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Abstract
Haemophilus ducreyi causes chancroid, which facilitates transmission of HIV-1. To better
understand the biology of H. ducreyi, we developed a human inoculation model. Here, we describe
the clinical outcomes of 267 volunteers who were infected with H. ducreyi. There was a relationship
between papule formation and dose. The outcome (pustule formation or resolution) of infected sites
within a subject was not independent; the most important determinants of pustule formation were
gender and host. When infected a second time, subjects (n = 41) segregated towards their initial
outcome, confirming the host effect. Subjects with pustules developed local symptoms, requiring
termination from the study after a mean of 8.6 days. Hypertrophic scars developed in 16.2% of
volunteers who were biopsied, but the model was otherwise safe. Mutant-parent trials confirmed key
features in H. ducreyi pathogenesis, and the model has provided an opportunity to study differential
human susceptibility to a bacterial infection.
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Haemophilus ducreyi causes chancroid, a sexually transmitted genital ulcer disease that is
endemic in regions of Africa and Asia. Although the World Health Organization estimated the
annual global prevalence of chancroid to be 4-6 million cases in the late 1990s, the
epidemiology of the disease is not well characterized due to syndromic management and a lack
of diagnostic testing [1,2]. Chancroid facilitates the transmission and acquisition of HIV-1 and
is a public health concern [3].

H. ducreyi is a strict human pathogen that naturally infects genital and nongenital skin [4]. The
bacteria presumably enter the skin by superficial abrasions that occur during intercourse [4].
Clinical disease is characterized initially by a painless papule that develops into a pustule at
the site(s) of entry. Pustules erode into painful ulcers that prompt patients to seek medical
attention 1-3 weeks after symptoms begin [2]. Purulent ulcers with ragged edges and
suppurative lymphadenopathy typify the ulcerative stage [4].
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During the 1980s and 1990s, chancroid outbreaks occurred in New York City and New Orleans
[5]. At the time of these outbreaks, data regarding the pathogenesis of H. ducreyi infection in
humans were scarce [4,5] and findings from in vitro or animal models could not be correlated
with human disease. Given the initial clinical course of natural disease, we reasoned that
experimental infection up to the pustular stage would pose minimal risk to volunteers. Thus,
a model of experimental infection with H. ducreyi in humans was developed to better define
the pathogenesis of and host responses to the organism [6,7].

In this model, healthy adult volunteers are inoculated with H. ducreyi at multiple sites on the
skin overlying the upper deltoid. Based on the delivery characteristics of the allergy testing
device used for inoculation, the estimated delivered dose (EDD) is calculated by dividing the
CFU loaded on the device by 1000 [8]. Papules develop within 24 hours, and either
spontaneously resolve or evolve into pustules over the next 2-5 days. Volunteers remain
infected until they reach clinical endpoint, which is defined as resolution of disease at all sites,
development of a pustule that is either painful or > 4 mm in diameter, or 14 days after
inoculation. At endpoint, all volunteers are treated with one dose of oral ciprofloxacin.

Within 24 hours of inoculation, fibrin and collagen are deposited in the wounds. PMN and
macrophages traffic on the collagen and fibrin scaffolds, forming micropustules in the
epidermis and dermis [9,10]. By 48 hours, PMN form an abscess that ulcerates through the
epidermis [9,10]. Below the abscess is a dermal infiltrate of myeloid dendritic cells (DC),
macrophages, memory and effector memory subsets of CD4 and CD8 T cells and activated
NK cells [11-15] (unpublished data). The DC likely phagocytose H. ducreyi [14], migrate to
regional nodes and sensitize naïve T cells to , as H. ducreyi-specific T cell lines can be
propagated from pustules [16].

The histology of experimental pustules is nearly identical to natural ulcers [1]. In pustules, H.
ducreyi are found in the abscess and dermis where they associate with collagen, fibrin, PMN
and macrophages, which fail to ingest the organism [10]. H. ducreyi also colocalizes with fibrin
and PMNs in natural ulcers [17]. Thus, evasion of phagocytosis and the bactericidal activity
of serum that transudates into lesions are the major mechanisms of bacterial survival in
experimental pustules and in natural disease.

