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Abstract
Purpose of review—Though designed to target only the HIV protease, HIV protease inhibitors
(PIs) induce toxicities in patients such as insulin resistance and lipodystrophy that suggest that PIs
have other targets in mammalian cells. Akt controls insulin signaling and is an important target in
cancer, but no Akt inhibitors are approved as cancer therapeutics. These observations have prompted
study of HIV protease inhibitors as inhibitors of Akt and possible cancer therapeutics. This review
will highlight the latest advances in repositioning HIV PIs as cancer therapeutics.

Recent findings—Although PIs can inhibit Akt activation and inhibit the proliferation of over 60
cancer cell lines, as well as improve sensitivity to radiation or chemotherapy, these effects do not
always correlate with Akt inhibition. Other important processes such as the induction of endoplasmic
reticulum stress appear critical to the biological activity of PIs. These impressive and surprising
preclinical data have prompted clinical testing of nelfinavir as a lead HIV PI in cancer patients.

Summary—While mechanism of actions for the anti-tumor effects of HIV PIs are complex, their
broad spectrum of activity, minimal toxicity, and wide availability make PIs ideal candidates for
repositioning as cancer therapeutics.
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Introduction
The development of cancer drugs is slow and costly. The repositioning of HIV PIs as cancer
therapeutics has been based on two facts. First, Akt is an important target in cancer, yet no Akt
inhibitors are clinically available. Second, HIV PIs inhibit Akt activation, which likely explains
the clinical toxicities of insulin resistance and lipodystrophy that are associated with their use.
Recent studies show that HIV PIs are established broad-spectrum anti-cancer agents that work
through pleiotropic mechanisms in cancer cells. The clinical efficacy of PIs is now being
evaluated in cancer patients.

Protease inhibitors target more than HIV protease
The protease inhibitors were rationally designed to block HIV aspartyl protease, an enzyme
that cleaves the gag and gag-pol precursor polyproteins, arresting maturation and preventing
the generation of infectious virions [1,2]. Because this class of drugs is only weakly active
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against human aspartyl proteases [2,3], minimal toxicity was anticipated. Shortly after their
introduction, however, off-target effects began to be described.

Some of the earliest data came from Kempf et al. [3] who found that treating mice with ritonavir
could prevent the expansion of cytotoxic T cells against lymphocytic choriomeningitis virus
(LCMV) epitopes. This was not because of inhibition of LCMV replication, but rather because
of decreased presentation of LCMV antigen. The mechanism proposed by Schmidtke et al.
[4] was inhibition of antigen processing via ritonavir-induced inhibition of the 20S proteasome
chymotrypsin activity. Consistent with this, early HIV trials reported on the ability of
saquinavir and ritonavir to affect immune reconstitution before virus replication was
suppressed [5] and to maintain immune reconstitution in face of persistent viremia [6–10]. In
1999, a report of a patient with regression of Kaposi’s sarcoma (KS) following therapy with a
PI-containing regimen was published [11], and improvements in response rates and relapsed
free survival in many AIDS associated malignancies followed [12]. While these findings were
initially attributed to immune reconstitution and better control of oncogenic viral infections,
the number of reports in solid tumors, KS [13], lymphoma, fibrosarcoma [14], multiple
myeloma [15], and prostate cancer [16,17] suggested other mechanisms for the anti-neoplastic
activity of PIs.

Lipodystrophy and insulin resistance
Another indication that PIs target more than the HIV protease was based on reports of
lipodystrophy and insulin resistance in PI-treated HIV patients [18–21]. Explanations for
lipodystrophy centered on adipocyte transcription factors such as peroxisome proliferators
activated receptor γ (PPAR-γ) and sterol regulatory element binding protein-1 (SREBP-1).
Carr et al. [22] proposed that through one of several mechanisms, adipocyte differentiation
was blocked, ultimately resulting in apoptosis. While controversy exists regarding adipocyte
differentiation [23–27], a consensus that PIs increase SREBP-1 expression developed [26,
28]. SREBP-1 expression has been shown to be increased 2.6 fold in adipocytes of HIV infected
persons after treatment with ritonavir [28]. Increased expression of SREBP-1, especially
SREBP-1c, is a feature of the congenital lipoatrophy syndrome, an autosomal recessive
disorder, characterized by unregulated expression of SREBP-1c, loss of subcutaneous fat,
insulin resistance, and dyslipidemia [29], phenotypic features of patients with PI-induced
lipodystrophy.

