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Review of the Literature Examining the Correlation
Among DNAMicroarray Technologies
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DNA microarray technologies are used in a vari-
ety of biological disciplines. The diversity of plat-
forms and analytical methods employed has
raised concerns over the reliability, reproducibility
and correlation of data produced across the dif-
ferent approaches. Initial investigations (years
2000–2003) found discrepancies in the gene
expression measures produced by different micro-
array technologies. Increasing knowledge and
control of the factors that result in poor correlation
among the technologies has led to much higher
levels of correlation among more recent publica-

tions (years 2004 to present). Here, we review
the studies examining the correlation among
microarray technologies. We find that with im-
provements in the technology (optimization and
standardization of methods, including data analy-
sis) and annotation, analysis across platforms
yields highly correlated and reproducible results.
We suggest several key factors that should be
controlled in comparing across technologies, and
are good microarray practice in general. Envi-
ron. Mol. Mutagen. 48:380–394, 2007.
VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

DNA microarrays are quickly becoming standard tools

in molecular biology, providing a powerful approach for

the analysis of global transcriptional response. Over the

past decade, microarrays have been widely used across

biological disciplines and the number of published studies

using the technology is still increasing (Fig. 1). As a

result, the number of commercial suppliers of microar-

rays, associated reagents, hardware, and software contin-

ues to grow [Kawasaki, 2006; Technology Feature, 2006].

The diversity of microarray technologies and methods

of data analysis have resulted in growing concern over

the relationship among data obtained and published using

different approaches. A number of impressive efforts have

recently been made to develop standards for microarray

experiments including the Minimum Information About a

Microarray Experiment (MIAME) guidelines [Brazma

et al., 2001; http://www.mged.org/Workgroups/MIAME/

miame.html], the External RNA Controls Consortium

(ERCC) [Baker et al., 2005; http://www.cstl.nist.gov/

biotech/Cell&TissueMeasurements/GeneExpression/ERCC.

htm], and the Microarray Quality Control project (MAQC)

[http://www.fda.gov/nctr/science/centers/toxicoinformatics/

maqc/; Shi et al., 2006]. These projects have made signifi-

cant advances toward improving the evaluation of micro-

array data quality and the reproducibility of results among

laboratories and platforms. A large majority of journals

have made submission of microarray data to publicly-

available repositories and adherence to the MIAME stand-

ards compulsory for publication of experiments utilizing DNA

microarrays. Adherence to established standards, along-

side proven reproducibility and correlation within and

between datasets produced by different microarray plat-

forms, is essential for the usefulness of such databases.

Furthermore, establishing the correlation and reproducibil-

ity among different microarray technologies is important

for the validation of microarrays as robust, sensitive, and

accurate detectors of differential gene expression.

Over 40 studies have been carried out since 2000 to

evaluate the extent to which data produced by different

microarray technologies correlate. In this review, we sum-

marize the cross-platform studies designed to examine the

correlation of gene expression profiles and differentially

expressed genes among different DNA microarray tech-

nologies. The potential reasons for discrepancies reported

in earlier comparative studies, and the methodological
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changes which led to improved correlations generally

reported in more recent publications are discussed.

A BRIEF OVERVIEWOF TECHNOLOGICAL AND
ANALYTICALCHOICES

Various technical and analytical options are available

for microarray experiments (Fig. 2). These options are

sometimes governed by the selection of microarray plat-

form. For example, a decision to use Affymetrix chips

[http://www.affymetrix.com/; McGall et al., 1996] limits

the choice of scanner, and subsequent steps through to

image analysis, to those supplied by Affymetrix. The

Affymetrix technology uses a combination of oligonucleo-

tide synthesis and photolithography to position specific

oligonucleotide probes in a predetermined spatial orienta-

tion. Each gene is represented by a series of different oli-

gonucleotide probes spanning the coding region of that

gene [Liu et al., 2003]. Each oligonucleotide probe is

paired with a mismatch probe in which the central base in

the sequence has been changed. Therefore, application of

the Affymetrix system is heavily directed by the manufac-

turer’s recommendations. However, for experiments using

microarrays that are spotted on glass microscope slides, a

number of alternatives are available that may contribute

to variation in the data acquired (Fig. 2).