Here, we report our cumulative 15-year experience with the experimental human infection
model of H. ducreyi. We describe the clinical outcomes of the 267 volunteers who were infected
with strain 35000 or its human passaged derivative, 35000HP. We describe the results obtained
from 41 volunteers who were reinfected with 35000HP and of 20 mutant-parent comparison
trials in the context of what is known about pathogenesis.

METHODS
Study Population

Between February 25, 1993 and December 31, 2007, we infected 267 volunteers (162 females,
105 males; 212 whites, 49 blacks, 6 Asians; age range 18 to 68 years; mean age ± standard
deviation, 33.7±10.3 years) at least once with H. ducreyi. Safety data, such as hypertrophic
scar formation, are reported for the entire cohort. For analysis of initial infections, we included
220 subjects who were infected at 2 or 3 sites with the parent strain and who achieved clinical
endpoint. If subjects participated in mutant-parent comparison trials, only sites inoculated with
the parent strain were included in the analyses. Subjects (n=36) who participated in either dose-
response [6] or chemoprophylaxis trials [18], or other time course studies [7,10,12], were
excluded because of a short duration of infection (1-4 days). Subjects (n=11) who were HIV
seropositive [15] were also excluded from the analysis.
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Analysis of site independence
A total of 186 subjects, who received identical doses of the parent strain at both of two (n=106)
or all of three (n=80) sites, were included in the analysis of site independence. Cumulative data
for 90 of these subjects inoculated at two sites was reported previously [19]. The observed
outcomes were compared to expected numbers under the assumption of site independence
using chi square tests.

Papule and pustule formation rates
We estimated the odds of papule and pustule formation based on the EDD of 35000 and/or
35000HP, gender, race and age. For this analysis, we used logistic regression with generalized
estimating equations (GEE) to predict papule and pustule formation rates. The GEE sandwich
estimator for standard errors was used to calculate 95% confidence intervals for these rates.

Second Infections
Forty-one of the 220 subjects included in the analyses of initial infections were infected a
second time [19,22] (unpublished data). For these 41 subjects, we estimated the odds of pustule
formation based on their previous outcome using logistic regression as described above.

Mutant versus Parent Comparison Trials
To test the role of putative bacterial virulence factors in disease, we performed isogenic mutant-
parent comparison trials [8,23-30]. These trials are double-blinded, multi-stage, dose ranging
studies with at least 2 stages. The primary endpoint is the pustule formation rate. The first group
of volunteers is inoculated at three sites with a fixed dose (x) of 35000HP on one arm and at
three sites with varying doses (0.5 x, x, 2x) of an isogenic mutant on the other arm [23,24]. If
the mutant and parent sites form pustules at similar rates, we inoculate a second group with
similar doses. If pustules do not develop at sites inoculated with the mutant during the first
iteration, the doses of the mutant are increased for each subsequent group until the EDD of the
mutant is approximately 10-fold higher that of the parent. Mutants are categorized as attenuated
(unable to form pustules even at doses 10-fold that of the parent), partially attenuated (form
pustules at doses 2- or 3-fold that of the parent, but not at doses equivalent to the parent) or
virulent (form pustules at doses similar to the parent).

RESULTS
Outcomes of initial challenges

A total of 220 subjects (88 men, 132 women) contributed 538 sites (219 from men, 319 from
women) to the analysis of papule formation. Of the 220, 192 subjects (76 men, 116 women)
contributed 470 sites (192 from men, 278 from women) to the analysis of pustule formation.

Of the 192 subjects, 186 were infected with identical doses of 35000 or 35000HP at 2 or 3
sites, which were analyzed for independence. The expected number of people with 0, 1, 2 and
3 pustules (figure 1) was calculated based on the observed pustule formation rate and
assumption of independence. A greater number of subjects than expected formed pustules at
0 or 2 sites for those inoculated at 2 sites (P=0.001) (table 1). Similarly, a greater number of
subjects than expected formed pustules at 0 or 3 sites for those inoculated at a total of 3 sites
(P<0.001) (table 1). Thus, the outcome of infected sites within a subject inoculated with
identical doses of the parent strain was not independent, suggesting a host effect on outcome,
as reported previously [19].

