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Abstract
Schizophrenia is a highly debilitating mental disorder that affects −1% of the general population, yet
it continues to be poorly understood. Recent studies have identified variations in several genes that
are associated with this disorder in diverse populations, including those that encode neuregulin 1
(NRG1) and its receptor ErbB4. The past few years have witnessed exciting progress in our
knowledge of NRG1 and ErbB4 functions and the biological basis of the increased risk for
schizophrenia that is potentially conferred by polymorphisms in the two genes. An improved
understanding of the mechanisms by which altered function of NRG1 and ErbB4 contributes to
schizophrenia might eventually lead to the development of more effective therapeutics.

Schizophrenia is a severe and disabling mental disorder that is characterized by chronic positive
symptoms (hallucinations, delusions and thought disorders), negative symptoms (social
withdrawal, apathy and emotional blunting) and cognitive deficits. Although schizophrenia is
a highly prevalent CNS disorder, it continues to be one of the least understood, primarily owing
to its lack of pathological hallmarks. Most, if not all, commonly prescribed antipsychotics are
anti-dopaminergic, and their use has been based on the ‘classical’ dopamine hypothesis, which
posits that it is the hyperactivity of dopaminergic transmission that causes positive
symptoms1. However, current antipsychotics are only modestly effective treatments for the
cognitive dysfunction and negative symptoms that are associated with schizophrenia.
Moreover, studies on the mechanism of action of antipsychotics have not been particularly
informative about the pathogenesis of the disease2.

Recent genetic studies have provided insight into the possible aetiological mechanisms of this
devastating disorder. Schizophrenia has a significant genetic component, and several genes
have been associated with the disorder in diverse populations3. In particular, the identification
of polymorphisms in the genes that encode neuregulin 1 (NRG1) and its receptor ErbB4 has
provided a useful starting point from which to better dissect the pathogenic mechanisms of
schizophrenia. The past few years have witnessed major progress in our understanding of
NRG1 function in neurodevelopment, neurotransmission and synaptic plasticity and of the
potential pathological basis of the increased risk that is conferred by polymorphisms in
NRG1 and ERBB4. In this Review we briefly discuss the basic signalling machinery of NRG1,
review recent findings on the roles of NRG1 and ErbB signalling during development and
synaptic plasticity, and explore the implications for the pathophysiology of schizophrenia.
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NRG1 and ErbB4 signalling
NRG1

NRG1 is a trophic factor that contains an epidermal growth factor (EGF)-like domain that
signals by stimulating ErbB receptor tyrosine kinases. It belongs to a family of growth factors
that are encoded by four individual genes (NRG1−4), of which NRG1 is the best-characterized.
Presumably owing to the use of distinct 5' flanking regulatory elements and alternative splicing,
NRG1 generates six types of protein (I−VI) and at least 31 isoforms (based on analysis of
human expressed sequence tags4, 5, 6, 7, 8) (Fig. 1a); these isoforms include Neu
differentiation factor (NDF), heregulin, glial growth factor (GGF) and acetylcholine-receptor-
inducing activity (ARIA)9, 10, 11, 12, 13, 14, 15. Each of the protein types has a distinct amino-
terminal region. The EGF-like domain is located in the membrane-proximal region of the
extracellular domain that is necessary and sufficient for activation of the ErbB receptor tyrosine
kinases. NRG1 isoforms differ in their levels and patterns of expression in various tissues,
including in the brain7, 16. Mice that carry mutations that inactivate particular isoforms show
distinct changes in neural development7, 17, 18, suggesting that the different NRG1 isoforms
have different functions. Interestingly, some NRG1 isoforms are abnormally expressed in
patients with schizophrenia.