Several comprehensive reviews cover different microar-

ray platforms and approaches [Sevenet and Cussenot,

2003; Hardiman, 2004; Stoughton, 2005; Ahmed, 2006a,b;

Kawasaki, 2006]; readers are directed to these sources for

a more in-depth overview of microarray technologies.

Below, some typical options that can contribute to techni-

cal variation in the gene expression measurements acquired

between different technologies are briefly summarized

(Fig. 2).

Probe choices for microarrays may include amplified

cDNA clones, PCR gene products, or different lengths of

oligonucleotides [Kawasaki, 2006]. Studies examining the

correlation among microarray technologies have focused

primarily on differences between probe types. However,

many other factors contribute to technical variability.

Methods of printing/deposition of probes onto glass slides

include contact-spotting using pins, deposition by ink jet,

or in situ synthesis of oligonucleotides on the slide

[Hughes et al., 2001; Gao et al., 2004]. Slide surfaces

may be coated with different types of matrices that gov-
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Fig. 1. Number of publications retrieved from PubMed* using DNA

microarray technologies. *PubMed search criteria: ‘‘microarray’’ [all

fields] OR ‘‘microarrays’’ [all fields] OR ‘‘genechip’’ [all fields] OR

‘‘genechips’’ [all fields] AND ‘‘dna’’ [all fields] OR ‘‘cdna’’ [all fields]

OR ‘‘complimentary dna’’ [all fields] OR ‘‘oligonucleotides’’ [all fields]

OR ‘‘oligonucleotide’’ [all fields] Limits: XXXX [Publication Date].

Fig. 2. Summary of choices for microarray experiments.
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ern the affinity of probe binding and affect background

fluorescence [Rickman et al., 2003; Sobek et al., 2006].

Target preparation varies and may include different

amounts of starting RNA, amplification, and labeling

methods [Gold et al., 2004; Hardiman, 2004; Schindler

et al., 2005; Singh et al., 2005; Kawasaki, 2006], all of

which contribute to the type and quality of data produced.

In addition, cDNA and several oligonucleotide platforms

allow experiments to be carried out in one or two colors

[Patterson et al., 2006]. Two color experiments may

involve dye-swap, reference RNA, or loop designs [Vin-

ciotti et al., 2005; Patterson et al., 2006]. Hybridization

can be undertaken manually or using automated hybrid-

ization stations; optimization of methods is important to

minimize array variability and hybridization artifacts

[Yauk et al., 2005; Han et al., 2006; Yauk et al., 2006].

The scanner (high or low laser powers) and scanner set-

tings influence background fluorescence, the number of

saturated spots and the number of spots below back-

ground [Shi et al., 2005b; Timlin, 2006], and should be

adjusted to maximize the linear dynamic range. Acquisi-

tion of data from images can be carried out using various

algorithms through different commercial packages. The

final critical steps include applying the appropriate filter-

ing methods, evaluating microarray data quality [Shi

et al., 2004], normalization [Bilban et al., 2002b; Quack-

enbush, 2002], and data analysis [Shi et al., 2005a; Jeff-

ery et al., 2006]. Normalization and detection of differen-

tial gene expression are key to ensuring the accuracy and

reproducibility of data across time, laboratories, and plat-

forms, and are reviewed in detail elsewhere [Bilban et al.,

2002b; Quackenbush, 2002; Armstrong and van de Wiel,

2004; Reimers, 2005; Breitling, 2006]

CORRELATIONAMONGTECHNOLOGIES

Data obtained from different commercially-made and

in-house microarray platforms have been compared in a

large number of studies. Experiments have been carried

out to determine the effective differences in accuracy

(proximity to true value), sensitivity (ability to accurately

detect changes at low concentrations), and specificity (to

hybridize to the correct gene) among the technologies

[Hardiman, 2004; van Bakel and Holstege, 2004; Draghici

et al., 2006]. Intra-platform variability and reproducibility

have been used as measures of the quality of the data pro-

duced for individual platforms. Several of these studies

have been aimed at answering the question ‘‘which plat-

form is the best?’’ The answer to this question is inargu-

ably experiment-specific. A more relevant question is

‘which platforms generate comparable and reproducible

data?’

In the remaining sections, experiments investigating the

reproducibility of data among DNA microarray technolo-

gies and the correlation among these data with respect to

expression profiles and the identification of differentially

expressed genes are reviewed.