We calculated overall papule and pustule formation rates using logistic models and GEE to
account for the within host effect on sites. Papules formed at 479 (89% [95% confidence
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interval (CI), 85.7%-91.9%]) of 538 sites (figure 2). There was a significant effect of dose on
papule formation (P=0.0044); the odds of papule formation increased by 2% per unit increase
in EDD (figure 2). After adjusting for dose, we found no association between the likelihood
of papule formation and either gender (figure 3) or race (data not shown).

A total of 470 sites were included in the calculation of pustule formation rates. The pustule
formation rates for 85 sites inoculated with 35000 and 385 sites inoculated with 35000HP were
not significantly different. Consequently, we analyzed results for the two strains together.
Pustules formed at 256 of 470 sites for an overall pustule formation rate of 54.5% [95% CI,
48.7%-60.1%] (figure 2). There was no significant change in the odds of forming a pustule as
the dose increased. When controlled for dose, men were significantly more likely than women
to form pustules (OR 1.94; [95% CI, 1.23-3.09]; P=0.0048) (figure 3), consistent with previous
reports [21]. There was no significant association between pustule formation and either race
or age (data not shown). Thus, the most important determinants of pustule formation were host
and gender.

Papules that progressed into pustules (n=256) did so within a mean ± SD of 3.8±2.2 days (range,
1-14 days). Papules that resolved (n=156) did so within 5.3±2.6 days (range, 2-14 days). Only
7 pustules (2.7% [95% CI, 1.2%-6.2%]) reverted into papules and subsequently resolved
without treatment. Thus, spontaneous resolution of papules is common, while resolution of
pustules is uncommon in the model.

Of the 140 subjects who formed at least 1 pustule, 122 (87.1% [95% CI, 81.6%-92.7%])
developed pain or pruritis at the pustule site. Infection in these subjects was terminated due to
symptoms after 8.6±2.7 days. Only 18 subjects who developed pustules did not develop local
symptoms and remained infected for 14 days.

Of the 192 volunteers, 139 (72.4% [95% CI, 66.1%-78.7%]) had at least 1 pustule at endpoint
and were defined as a pustule former, while 51 (26.6% [95% CI, 20.3%-32.8%]) had all sites
of infection resolve and were defined as resolvers. Two subjects had papules at 14 days and
were not included in either category.

Outcomes of second challenges
Of the subjects who were initially classified as pustule formers or resolvers, 41 volunteered to
be infected a second time [19,22] (unpublished observations). Of 15 (13 women, 2 men)
resolvers challenged a second time, 7 (46.7%; 95% CI, 21.4% -71.9%) resolved all sites, 6
(40%; 95% CI, 15.2%-64.8%) formed at least 1 pustule, and 2 had papules at endpoint. Of 26
(16 women, 10 men) pustule formers challenged a second time, 23 (88.5% [95% CI, 76.2%-100
%]) formed at least 1 pustule, 2 (7.7% [95% CI, 1.0%-25.1%]) resolved at all sites, and 1 had
papules at endpoint. Adjusted for gender, a subject was more likely to be a resolver in the
second infection if he/she was a resolver in the first infection (P=0.017). Similarly, a pustule
former was more likely to form at least one pustule during a second infection if he/she was a
pustule former during the first infection (P=0.012). The odds ratio of forming a pustule during
the second infection for an initial pustule former was 3.42 [95% CI, 1.32-8.87] times that of
an initial resolver (figure 4). Thus, subjects segregate towards their initial outcome when
rechallenged.