HIV PIs may also induce insulin resistance through multiple mechanisms. PIs inhibit release
of insulin by pancreatic beta cells [30], and inhibit the response of skeletal muscle cells,
adipocytes, and hepatocytes to insulin. This occurs through diminished signaling through Akt
and isoforms of protein kinase C [31,32], as well as through direct binding to glucose
transporters such as Glut1 and Glut4 [32,33]. The role of Akt in mediating the effects of insulin
was confirmed in studies of mice that lack specific isoforms of Akt. Mice lacking Akt2 are
insulin resistant and have higher fasting and post-prandial glucose levels than heterozygous or
wild type mice, and show compensatory but inadequate hyperinsulinemia [34]. Inhibition of
Akt signaling by PIs not only provided a mechanism for a commonly observed toxicity, but
also provided strong rationale to test PIs as cancer therapeutics.

The Akt pathway in cancer
The Akt pathway is the prototypic survival pathway and is constitutively activated in a number
of malignancies (Figure 1) [35]. In preclinical studies, Akt promotes cellular transformation,
cellular proliferation, and drives tumor formation in mice. In addition, Akt activation promotes
resistance to chemotherapy as well as radiation therapy, and portends a poor prognosis for
patients with many types of cancer [36]. The Akt signaling cascade is initiated with the
activation of phosphatidylinositol-3-kinase (PI3K) following cross-linking of a growth factor
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with its cell surface receptor. Activated PI3K phosphorylates membrane bound
phosphoinositides. Phosphorylated phosphoinositides bind to Akt, leading to its translocation
to the inner cell surface where it can be phosphorylated by many mechanisms [37]. Following
phosphorylation, activated Akt moves to the cytosol and nucleus to activate its many substrates,
which control important cellular processes such as cell cycle progression, apoptosis,
transcription and translation [37,38]. Regulation of the PI3K/Akt pathway is complex, and an
important negative regulator is the tumor suppressor PTEN, a lipid phosphatase that de-
phosphorylates the products of PI3K.

Because Akt promotes the formation, maintenance, and therapeutic resistance of cancer, the
development of Akt inhibitors has become a major effort within industry and academia. Given
the inherent delay of developing Akt inhibitors de novo, the immediate availability of the PIs
made them logical candidates to study in cancer.

The efficacy of PIs as anti-cancer agents
The results of several studies that assessed the efficacy of PIs in cancer cells are summarized
in Table 1. HIV PIs have a very broad spectrum of activity, and can inhibit the proliferation
and/or cause the death of virtually every cancer cell line tested in a dose dependent manner.
Many investigators have confirmed the in vitro efficacy of PIs by demonstrating inhibition of
growth of human tumors in mice when transplanted as xenografts. Cytotoxic chemotherapies
such as docetaxel and targeted therapies such as imatinib have been successfully combined
with PIs [16,39,40], suggesting that HIV PIs have properties that are shared with traditional
cancer therapeutics.

Despite this wide spectrum of activity, PIs are not very potent. Most studies require ≥10 μM
for cellular activity. This is relevant because pharmacokinetic studies performed in HIV
patients revealed that the maximum concentrations achieved for nelfinavir were 7–9 μM. Of
HIV PIs tested, nelfinavir appears to be most potent, which has led to its consideration as a
lead HIV PI for cancer therapy. The recognition of PIs as broadly cytotoxic agents to cancer
cells has intensified efforts to understand how PIs work, given the absence of HIV protease.

Is activated Akt the critical molecular target for protease inhibitors?
Constitutive activation of Akt protects cancer cells from apoptosis, making them resistant to
the effects of ionizing radiation and/or chemotherapy [41–44]. Several groups [40,45–47] have
suggested that inhibition of PI3K-induced activation of Akt by HIV PIs is an important
mechanism by which the class exerts anti-tumor effect. These investigators showed that
decreased phosphorylation of Akt correlated with increased sensitivity to ionizing radiation
[40,45–47] and chemotherapy [40]. However, this has not been observed in all studies, and in
many cases inhibition of Akt activation lags behind other effects such as induction of ER stress
and inhibition of cell cycle progression. Moreover, other groups hypothesize that the anti-tumor
effects of PIs are related to other mechanisms such inhibition of VEGF and HIF1α expression
[48] (which may be secondary to Akt inactivation), direct inhibition of the chaperone function
of Hsp90 [49], or inhibition of proteasome function [50] (Figure 2).