EARLY STUDIES: 2000^2003

For the sake of simplicity, the discussion has been sep-

arated into early (years 2000–2003) and later (years 2004

to present) studies. Comparative studies began to change

around 2004 when investigators began to: apply larger

sample sizes, include more microarray platforms, examine

relationships among laboratories, employ more sophisti-

cated bioinformatics approaches, and generally find data-

sets to be more correlated. In addition to being limited in

scope (i.e. comparing only 2–3 technologies or using

small sample sizes), the early studies focused heavily

on the comparison of cDNA microarrays to other tech-

nologies.

Table I summarizes all of the experiments that we iden-

tified that examined cross-platform performance prior to

2004. Of 13 studies, 8 produced results supporting the

reproducibility and concordance of data across different

microarray technologies. These findings should be inter-

preted with caution, as they are based on the authors’

conclusions, and the term ‘‘agree’’ is somewhat ambigu-

ously defined. At a time when expectations for the pros-

pects of DNA microarrays were extremely high, these

negative findings were discouraging. For example, a

widely cited article by Tan et al. [2003] examined gene

expression of technical and biological replicates of RNA

on Codelink (Amersham oligonucleotide), Affymetrix,

and Agilent cDNA arrays. Although internal consistency

was high, Pearson correlation coefficients were moderate

to poor across technologies (0.48–0.59). Similarly, a com-

prehensive investigation of 56 NCI-cell lines using 2

array technologies (Affymetrix and cDNA) showed poor

correlations between the datasets [Kuo et al., 2002].

These findings led researcher to conclude that the general

outlook for comparing across laboratories and platforms

was bleak [Hardiman, 2004]. It was hypothesized that the

discrepancies in these studies arose from intrinsic dif-

ferences in the properties of the arrays, as well as the

processing and analysis of the data. As a result, it was

suggested that data from microarray analyses be inter-

preted with caution.

Subsequent studies revisited both of the datasets

described earlier (an excellent demonstration of the utility

of making microarray data publicly-available) and were

able to reanalyze the data. Reanalysis revealed signifi-

cantly improved correlations, providing insight into the

basis for discrepancies found among the technologies. Shi

et al. [2005a] examined the Tan et al. [2003] data in

more detail and found that intra-platform consistency was

generally low, suggesting that experimental protocols may
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not have been optimized for the array platform used. Fur-

thermore, by applying more appropriate statistical tests

(examining ratios instead of absolute measurements of

gene expression) they were able to significantly increase

the correlation coefficients obtained in comparisons of the

technologies. Shi et al. [2005a] concluded that a combina-

tion of low intra-platform consistency and poor choice of

data analysis procedures were the cause for discordance

among the datasets, rather than inherent technical differ-

ences among the platforms as suggested by Tan et al.

Data produced by microarray hybridization of RNA from

NCI-60 cell lines [Kuo et al., 2002] were re-evaluated by

stringent sequence mapping [Carter et al., 2005] of

matched probes. By redefining probe sets, a substantially

higher level of cross-platform consistency and correlation

was found. The authors concluded that by using probes

targeting overlapping transcript sequence regions a greater

level of concordance can be obtained compared to using

UniGene ID or other sequence-matching approaches. It

should be noted that the study by Kuo et al. was carried

out in two different laboratories using cells cultured inde-

pendently, rather than using the same RNA samples

matched for both platforms. Therefore, real biological

variability will cause differences in the two datasets pro-

duced.

These early studies were key to identifying potential

sources of discrepancies between microarray datasets,

highlighting the need to investigate this issue in more

detail. As microarray technologies, annotation, and techni-

ques for analysis continue to be refined, a number of im-

portant sources of error and data misinterpretation have

been identified in these early studies and are summarized

in subsequent sections.

LATER STUDIES: 2004 TO PRESENT

In 2003, discrepancies in the literature led us to carry

out our own cross-platform evaluation [Yauk et al.,

2004]. Gene expression from three replicates of three dif-

ferent RNA sources (mouse whole lung, mouse lung cell

line, and Stratagene Universal mouse reference RNA)

were evaluated with six different technologies encompass-

ing different reporter systems (short oligonucleotides,

long oligonucleotides, and cDNAs), labeling techniques,

and hybridization protocols. We were unable to match

probes through sequences, because not all platform pro-

viders made sequence information available (probes were

matched by UniGene ID). By applying rigorous filtering

and normalizations, and using an adequate sample size,

we found that the top performing platforms exhibited low

levels of technical variability which resulted in an

increased ability to detect differential expression, and that

biology, rather than technology, accounted for the major-

ity of variation in the data when normalized ratios were

examined. Subsequent studies have confirmed that with

improved technologies, annotations, statistical rigor, and

experimental design, the data from different microarray

platforms are highly comparable.