Outcomes of sites inoculated with mutants
In isogenic mutant-parent comparison trials, subjects serve as their own controls for the host
and gender effects. Two important themes emerge from the 20 trials published to date (table
2). First, the trials have validated the importance of the association of H. ducreyi with fibrin
and collagen and evasion of phagocytosis [9,10]. Mutants that lack expression of OMPs
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involved in serum resistance (DsrA and DltA), adherence to collagen (NcaA), fibrinogen
binding (FgbA) or secreted proteins that are antiphagocytic (LspA1 and LspA2) are fully or
partially attenuated in vivo [8,24-26,30]. In contrast, mutants whose gene products target host
cells or compartments that do not have major roles in pathogenesis in vivo are dispensable for
virulence [8]. For example, mutants that do not make paragloboside-like lipooligosaccharide
(LOS), hemolysin and cytolethal distending toxin, which primarily target adherence to and
invasion of keratinocytes or killing of keratinocytes and fibroblasts, are virulent [31-33]. A
mutant in superoxide dismutase C, which promotes survival in phagolysosomes, a
compartment that H. ducreyi evades in vivo, is virulent [34].

Second, the trials have helped identify vaccine candidates. Although some gram negative
organisms contain as many as 40 TonB-dependent receptors, H. ducreyi contains only the
hemoglobin receptor (HgbA), the heme receptor (TdhA), and TdX, whose function is not
known [28]. A HgbA mutant is attenuated for pustule formation in the model, while a TdhA
and TdX mutant is virulent [28,35]. Thus, HgbA is both necessary and sufficient for heme/iron
acquisition by H. ducreyi in humans. HgbA is conserved in H. ducreyi strains and does not
undergo phase or antigenic variation. Immunization with purified HgbA elicits protective
antibody-mediated immunity in the swine model [28,36]. The results of these trials strengthen
the idea that HgbA may be an excellent vaccine candidate in humans.

Risks and Adverse Events
We typically infect groups of subjects with a common inoculum. In 128 iterations, two groups
(6 subjects) were infected with inocula that contained low levels of fungi or bacteria other than
H. ducreyi. The subjects developed papules, were treated with ciprofloxacin once the
contaminants were detected, and had no adverse outcomes. No subject developed fever or
systemic symptoms due to experimental infection. Secondary transmission of H. ducreyi from
a volunteer to another person has not occurred in 2,123 subject-days of infection.

Although we exclude persons who form keloids and hypertrophic scars, some subjects
developed hypertrophic scars at sites of infection that were biopsied. Hypertrophic scars have
not formed at infected sites that were not biopsied or uninfected sites that were biopsied.
Subjects were followed for six months post-inoculation. Of 191 volunteers who were biopsied,
18 were lost to follow-up. Of the 173 remaining subjects, 21 women and 7 men (16.2% [95%
CI, 10.7%-21.7%]) developed hypertrophic scars. More women (21.7% [95% CI 13.4-29.8%])
than men (9.2% [95% CI, 2.7%-15.7%]) developed hypertrophic scars (P=0.028). Of 31
African Americans, 12 (38.7% [95% CI, 21.6%-55.9%]) developed scars, while 14 of 140
Whites (10% [95% CI, 5%-15%]) developed scars (P≤0.0001). Both Asians who participated
in the study developed hypertrophic scars. All subjects who developed hypertrophic scars
received an intradermal injection of triamcinolone, and all scars became flat within 2 months.

DISCUSSION
If done under carefully regulated conditions, experimental infection of humans with H.
ducreyi is safe, with minimal risk. No subject developed fever, lymphadenopathy or
disseminated lesions. Most volunteers achieved clinical endpoint prior to 14 days because of
local symptoms. Hypertrophic scars developed at infected sites that were biopsied in 16% of
subjects. Although we did not assess lesional TGF-β levels in volunteers who formed
hypertrophic scars, TGF-β transcripts are readily amplified from pustules (unpublished data),
and expression of TGF-β may contribute to hypertrophic scar formation by enhancing localized
production of collagen and fibronectin [37].

In the limited dose range employed in the model, the odds of forming a papule was dose
dependent, while the odds of forming a pustule was not dose-dependent. The latter result differs
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from analyses reported previously, in which site outcomes within a subject were assumed to
be independent [8,20,21]. However, the outcome of multiple infected sites within a subject
was not independent, indicating a host effect [19]. When reinfected, subjects segregated
towards their initial outcome (pustule formation or resolution). The mechanism of disease
resolution is unknown, but is likely due to enhanced phagocytic clearance in those subjects
who resolve. Some naturally infected patients have spontaneous clearance of ulcers [2], while
others have multiple recurrences of ulcers [38]. Taken together, the data suggest that some
persons are prone to clearing infection while others are prone to disease progression, and that
protective immunity does not develop in those who progress to pustules or ulcers [19,22].