Administration of a PI to a cancer cell may not only result in direct Akt inhibition, but also
indirect inhibition. For example, Akt inhibition has been observed in some studies after cell
cycle arrest with apoptosis [14,15,40,49,51–53] cell cycle arrest without apoptosis [46,48,
52], or only apoptosis [39,54]. More recently, studies that identified cell cycle arrest as a
consequence of administration of PIs also showed a correlation with the accumulation of
proteins that control cell cycle progression [14,40,49,53]. This led to the important observation
that protein degradation, and more generally, protein homeostasis is altered by PIs.
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Beyond the Akt pathway: proteasome inhibition and ER stress
The 20S proteasome was one of the first “off target” activities of the HIV PIs [3]. Several
investigators [14,50,54–58] have proposed direct inhibition of the proteasome as the
mechanism for anti-neoplastic activity. In these studies, proteasome inhibition resulted in the
accumulation of cell cycle inhibitors, cell cycle arrest and apoptosis [14,] or decrease in NF-
κB activity [55]. Hampson et al. [58] showed that proteasome inhibition by lopinavir prevented
E6 induced clearance of p53 in an HPV-16 cervical cancer cell line. Other investigators [50,
52,54,59] have extended these studies and observed that PIs induce ER stress.

The endoplasmic reticulum (ER), responsible for protein folding and maturation, is also
capable of signal transduction for cell homeostasis. Any condition that alters function of the
ER is called ER stress. Such conditions include accumulation of misfolded proteins resulting
from proteasome inhibition, lipid or glycolipid imbalances, and changes in the ionic balance
of the ER lumen [60,61]. ER stress as a result of abnormal glucose transport and proteasome
inhibition has been shown to be part of PI-induced lipodystrophy [62]. The accumulation of
unfolded protein aggregates prompts signaling through an evolutionarily conserved pathway
called the unfolded protein response, in which misfolded proteins directly activate specific ER
kinases such as PERK that cause a decrease in protein synthesis and thereby give the cell a
chance to clear the denatured proteins. As part of a feedback loop, protein phosphatase 1 (PP1)
can be expressed, which can de-phosphorylate and inactivate Akt, further decreasing protein
synthesis. If a cell cannot recover from ER stress, it can directly undergo apoptosis via a caspase
dependent pathway or can attempt survival through autophagy. Invariably, prolonged
autophagy leads to cell death.

The studies of Gupta et al. [50], Gills et al. [52], and Pyrko et al. [54] have provided the most
thorough analysis of how PIs induce ER stress in cancer cell lines. Gupta described induction
of ER stress as a means by which Akt was de-phosphorylated by PP1. Gills et al. [52] suspected
ER stress when vacuolization and cellular detachment in nelfinavir treated cell lines was
observed. Transmission electron microscopy revealed marked dilatation of ER, and two
markers of ER stress, phosphorylation of eIF2α and increased expression of ATF3, were
increased within hours after treatment with nelfinavir, suggesting ER stress preceded other
cellular responses. Similar results were observed by Pyrko et al. [54], who treated glioma cell
lines with nelfinavir and atazanavir and showed that expression of ER stress markers and
dilatation of ER was critical to the response to PIs.

Autophagy
Autophagy is a tightly regulated catabolic process in which a cell degrades long-lived proteins
or organelles as part of normal homeostasis or as a means to survive a period of nutrient
depletion. Autophagy enables the cell to transfer nutrients from less essential locations to those
vital for survival [63]. Autophagy can be induced by starvation, mTOR inhibition (secondary
to Akt inhibition), ER stress and the unfolded protein response, as well as inhibition of growth
factor receptor signaling [64]. Several investigators [30,31,40] reported that pre-treating cells
with nelfinavir blocks growth factor receptor signaling, ultimately blocking Akt
phosphorylation and activation of downstream substrates such as mTOR. However, autophagy
and ER stress were not evaluated in these early papers. More recently, Gills et al. [52]
demonstrated evidence of autophagy in nelfinavir treated cells. Because the effects of nelfinavir
on Akt inhibition were transient and cell line specific in their studies, mTOR inhibition was
an unlikely mechanism for the induction of autophagy. ER stress and the UPR were more likely
based upon rapid upregulation of eIF2α and ATF3 (markers of ER stress) by nelfinavir, and
EM and immunofluorescence data showed that nelfinavir caused dilatation of ER and
accumulation of an ER-specific fluorescent marker in vesicles, respectively. Though a pathway
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leading to the induction of autophagy was identified, the expression of autophagy markers was
atypical. Expression of LC3-II, a prototypic marker of autophagy, was increased and
autophagosomes were observed using EM, but induction of beclin-1 was not observed.
Nonetheless, an inhibitor of autophagy increased the cytotoxicity of nelfinavir in cancer cell
lines. Thus, a practical concern is whether the induction of autophagy could be a means by
which cancer cells could survive nelfinavir treatment.