Table II summarizes the studies identified that exam-

ined the correlation among microarray technologies within

the last 3 years (2004 to present). Among the 32 studies

that we identified, only three concluded that microarray

platforms do not correlate well (<10%). Careful examina-

tion of these studies reveals some potential errors that the

authors may have made in reaching these conclusions.

The remaining studies show a moderate to high level of

correlation among technologies.

Studies With Poor Correlation

Mah et al. [2004] examined RNA expression profiles of

human colonoscopy samples using [33P]dCTP labeling

and hybridization to probes generated from a human

cDNA clone set spotted on nylon filters, compared to data

generated from human Affymetrix HG-U95Av2 chips.

The authors found weak correlations using Spearman rank

order coefficients on normalized signal intensities between

the two systems for sequence-matched probes. Examina-

tion of absolute expression of genes fails to account for

the major role that different probe sequences and location

will play in resulting signal intensity. The same transcript

can produce different signal intensities for different

probes; even over-lapping probe sequences targeting the

same transcript can produce different signal intensities

[Draghici et al., 2006]. More recent studies emphasize

that examination of log ratios rather than expression

intensities will greatly increase the observed correlation

coefficients [Park et al., 2004]. While analyses based on

signal intensities are appropriate for case-control study

designs using a single platform, the use of signal inten-

sities is not appropriate for cross-platform comparisons.

Therefore, the measurement of ratios may have yielded

increased correlation in the Mah et al. analysis.

Severgnini et al. [2006] compared Amersham Codelink

and Affymetrix microarrays through hybridization of four

samples (Human breast cancer cell line MDA-MB-231;

two treated and two untreated samples). The authors car-

ried out a hierarchical cluster analysis on genes matched

by LocusLink IDs on normalized expression levels and

found poor correlation coefficients and clustering. Again,

this negative result likely reflects analysis on normalized

signal intensities rather than on ratios. Investigation of

differentially expressed genes was carried out independ-

ently for both platforms (rather than on the genes in com-

mon only, filtered for poor/saturated/absent genes). The

authors found 105 genes differentially expressed on Affy-

metrix, and 42 on Codelink, 9 of which were found in

common. A more appropriate analysis would have been

to examine differential expression on the filtered set of

Environmental and Molecular Mutagenesis. DOI 10.1002/em
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genes in common only. Therefore, a combination of inap-

propriate statistical analysis and small sample size may

have contributed to the negative findings in this study.

Lastly, [Gwinn et al., 2005] found minimal similarity

between Affymetrix, Amersham Codelink and NCI cDNA

platforms when they analyzed three technical replicates of

a human cell culture exposed to benzo[a]pyrene compared

to three technical replicates of a control sample. We sug-

gest a few potential reasons for low correlations found in

this study. First, probes were generally matched using

gene information provided by the manufacturer. In the lat-

ter part of the study, the authors re-examined their data

and carried out some sequence investigation but the

results were not fully presented and appear to be incon-

clusive. Other potential factors contributing to the poor

correlation observed include: (a) normalizations and anal-

yses were not carried out for all platforms combined, but

were carried out individually within a platform; (b) differ-

ential expression was investigated using a small sample

size (n ¼ 3) for a subtle toxicological effect (e.g., Affy-

metrix only found 23 genes differentially expressed); (c)

signal log ratios (SLR) were arbitrarily defined as differ-

entially expressed if 60.6 (with no measure of variability

or statistic presented), while similarity to the other plat-

form was arbitrarily defined as within 60.2 SLR for the

same gene on another platform; (d) it is unclear what

level of filtering was applied to examine the correlation

among the genes that were in common among the plat-

forms.

Studies With Moderate to High Correlation

Since 2004, the vast majority (29/32) of technical

papers comparing microarray platforms have generated

results that show a moderate to high degree of correlation

among the technologies. Several of these studies have

been very comprehensive encompassing many microarray

platforms analyzed in both one and two colors, employing

different probe types spotted both in-house and commer-

cially, and using data from the same samples analyzed in

several different laboratories. By fine-tuning approaches

and analyses, these studies identified methods to yield

increased correlation among laboratories and platforms.