Most NRG1 isoforms are synthesized as membrane-anchored precursors, called pro-NRG1s,
with the EGF domain positioned outside of the cell (Fig. 1b). Pro-NRG1s undergo proteolytic
cleavage at the juxtamembrane region that lies on the carboxy-terminal side of the EGF-like
domain. This leads to the release of diffusible, mature NRG1, except in the case of Type III
NRG1. The cleavage is catalysed by three type I transmembrane proteases: tumour necrosis
factor-α converting enzyme (TACE, also known as ADAM17)19, 20, β-site of amyloid
precursor protein cleaving enzyme (BACE, also known as memapsin 2)21, 22 and meltrin beta
(also known as ADAM19)23. Some NRG1 isoforms are synthesized without a transmembrane
domain and are thus directly released into the extracellular space5. The expression and
processing of pro-NRG1 are tightly regulated both temporally and spatially, as well as by
neuronal activity24, 25, 26, 27.

ErbB receptor tyrosine kinases
NRG1 acts by stimulating a family of single-transmembrane receptor tyrosine kinases called
ErbB proteins28. ErbB proteins have homology with the EGF receptor (EGFR, also known as
ErbB1) (Fig. 2). ErbB4 is the only autonomous NRG1-specific ErbB that can both interact
with the ligand and become activated by it as a tyrosine kinase. ErbB2, by contrast, functions
as a co-receptor by forming heterodimers with other, ligand-bound ErbBs29. ErbB3 can bind
to NRG1, but its homodimers are catalytically inactive, indicating that its kinase function is
impaired30. EGFR does not bind to NRG1, but it can form heterodimers with ErbB4 (see
below). Among the ErbB proteins, ErbB4 is the best-characterized for its function in the CNS.
There is no evidence that ERBB2 and ERBB3 are susceptibility genes for schizophrenia and,
unlike Erbb4-mutant mice, mice that carried mutations in Erbb2 and Erbb3 did not produce
behaviours that were characteristic of schizophrenia31. Thus, we review NRG1 signalling and
function with a focus on ErbB4.

Canonical forward signalling
In canonical forward signalling, NRG1-induced ErbB dimerization activates the ErbB kinase
domain, resulting in auto- and trans-phosphorylation of the intracellular domains. This process
seems to require ErbB endocytosis32, 33, 34. The phosphorylated tyrosine residues serve as
docking sites for phosphopeptide-binding adaptor proteins or enzymes (Fig. 2). The Raf–
MEK–ERK and PI3K–Akt–S6K pathways are frequently activated by the NRG1-induced
stimulation of ErbB receptor homo- or heterodimers (Fig. 2). Other downstream kinases
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include c-Abl, JNK, CDK5, Fyn and Pyk2 (Refs 35,36,37,38). Similar to NRG1 transcripts,
ERBB4 transcripts can be alternatively spliced to generate four ErbB4 isoforms that trigger
distinct signalling cascades (Fig. 3). Ultimately, NRG1 activates specific transcriptional and
translational programmes and thus has various long-term effects.

NRG1 signalling is mediated by heterodimers of ErbB2–ErbB3, ErbB2–ErbB4 and ErbB3–
ErbB4 and by the homodimer ErbB4–ErbB4 (Fig. 2). ErbB4 can also form a heterodimer with
EGFR. NRG1 stimulation can thus mediate signalling pathways that are typically associated
with the EGFR, including the activation of Src family kinases, PLCγ, JNK and Abl37.
However, the functional significance of ErbB4–EGFR heterodimers in the CNS remains
unclear.

Non-canonical forward signalling
In non-canonical forward signalling, the juxtamembrane-a (JMa) isoform of ErbB4 (Fig. 3) is
first cleaved by TACE to release a soluble extracellular peptide that contains the NRG1 binding
site (ecto-ErbB4) (Fig. 4). The remaining membrane-anchored 80 kDa fragment (that is,
ErbB4-CTF) is further cleaved in its transmembrane domain by presenilin-dependent γ-
secretase to release the ErbB4 intracellular domain (ErbB4-ICD)39, 40, which has been shown
to translocate to the nucleus and to regulate transcription41 (Fig. 4). Interestingly, ErbB4
isoforms exhibit distinct tissue-specific and brain-region-specific patterns of expression.
Moreover, there is a reduction of JMa ErbB4 in neuronal precursor cells at late stages of
embryonic development, providing a potential mechanism for late-onset astrogenesis41, 42.