From the bench to the bedside
There are currently two clinical trials evaluating nelfinavir in solid tumors and two as a
radiation/chemotherapy sensitizer (Clinicaltrials.gov). Results are available from a phase I trial
using nelfinavir as a radiation sensitizer in locally advanced pancreatic cancer [65].
Investigators treated 12 subjects with advanced pancreatic carcinoma with nelfinavir 1250 mg
orally twice daily starting 3 days before radiation therapy. Subjects received cisplatin and one
of two dose levels of gemcitabine concurrently with 59.4 Gy radiation over 6 weeks. Tumor
response was determined using Response Evaluation Criteria in Solid Tumors (RECIST). None
of the observed toxicities were attributed to nelfinavir. Partial responses were seen in five of
10 subjects. Negative resection margins were obtained six of the 10 responders who underwent
surgical resection. These data compare favorably with historical controls, as tumor responses
rates following combined modality therapy for pancreatic cancer are approximately 30%.
Interestingly, inhibition of Akt phosphorylation did not correlate with clinical responses,
although this was a preliminary analysis.

Two other Phase I dose escalation studies using nelfinavir as a single agent in solid tumor
patients are underway. In each, the objectives are to establish the maximum tolerated dose and
define dose-limiting toxicities of nelfinavir. One study at the National Cancer Institute and
National Naval Medical Center is open to patients with any solid tumor, and one study at City
of Hope is open to patients with liposarcomas. These dose escalation studies are important
because when nelfinavir was originally developed, a maximum tolerated dose was never
established. Given the dose dependent cytotoxic effects of nelfinavir in preclinical studies, it
is possible that higher doses could yield greater clinical responses. Currently, each trial is at a
dose level where over 3,000 mg are being administered bid without significant toxicities. In
addition to clinical endpoints, each study is assessing biomarkers for nelfinavir administration.
The NCI study is focusing on assessment of Akt activation, and expression of markers of
apoptosis, ER stress, and autophagy. The City of Hope trial is focusing on SREBP-1 expression,
which explains the restriction to patients with liposarcomas, and is based on preclinical data
from these investigators [51].

Conclusion
Are the data convincing enough to conclude that HIV PIs could be repositioned as anti-cancer
agents? Clearly, PIs inhibit a variety of malignant cell lines and xenografts, with nelfinavir
consistently being the most potent and effective at clinically achievable concentrations.
Although lipodystrophy and insulin resistance in PI-treated HIV patients originally linked these
agents to the Akt signaling pathway, induction of other molecular processes such as proteasome
inhibition [50], ER stress, the unfolded protein response, and autophagy [52,59] must now also
be considered as being critical to the effects of PI in cancer cells. Despite the uncertainty of a
unifying mechanism of action for PIs, their track record of minimal toxicity, FDA approved
status, and readily availability makes them excellent candidates for further evaluation as cancer
therapeutics.
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Figure 1. Activation of Akt promotes cellular survival through multiple mechanisms
Akt inhibits apoptosis by phosphorylation of many substrates, including 1. the FoxO subfamily
of forkhead family transcription factors that inhibits the transcription of pro-apoptotic genes,
2. pro-apoptotic proteins such as BAD and caspase 9, which inactivates them, and 3. IKK,
which indirectly increases the activity of NF-κB and stimulates the transcription of pro-survival
genes. Cell cycle progression is promoted by phosphorylation of the cdk inhibitor p21, which
is subsequently cleared via the proteasome. Phosphorylation of MDM2 by Akt leads to
increased ubiquitinylation of p53 and increased cleared by the proteasome.
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Figure 2. Potential sites of action of HIV PIs
The black Xs represent possible sites of action of protease inhibitors. The inhibition of Akt
phosphorylation results in a loss translation of the pro-survival genes and a loss in the inhibitory
phosphorylation of the pro-apoptotic proteins caspase 9 and BAD. p21 and p53 may induce
cell cycle arrest. Inhibition of the proteasome results in the accumulation of unfolded proteins
and the unfolded protein response. To permit cell recovery, a global decrease in protein
synthesis or autophagy may follow.
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