Below, we present general findings that have resulted in

increasing our understanding of how microarray platforms

relate to each other, and we discuss a few of the more

comprehensive studies.

Several studies have demonstrated that using a

sequence-driven rather than an annotation-driven approach

to analyzing data from different platforms yields

improved correlation among technologies [Mecham et al.,

2004a; Carter et al., 2005; Kuo et al., 2006]. Annotation

of microarray platforms has improved greatly over the

past several years, but errors in annotation will continue

to affect analyses until genomes are completely validated

and curated. In addition to potentially matching incorrect

probes due to errors in annotation, sequence-driven

matching improves correlation by ensuring that probe

pairs are examining similar gene regions. The re-examina-

tion of the NCI cancer cell lines [Carter et al., 2005]

using sequence-driven probe matching, described earlier,

exemplifies the importance of ensuring the appropriate

comparisons of probes/genes are made in cross-platform

analyses. Similarly, Stec et al. [2005] compared platforms

using either UniGene identifiers or by sequence matching

using BLAST alignments. They found higher correlations

when the Affymetrix probe identifiers were sequence-

matched to ensure they fell within the cDNA probes.

Mecham et al. [2004a] also found significantly improved

correlation for Affymetrix compared to cDNA platforms

using sequence matching. Sequence matching eliminates

errors introduced by mis-annotation, and potential discrep-

ancies introduced by probes aligning with multiple family

members or alternative transcripts. Probes targeting re-

gions of a gene in close proximity (e.g. within the same

exon) are more likely to have highly correlated expression

ratios [Canales et al., 2006; Kuo et al., 2006].

A number of the later studies highlight the importance

of removing unreliable data from experiments prior to

analysis, termed filtering. These studies generally found

that probes for genes with strong expression signal tended

to give more highly correlated results than those with

weaker signals [Park et al., 2004; Shippy et al., 2004;

Barnes et al., 2005; Pylatuik and Fobert, 2005; Kuo et al.,

2006]. Signal within the background range is highly vari-

able and contributes to much of the noise observed in

microarray datasets [Bilban et al., 2002a; Park et al.,

2004; Shippy et al., 2004; Draghici et al., 2006; Kuo

et al., 2006]. Most commercially-available image-acquisi-

tion programs now have implemented algorithms to flag

poor quality, low signal, and saturated spots. Filtering

methods applied to microarray datasets prior to analysis

increases the correlation among technologies [Pounds and

Cheng, 2005; Kuo et al., 2006].

Optimization and standardization of protocols ensures

that data produced within a technology is reproducible.

Intra-platform reproducibility is obviously required before

inter-platform relationships can be evaluated. A number

of the later studies concluded that concordance was high

among the best performing laboratories, platforms, or for

commercial compared to in-house microarrays [Jarvinen

et al., 2004; Yauk et al., 2004; Bammler et al., 2005; Iri-

zarry et al., 2005; Wang et al., 2005; Kuo et al., 2006].

These results were likely due to the optimization of proto-

cols within laboratories that routinely use a technology,

technical expertise acquired in laboratories that use the

platform routinely, and increased standardization through

use and development of commercially-available microar-

rays compared to in-house microarrays. Improvements in

methodology, the development of quality control standards
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and references, and the implementation of standards for

data analysis will improve the relationship among data

produced by different microarray platforms [Bammler

et al., 2005].

Recently, a number of large-scale efforts have produced

comprehensive studies evaluating microarray performance

across technologies and laboratories. Members of the

Toxicogenomics Research Consortium [Bammler et al.,

2005] examined data produced by seven laboratories and

12 microarray platforms. Each laboratory was provided

with aliquots of two different RNA samples (one liver

RNA sample and one mixture of tissues). They found that

correlation across platforms and laboratories was gener-

ally poor. However, by implementing standardized proto-

cols for RNA labeling, hybridization, filtering, processing,

data acquisition, and normalization, increased reproduci-

bility was obtained. Unsurprisingly, raw intensity values

correlated poorly. The highest levels of reproducibility

obtained were between laboratories using commercial

arrays and applying standardized protocols. This analysis

yielded median correlation coefficients of 0.87–0.92. The

consortium concluded that the microarray platform has a

large effect on the variability in the data, and standardiza-

tion is required to generate data that are reproducible

across laboratories. However, the group also noted that

reproducibility among platforms was generally very high

when analyses were carried out on biological categories

identified by gene ontology analysis.