The mechanisms of disease progression versus resolution may be determined in part by the
microenvironment at the infected site. Gene expression profiles of infected sites from
volunteers who were infected a third time after resolving infection twice are consistent with
an effective immune response [39]. In contrast, profiles indicative of a hyperinflammatory,
dysregulated immune response are present in persons infected a third time after developing
pustules twice [39]. Monocyte-derived myeloid DC obtained from the volunteers who resolved
twice expressed transcripts that should promote Th1 and Th17 responses in response to H.
ducreyi, while DC from the volunteers who formed pustules twice express transcripts
consistent with Th1 and regulatory T cell responses [39]. Th1 and Th17 responses may lead
to a cytokine environment that promotes phagocytosis, while a combined Th1 and regulatory
response may inhibit phagocytosis [39]. Alternatively, DC from the resolver group might direct
NK cells to make an appropriate amount of IFNγ during early stages of infection, which
augments phagocytosis.

Men and women formed papules, or became infected, at equal rates; however, men were two
times more likely to form pustules. The male to female ratio of natural chancroid in endemic
areas is 3:1, which likely reflects gender differences in susceptibility to disease progression
[4]. In vitro, H. ducreyi dies at temperatures above 35°C. We were unable to assess whether
gender differences in susceptibility were associated with elevated body temperatures at the
time of ovulation in women because menstrual cycles of female participants were not assessed
in detail [21]. Alternatively, the gender effect may reflect the fact that women are more prone
to proinflammatory than tolerizing responses compared to men [40]. If women are less prone
to tolerizing responses than men, and a tolerizing response promotes phagocytic failure, women
should be less susceptible to pustule formation than men.

H. ducreyi is more closely related to the animal pathogens Mannheimia haemolytica and
Actinobacillus pleuropneumoniae than human pathogens within the Pasteurellaceae [41].
Rabbit, primate, swine and murine models of chancroid were developed; the infectious doses
in these models range from 104 to 107 CFU [2,8]. Murine lesions are due to the content of LOS
in the inoculum, not viable bacteria. Bacteria are cleared over time in swine [34], and lesions
in rabbits also spontaneously clear. In rabbits and swine, 1 to 2 weeks of infection evoke serum
antibody responses and provide protection against repeated exposure; bactericidal activity
develops in repeatedly infected swine [42,43]. The animal models do not simulate human
disease sufficiently to study pathogenesis or host responses, reflecting the fact that H.
ducreyi diverged from other pathogens to its unique niche in the human host [41].

In summary, experimental infection with H. ducreyi clinically and histologically mirrors
natural infection and provides an excellent model for studying the pathogenesis of the infection.
Since H. ducreyi naturally infects nongenital skin and causes a chronic limb ulceration
syndrome [44,45], infection of the arm is not a major limitation of the model. Although our
model is limited to the pustular stage of disease, the relationships between H. ducreyi and
human cells in the model are maintained in natural ulcers [17], suggesting that the duration of
infection is also a minor limitation. The model has significantly contributed to the
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understanding of H. ducreyi pathogenesis and led to the discovery of immune mechanisms that
may underlie differential human susceptibility to H. ducreyi infection.
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Figure 1.
Outcomes of volunteers who were infected at three sites with 35000HP and developed 0, 1, 2
or 3 pustules.
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Figure 2.
The relationship of estimated delivered dose and overall probabilities (with 95% CI) of papule
(open circles) and pustule (+) formation, as predicted by logistic regression.
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Figure 3.
Papule formation rates for females (circle) and males (triangle) and pustule formation rates for
females (+) and males (×) related to estimated delivered doses as predicted by logistic
regression. For simplicity, the 95% CI are not shown.
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Figure 4.
The likelihood of forming a pustule on the second infection for volunteers who formed pustules
(+) or who resolved (×) during their first infections.
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