NRG1–ErbB4 interactions also mediate both short- and long-range attraction for tangentially
migrating interneurons: ErbB4 is expressed in a subpopulation of interneurons that migrate
tangentially towards the cortex through a permissive corridor that expresses Type III NRG1
(Refs 58,59). Furthermore, the migration of interneurons from the medial ganglionic eminence
towards the developing cortex might be mediated by a diffusible source of immunoglobulin
(Ig)-domain-containing Type I or Type II NRG1. Loss of ErbB4 perturbs interneuron
migration, leading to an altered number of GABAergic interneurons in the postnatal
cortex59 (Fig. 5b).

In the adult rodent brain, interneurons in the olfactory bulb are replaced by neural progenitor
cells that migrate into the bulb from the subventricular zone through the rostral migratory
stream60. This process is in part regulated by ErbB4 that is expressed in neuroblasts in the
subventricular zone and in the rostral migratory stream, as Erbb4-deficient mice exhibit altered
neuroblast chain organization and migration as well as deficits in the placement and
differentiation of olfactory bulb interneurons61.

Axon guidance
Recombinant NRG1 stimulates neurite outgrowth in multiple populations of primary neurons,
including hippocampal neurons62, retinal neurons63, cerebellar granule cells64 and thalamic
neurons65. In addition, NRG–ErbB-signalling-induced neurite outgrowth has been observed
in neural cell lines66, 67, 68. Owing to the embryonic lethality of deleting the Nrg1 gene, the
exact function of NRG1 in axon guidance is unclear18, 51, 52.

A recent study provided evidence that the thalamocortical axon (TCA) projection is regulated
by NRG1 and ErbB4 (Ref. 65) (Fig. 5b). TCAs convey sensory and motor inputs to the cerebral
cortex. They originate in the dorsal thalamus, run rostrally towards the telencephalon, make a
sharp turn in a dorsal direction to enter the mantle region of the medial ganglionic eminence,
and then advance through the striatum to finally reach the developing cortex69. TCA
development depends on the migration of a population of lateral-ganglionic-eminence-derived
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interneurons towards the diencephalon, where the neurons form a permissive corridor for later-
arriving TCAs. GABAergic neurons (or corridor cells) between the medial ganglionic
eminence and the globus pallidus express cysteine-rich-domain-containing NRG1 (CRD-
NRG1), which is thought to serve as a permissive cue that activates ErbB4 in TCAs, allowing
growth into the developing telencephalon. In addition, diffusible Ig-NRG1 in the ventral and
lateral pallidum serves as a long-range attractant that facilitates TCA projection through the
dorsal striatum and into the cortex65. These observations demonstrate that the two isoforms
of NRG1 cooperate in the guidance of TCAs.

Glial cell development, axon myelination and axon ensheathment
In the nervous system, specialized glial cells (Schwann cells in the PNS and oligodendrocytes
in the CNS) extend plasma-membrane processes that wrap axons with a multilamellar
membranous myelin sheath. Myelination increases the conduction velocity of action potentials
and is a tightly controlled developmental process. Type III NRG1 has emerged as a key axon-
derived regulator at virtually every stage of Schwann cell development70, 71, 72, 73, 74 (Fig.
5c).