Irizarry et al. [2005] examined microarray data pro-

duced by 10 different laboratories from three different

platforms using the same RNA samples. Measurement of

relative expression (e.g. ratios), rather than absolute meas-

ures of gene expression were found to correlate well

among the best performing laboratories. The authors

emphasize the importance of experience and expertise

with a platform before a laboratory can produce accurate

and reproducible data, and that laboratory effect can be a

strong variable (>platform effect). Furthermore, the

authors stress the importance of pre-processing (normal-

ization) before making any cross-platform comparisons.

Kuo et al. [2006] examined correlation among five dif-

ferent platforms encompassing both cDNA and oligo-

nucleotide microarrays, one and two-color hybridizations,

commercial and in-house chips and including results gen-

erated in two different laboratories. They matched probes

at the gene id, gene, and exon level using UniGene,

LocusLink, RefSeq, and RefSeq exon. Data mapped

through probe sequences were more correlated than

through other identifiers. Log ratios showed high correla-

tion (0.63–0.92) for all platforms except academic cDNA

and Compugen. Spot quality filtering had a strong positive

effect on correlation coefficients. Inter-laboratory Pearson

and Spearman correlations for log2 ratios were high

within platforms (0.79 for Mergen; 0.89 for Affymetrix;

0.93 for Amersham). Quantitative RT-PCR was carried

out for 160 genes and agreed well with the microarray

platforms, although RT-PCR had a larger dynamic range.

The authors concluded that with stringent preprocessing

and sequence matching, consistency and reproducibility

among platforms and laboratories was good for highly

expressed genes and variable for genes with lower expres-

sion.

A large scale real-time PCR validation experiment was

conducted by Wang et al. [2006]. The authors used Taq-

Man1 gene expression to evaluate the performance of

Agilent and Applied Biosystems (AB) microarrays for

1375 genes. The authors compared log2 fold-changes and

found that the dynamic range was greatest for RT-PCR,

followed by AB and then Agilent. Despite differences in

the dynamic range, moderate to strong correlations of fold

change were found for AB (R2 ¼ 0.71–0.75) and Agilent

(0.45–0.52). The estimated range of fold changes (in log2
scale) was from �10 to 10 for TaqMan1, �4 to 6 for

AB, and �2 to 2 for Agilent, indicating ratio compression

for microarray platforms. Ratio compression was expected

because of various technical limitations (e.g., narrower

dynamic range, signal saturation, and cross-hybridiza-

tions). In the analysis of differential expression, the

authors noted that sensitivity and specificity were highest

for genes with high and medium expression levels, com-

pared to those with low expression levels.

The MicroArray Quality Control (MAQC) project eval-

uated inter- and intra-platform reproducibility in a series

of papers [Canales et al., 2006; Guo et al., 2006; Patter-

son et al., 2006; Shi et al., 2006; Shippy et al., 2006].

The project was led by US Food and Drug Administration

scientists and involved 137 participants from 51 organiza-

tions. Shi et al. [2006] presented data evaluating five rep-

licates of two distinct, high-quality RNA samples from

four titration pools using seven microarray platforms

(each platform was evaluated at three independent tests

sites). Probe sequences were mapped to the RefSeq

human mRNA database [http://www.ncbi.nlm.nih.gov/

RefSeq/; Pruitt and Maglott, 2001; Pruitt et al., 2005] and

to the AceView database [Thierry-Mieg and Thierry-

Mieg, 2006]. The relative expression between matched

probes was examined. Rank correlations of the log ratios

were in good agreement between all sites, with a median

of 0.87 (lowest was R ¼ 0.69). Generally, differentially

expressed genes showed an overlap of at least 60%, with

many comparisons yielding 80% or more between plat-

forms, and 90% within platforms (between sites). An

average overlap of 89% was found between test sites

using the same platform and 74% across one-color micro-

array platforms. The Affymetrix, Agilent, and Illumina

platforms showed correlation values of 0.90 to TaqMan1

assays, while GE Healthcare and NCI had an average of

0.84. The results were validated using two additional

quantitative gene expression platforms [Canales et al.,

2006] that also showed high concordance. In addition,
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toxicogenomics data generated from rats exposed to aris-

tolochic acid, riddelliine, and comfrey and analyzed using

four different microarray platforms were evaluated [Guo

et al., 2006]. These data showed high concordance in

inter-laboroatory and cross-platform comparisons. The

results of the MAQC project provide strong support for

inter-platform consistency and reproducibility and support

the use of microarray platforms for the quantitative char-

acterization of gene expression.

