting rpoS from E. coli cells under various stressful condi-
tions would lead to their death through the mazEF system
during stationary growth phase. We found that during sta-
tionary phase, though the wild-type (WT) cells did not die,
we did observe mazEF-mediated cell death in the ArpoS
cells (Fig. 1 and 2). Note that in untreated stationary-phase
cultures, deleting rpoS caused a reduction in cell viability of
only 30% (Fig. 1E).

mazEF-mediated cell death operates through an ROS-de-
pendent and ROS-independent pathway in an ArpoS mutant
at stationary phase. We found that during stationary growth,
mazEF-mediated cell death induced by inhibitors of transcrip-
tion and translation occurred in ArpoS cells and was also pre-
vented by the overproduction of catalase (Fig. 1). On the other
hand, mazEF-mediated cell death induced by DNA-damaging
agents like trimethoprim, nalidixic acid, and mitomycin C was
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not prevented by the overproduction of catalase (Fig. 2). This
additional result supports our previous finding that DNA-dam-
aging agents induce mazEF-mediated cell death through an
ROS-independent pathway (15). Note, however, that even
though overproducing catalase did not completely prevent cell
death induced by DNA damage in an ArpoS strain during
stationary growth, it improved cell viability by about 18 times
(from 1% to 18%) (Fig. 2).

Obviously, ROS are not formed in the absence of oxygen.
We studied the effect of using completely anaerobic conditions
on mazEF-mediated cell death during stationary growth. We
activated mazEF by adding rifampin to inhibit transcription
(Fig. 3A), by adding spectinomycin to inhibit translation (Fig.
3B), or by adding trimethoprim to cause DNA damage (Fig.
3C). We observed no mazEF-mediated cell death in an ArpoS
strain grown anaerobically when we added antibiotics that in-
hibited transcription (rifampin) or translation (spectinomycin)
(Fig. 3A). However, in an ArpoS mutant, when the mazEF
module was activated by the DNA-damaging agent tri-
methoprim, we observed mazEF-mediated cell death even un-
der anaerobic growth conditions (Fig. 3C). This suggests that
in the ArpoS mutant, mazEF-mediated cell death induced by
DNA damage was ROS independent. Our results obtained
under anaerobic conditions (Fig. 3) confirmed those obtained
with catalase (Fig. 1 and 2).

mazEF-mediated protein carbonylation at stationary phase.
Carbonylated proteins are oxidized proteins that carry car-
bonyl groups generated by ROS (6). Previously, it was shown
that elevated levels of protein carbonylation are formed during
stationary growth phase (6). Here, we also observed that, in
WT cells, protein carbonylation was elevated four times more
during stationary growth phase than during exponential growth
phase (Fig. 4A). Since we observed similar results with the
AmazEF mutant (Fig. 4A), it seems that the increase in protein
carbonylation was mazEF independent. We have previously
described mazEF-dependent protein carbonylation under
stressful conditions (15). Such an effect was not observed here
in the stationary-phase cultures of the WT and its AmazEF
mutant (Fig. 4B and C). However, we observed a dramatic
increase in the level of carbonylation in the ArpoS mutant
compared with that of the WT strain at stationary phase; ap-
plying stressful conditions (rifampin, nalidixic acid, or tri-
methoprim) increased protein carbonylation by about 10 times
in the ArpoS mutant (Fig. 4C). Since we did not observe this
dramatic increase in protein carbonylation in the ArmpoS
AmazEF double mutant, this phenomenon must be mazEF
dependent.

A new finding for this study is that E. coli mazEF-mediated
cell death can occur during the stationary phase of growth. We

protein carbonylation using the Chemicon OxyBlot kit to derivatize the carbonyl groups in the protein side chains to 2,4-dinitrophenylhydrazone
(DNP-hydrazone) by reaction with 2,4-dinitrophenylhydrazine. The DNP-derivative crude proteins were detected using a primary antibody specific
to the DNP moiety of the proteins (for details, see reference 15). (A) Relative protein carbonylation of untreated exponential-phase cultures (Exp)
and untreated stationary-phase cultures (St). Protein carbonylation was determined and quantified, as we have described previously (15). The first
column represents the carbonyl level of untreated exponential-phase WT cells, which was arbitrarily determined to be 1. The subsequent columns
represent the relative carbonyl level of each strain compared with the levels of the exponential-phase untreated WT cells. (B) Protein carbonylation
of stationary-phase cultures submitted to various stressful conditions. Carbonylated proteins were detected. (C) Relative carbonyl levels presented
in panel B. The intensity of each band presented in panel B was quantified, as we have described previously (15). The columns represent the relative
carbonyl level of each of the treated strains compared with the level in untreated, exponentially growing WT cells (first column in panel A).
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found that at this stage of growth, o°, the stationary-phase
sigma factor encoded by rpoS, is a key component. We ob-
served mazEF-mediated cell death triggered by various stress-
ful conditions (Fig. 1 and 2) in an ArpoS strain but not in the
isogenic WT strain. Based on these results, we hypothesize that
rpoS may antagonize mazEF-mediated cell death with at least
two mechanisms as follows. (i) The induction of the katE gene
(24, 34), which inhibits ROS formation, is one of these mecha-
nisms (30). This hypothesis is supported by our results, showing
that either the overproduction of catalase or use of completely
anaerobic conditions complements the effect of 7poS deletion,
thus leading to the prevention of mazEF-mediated cell death (Fig.
1). (ii) When mazEF is triggered by DNA damage, RpoS may
antagonize mazEF-mediated cell death by a different mechanism
than by induction of the katE gene. In this case, the overproduc-
tion of catalase or use of completely anaerobic conditions only
slightly improved cell survival (Fig. 2). It is well known that the
mpoS gene product ¢° is a global regulatory protein associated
with stationary growth of bacterial cultures (16, 26, 34). We hy-
pothesize that at least one of the gene products controlled by ¢°
may antagonize the putative death executioner protein(s) of the
ROS-independent mazEF death pathway.

Thus, mazEF-mediated cell death is a programmed phenome-
non that is stress induced and normally takes place only during
exponential growth phase. It does not take place during stationary
growth phase, not because the death program is missing but
rather because it is antagonized by ROS-detoxifying enzymes and
by another as yet unidentified cellular component(s).
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