NRG1 induces the commitment of neural crest cells to the gliogenic fate75, 76 and promotes
their proliferation15, 51, 57, 77, 78, 79 and migration along axons51, 80. It also promotes
Schwann cell proliferation and differentiation79, 81, 82. Disrupting NRG1 signalling by
ablating all NRG1 isoforms, the Type III isoform or one of its receptors (ErbB2 and ErbB3)
leads to an almost complete loss of Schwann cells and the sensory and motor neurons that they
support49, 52, 71, 83, 84, 85. Recent studies have suggested that the level of Type III NRG1
in the axon is a key instructive signal for myelination72. Small axons (usually ones that are
less than 1 micrometre in diameter) contain insufficient amounts of NRG1 to induce Schwann
cell myelination and, consequently, they become ensheathed but remain unmyelinated,
whereas myelinated axons are usually large and express higher levels of NRG1 (Refs 73,74)
(Fig. 5c). Whether NRG1 signalling affects internode length or axonal calibre awaits further
investigation. In one study, NRG1 signalling was implicated in the elaboration of myelin
thickness and internodal length, as well as in determining the axonal calibre of myelinating
Schwann cells86. However, heterozygous Nrg1+/− mice did not display an abnormal axonal
size distribution, although they did have significant hypomyelination73. Conversely, for non-
myelinating Schwann cells NRG1 serves as a pro-survival signal but inhibits proliferation87.

The role of NRG1 in myelination in the CNS has not been well-characterized. NRG1 is thought
to serve as an axon-derived signal for oligodendrocyte development (Fig. 5d). In vitro studies
showed that NRG1 promotes oligodendrocyte proliferation and survival88, 89, 90, 91. NRG1
is expressed in the subventricular zone of the rat brain at the critical time for oligodendrocyte
differentiation, and it enhances the development of oligodendrocytes from bipotential (O2A)
glial progenitor cells91. Neural tube explants prepared from Nrg1-knockout mice failed to
produce oligodendrocytes in vitro; this effect could be rescued by exogenous NRG1 (Ref.
92). Moreover, disruption of NRG1 signalling suppressed oligodendrocyte differentiation from
progenitor cells93. Furthermore, mice that expressed DN-ErbB4 showed reduced myelin
thickness and a slower conduction velocity in their CNS axons compared with wild-type
mice94. However, the reduction in ErbB signalling did not alter the number of myelinated and
unmyelinated axons in the optic nerve and the corpus callosum, suggesting that NRG1 is
required for the terminal differentiation of oligodendrocytes. This notion is supported by
studies of Erbb2-null mice in which oligodendrocyte development is halted at the pre-
oligodendroblast stage95. Although ErbB3 is expressed in oligodendrocytes, it is dispensable
for their development96, presumably because of expression of autonomous ErbB4.
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Synapse formation
NRG1 signalling also has a role in synapse formation. Indeed, ARIA (an Ig-domain-containing
NRG1) was identified and purified on the basis of its ability to stimulate the synthesis of the
acetylcholine receptor (AChR)11, 12. Furthermore, inhibition of ErbB kinase activity or of its
downstream kinases ERK, JNK and CDK5 attenuates NRG1-induced expression of AChR in
muscle cells35, 36, 97, 98, 99, 100. Nrg1 heterozygous-mutant mice exhibited a decreased
postsynaptic AChR density and a reduced reliability of neuromuscular transmission101.
However, conditional-mutant mice lacking both ErbB2 and ErbB4 in their skeletal muscle form
neuromuscular junctions that are structurally and functionally normal in many respects102.
These data indicate that the NRG1–ErbB signalling pathway in muscle might be dispensable
for postsynaptic development. Alternatively, NRG1 might signal to muscle cells indirectly
through Schwann cells to regulate the formation of neuromuscular junctions51, 85, 103, 104
(Fig. 5e). In addition, Type I and Type II but not Type III NRG1s are required for
proprioceptive-afferent-evoked induction of muscle spindle differentiation105.

In the CNS, Type III NRG1 influences the expression level of neuronal AChRs, whereas Type
I and Type II isoforms alter the expression of GABAA receptors64, 106, 107, 108. Alterations
in the levels and profiles of various glutamate receptors (NMDA (N-methyl-D-aspartate) and
AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors) have been
associated with signalling stimulated by Type I, Type II and Type III isoforms38, 109.
Nrg1+/− mice show a decrease in the number of functional NMDA receptors in their
forebrain110. Therefore, there might be differential regulation of glutamate receptors
depending on the isoforms that are expressed.