SUMMARYOF FACTORS LEADINGTO HIGHER
CORRELATIONAMONGTECHNOLOGIES

Later studies resolved many of the issues surrounding

the lack of correlation found in earlier studies. Sources of

error in the early cross-platform microarray experiments

can be divided into problems resulting from the platform

and protocols, and those that result from the experimental

design or method of analysis.

Platform Issues

One of the most important problems that arose in early

studies was incorrect annotation of probes on the various

microarray platforms. For many cDNA platforms,

sequencing of clones from the libraries spotted revealed

that a large number were incorrect or contaminated

[Halgren et al., 2001; Taylor et al., 2001; Kothapalli

et al., 2002; Jarvinen et al., 2004; Kuo et al., 2006].

Errors in annotation were not exclusive to cDNA plat-

forms. For example, Mecham et al. [2004b] examined

mammalian Affymetrix microarrays and found that

greater than 19% of the probes on each platform did not

correspond to their appropriate mRNA reference

sequence. Dai et al. [2005] investigated Affymetrix probe

information and concluded that the original probe set defi-

nitions were inaccurate, and many previous conclusions

derived from GeneChip analyses could be significantly

flawed. Harbig et al. [2005] re-annotated the Affymetrix

U133 plus 2.0 arrays using BLAST matching against

documented and postulated human transcripts. They rede-

fined *37% of the probes and identified more than 5,000

probesets that detected multiple transcripts. In addition to

ensuring that probes detect the correct gene, with

improvements in annotation and subsequent probe refine-

ment, fewer probes on commercial arrays will hybridize

to multiple splice variants, show cross-hybridization to

other genes in the same family and hybridize to nonspe-

cific probes. Therefore, as a result of errors in annotation,

early studies that matched genes based on the annotation

provided by the manufacturer, or by the cDNA clone set

provider, were examining a large portion of incorrectly

matched gene sets.

Errors in annotation continue to be an issue that affects

every microarray technology. However, major improve-

ments have been made as more sequence information is

curated, validated, and annotated in high-quality databases

such as Refseq [http://www.ncbi.nlm.nih.gov/RefSeq/]. In

addition, in early studies probe sequence was not avail-

able and users had to trust manufacturer gene identifica-

tion. Today, a large portion of microarray platform pro-

viders make all probe sequence information available; in

addition, MIAME guidelines require submission of probe

sequences for each spot on a microarray [http://www.

mged.org/Workgroups/MIAME/miame.html]. Cross-check-

ing probe sequence annotation is an important first step for

validation of expression changes for any gene.

Other platform issues that relate to potential discrepan-

cies in cross-platform comparisons result from sub-opti-

mal printing, labeling, hybridizing, and washing methods

in early studies [Kuo et al., 2006]. In general, several of

the early studies suffered from lack of technical expertise

with microarrays and more specifically, with one of the

platforms in their comparison. Poor quality data will be

generated when inexperienced technicians carry out the

hybridization and/or sub-optimal protocols are used. The

realization and control of the effect of environmental

influences, such as ozone [Fare et al., 2003] on the fluo-

rescent chemicals used, have also resulted in improved

acquisition of data. Finally, the general quality of printing

of both cDNA and oligonucleotide microarrays has

improved significantly over the past 5 years.

In summary, methodological and platform improve-

ments have been made over the past several years that

have resulted in a decrease in the observed technical vari-

ability and resulted in superior performance. The result

has been a general increase in the measured correlation

among DNA microarray technologies.

Experimental Design and Analysis Issues

Many of the studies described in Table I suffer from

flaws in experimental design. In some studies, data were

generated in different laboratories at different times using

different samples [Kuo et al., 2002]. To directly evaluate

the correlation among technologies, the exact same RNA

sample should be used across all experiments [Kawasaki,

2006]. Biological variability and tissue heterogeneity will

significantly contribute to variance between the datasets. In

addition, many of the early studies did not apply a large

enough sample size, including both technical and biological

replicates, to arrive at the conclusions drawn. Lastly, to

investigate differential expression, samples that are suffi-

ciently distinct should be examined [Kuo et al., 2006].

An important pre-processing step involves filtering

microarray image data for poor quality, saturated, and

low-signal spots. Poor quality spots and saturated signal

do not accurately represent the expression of a gene. As

discussed earlier, signals near background and reaching

saturation do not provide accurate or reliable measures of
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gene expression. Stringent filtering methods were not rou-

tinely applied to data in early microarray studies and

would have greatly improved the quality of these datasets.

Appropriate statistical tools, including normalization,

clustering, and identification of differentially expressed

genes need to be applied in any microarray experiment.

Microarray normalizations and statistical analyses have

changed over time and current methods are superior to

those applied in the early studies. In addition, microarrays

should be normalized both within and between the tech-

nologies, incorporating a normalization approach across

all of the data in the experiment [Kuo et al., 2006]. A

major finding of the MAQC consortium was that the cor-

rect tools need to be applied to identify differentially

expressed genes [Guo et al., 2006]. Surprisingly, the

authors found that traditional parametric analyses and

other microarray-tailored analyses may not derive compa-

rable gene lists from alternative technologies. The authors

suggest that gene lists generated by fold-change ranking

were more reproducible than those using other methods.

More work needs to be done to determine the most accu-

rate and reproducible methods for deriving lists of differ-

entially expressed genes from different technologies.

Early studies examining overall expression level of

genes ignored the influence of probe position and sequence

on the derived signal intensity [Draghici et al., 2006].

Improved correlations were generated when relative ratios

were compared rather than absolute measures of gene

expression in the later studies. Therefore, the measurement

of ratios (to a control or reference sample) rather than sig-

nal intensities is now generally applied in cross-platform

analyses. In addition, microarrays do not provide quantita-

tive measures, and are therefore not very precise or accu-

rate. As a result, absolute magnitude of a change should

not be compared across platforms. Rather, emphasis should

be placed on the direction of change [Kawasaki, 2006].

All of the above factors contributed to the discrepancies

observed in the first studies examining the correlation of

expression profiles across DNA microarray technologies.

Subsequent changes in methods yielded improved correla-

tion metrics, as described in the remaining sections.

CONCLUSIONS

In general, microarray platforms and associated tech-

nologies and tools have improved greatly over the past

decade. As potential sources of error and reasons for dis-

crepancies between technologies are uncovered, the rela-

tionship among gene expression data produced using the

different platforms is becoming more clear. Some key

points include: (a) probe sequence will affect measured

intensity; (b) relative ratios are more comparable than

absolute measures; (c) annotation problems still compli-

cate analysis and genes should be evaluated at the

sequence level; (d) stringent filtering leads to more repro-

ducible and comparable measurement of gene expression;

(e) normalization and method of data analysis will affect

the derived gene expression profiles; (f) validation using

an alternative method is required. The laboratory and plat-

form effect remains a major issue and comparisons need

to be drawn carefully. Ensuring the appropriate ex-

perimental design before making comparisons between

datasets is critical to acquiring meaningful correlations.

Several of the above points (in particular (d), (e), and (f))

are good microarray practice in general, and should apply

to any experiments employing this technology.

The development of standardized protocols for every-

thing from RNA labeling to data handling will also

improve the measured correlation between platforms and

laboratories. Increased automation will lead to lower tech-

nical variability and result in higher correlation among

technologies [Yauk et al., 2005]. The development of

internal and external controls will facilitate evaluation of

data quality [van Bakel and Holstege, 2004; Yauk et al.,

2006]. Implementation of standards and references will lead

to a better understanding of the relationship among the gene

expression measures from different technologies [Andersen

and Foy, 2005; Kawasaki, 2006]. Decreasing intra-platform

variability is an important first step towards ensuring that

microarrays produce robust and reproducible data.

In conclusion, the vast majority of papers published

over the past several years support a high degree of corre-

lation among microarray technologies. Evaluation of gene

expression using alternative approaches (e.g. quantitative

real-time PCR) also supports the conclusion that microar-

rays provide reliable and reproducible measures of tran-

script levels and profiles. When data are acquired and

handled correctly measures of gene expression are highly

correlated. This review provides a framework identifying

several key features of general good microarray practice,

as well as identifying critical mechanisms to ensure that

data produced by different microarray technologies are

comparable.
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