Recently, postsynaptic ErbB4 signalling has been shown to control the activity-dependent
maturation of excitatory synapses111: synaptic activity triggers NRG1–ErbB4 signalling,
which recruits or stabilizes ErbB4 at the synapse in a PSD95-dependent manner and stabilizes
synaptic AMPA receptors. Interruption of NRG1–ErbB4 signalling causes the destabilization
of synaptic AMPA receptors and spine structure, leading to the impairment of plasticity and,
eventually, to the loss of spines and NMDA receptors.

NRG1 in synaptic plasticity and neuronal survival
NRG1 and ErbB4 are expressed in multiple regions in the adult brain58, 112, 113. Notably,
the expression of NRG1 isoforms seems to be lamina-specific and largely non-overlapping in
the cortex: Type I and Type II isoforms are expressed in layers 2, 3 and 6b; Type III isoforms
are expressed in layer 5. Type I, Type II and Type III isoforms are also all expressed in the
reticular nucleus of the thalamus, in the piriform cortex and throughout the hippocampus. By
contrast, ErbB4 transcripts are detectable in cortical layers 2−6b and are present at high levels
in regions where interneurons are enriched, including the medial habenula, the reticular nucleus
of the thalamus and in the intercalated masses of the amygdala58, 112, 113. These findings
suggest additional functions of NRG1–ErbB4 signalling in the mature nervous system. Indeed,
NRG1 regulates both excitatory and inhibitory synaptic transmission in the adult brain. These
observations are exciting because abnormal neurotransmission and/or synaptic plasticity have
been observed in both glutamatergic and GABAergic pathways in the schizophrenic
brain114, 115, 116, 117.

Short-term plasticity: glutamatergic transmission
ErbB4 interacts and co-localizes with PSD95, a postsynaptic scaffold protein that is essential
for the assembly and function of glutamatergic synapses118, 119. This interaction enhances
NRG-dependent intracellular signalling118. Further studies have indicated that ErbB4 is
localized in anatomically defined PSDs in the brain120 (Fig. 6a). The targeting of ErbB4 to
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the PSD suggested that NRG1 might have a role in synaptic transmission or plasticity at
excitatory synapses. Indeed, in collaboration with Salter and colleagues, we showed that bath
application of NRG1 blocked tetanus-induced long-term potentiation (LTP) at Schaffer
collateral/CA1 synapses in hippocampal slices within 20 minutes118, suggesting that protein
synthesis might not be involved. The effect of NRG1 on LTP requires ErbB4, as both
pharmacological inhibition and genetic ablation of ErbB4 prevented it121. When NRG1 was
applied soon after LTP induction by theta-burst stimulation, it had a depotentiating effect in
the hippocampus122. However, this effect was lost if NRG1 was added 50 min after
induction122. These observations are in good agreement with the notion that NRG1–ErbB4
signalling suppresses both the induction and the expression of LTP.

Studies of Nrg1(ΔEGF)+/− mice, which have a heterozygous deletion of the NRG1 EGF
domain, suggest that the effect of NRG1 on LTP depends on the level of endogenous NRG1
(Ref. 38). Theta-burst-induced but not tetanus-induced LTP was deficient in hippocampal
slices of adult mutant mice, suggesting that developmental disruption of NRG1 signalling
impairs neurotransmission in adult animals. Intriguingly, at low doses NRG1 increased both
tetanus- and theta-burst-induced LTP in hippocampal slices from adult Nrg1(ΔEGF)+/− mice,
but higher doses of NRG1 suppressed LTP38. These observations suggest that the regulation
of synaptic plasticity by NRG1 might depend on an initial NRG1 activity that is controlled by
local concentrations of NRG1 isoforms, levels of ErbB kinases and neuronal activity that
regulates NRG1 expression. An ‘inverted-U model’ has been proposed that might explain why
both low and high levels of NRG1–ErbB activity could impair synaptic function123.

The mechanism by which NRG1 regulates LTP remains unclear. Basal synaptic transmission
at the Schaffer collateral/CA1 synapses in hippocampal slices from adult mice was not affected
by bath application of NRG1 (Refs 38,118,122,124), by acute inhibition of ErbB4 (Ref. 121)
or by Erbb4−/− and Nrg1+/− mutation38, 121. NRG1 does not alter paired-pulse facilitation
ratios118, 121, 122, 124, suggesting that NRG1 has no effect on short-term plasticity and acts
through a postsynaptic mechanism. Moreover, the effect of NRG1 on LTP is observed in the
presence of the GABAA-receptor blockers bicuculine and picrotoxin38, 121, 122 and thus
cannot be explained by changes in GABA transmission (see below). A recent study reported
that NRG1 depression of LTP at CA1 synapses is independent of GABAergic inhibition124.
The activity of NMDA receptors is subject to modulation by tyrosine phosphorylation125,
126, 127, but the NRG1-induced suppression of LTP could not be attributed to an effect on
basal NMDA currents because NRG1 did not alter basal NMDA-receptor-mediated synaptic
responses in hippocampal slices118, 122, 124. These results might suggest that NRG1–ErbB4
signalling acts at a point downstream of NMDA receptor stimulation. Intriguingly, NRG1 has
been shown to downregulate AMPA receptor currents and reduce surface glutamate-
receptor-1-containing AMPA receptors in dissociated hippocampal neurons122.

Valuable insight has been provided by studies that used loss-of-function approaches. In the
hippocampus of Nrg1(ΔTM)+/− (a heterozygous deletion of the NRG1 transmembrane domain)
and Erbb4−/− mice, the expression of NMDA receptors is decreased and Tyr 1472 of the NMDA
receptor subunit NR2B, a site that is key to NMDA receptors’ channel property, is
hypophosphorylated38. Inhibition of NRG1–ErbB4 signalling in hippocampal slices from
postnatal mice destabilizes synaptic AMPA receptors and leads to the loss of synaptic NMDA
currents and spines111. Tyrosine phosphorylation of NR2B was reduced in the hippocampus
of Nrg1(ΔTM)+/− and Erbb4−/− mice38, but tyrosine phosphorylation of the NR1, NR2A and
NR2B subunits was not changed in NRG1-treated neurons under conditions in which NMDA
currents were inhibited32. Therefore, the question of whether these mechanisms contribute to
the rapid NRG1 regulation of synaptic transmission or synaptic plasticity warrants further
investigation. The reduction in NMDA receptor levels in the hippocampus of the mutant
mice38 is unlikely to occur after brief NRG1 stimulation that suppresses LTP.
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It is worth pointing out that the regulation of neurotransmission by NRG1 might vary between
brain regions. For example, NRG1 administration decreased NMDA-receptor-mediated
excitatory postsynaptic currents in slices of prefrontal cortex (PFC), an area in which altered
activity has been implicated in schizophrenia, and reduced whole-cell NMDA receptor currents
in acutely isolated PFC pyramidal neurons32 by elevating intracellular Ca2+ and stimulating
ERK. This resulted in enhanced actin depolymerization and subsequent internalization of
NMDA receptors32. Moreover, NRG1 depressed entorhinal CA1 synaptic transmission but
increased the dentate field excitatory-postsynaptic-potential response to entorhinal cortical
stimulation in anaesthetized rats128. These observations indicate that the role of NRG1 in
regulating synaptic plasticity might be more complex than was previously thought. More
studies are needed to figure out whether the reported differential effects were due to variation
in NRG1 (isoforms, timing and local concentration), to the activation of other ErbB kinases,
to variation in the age of the animals from which brain slices were cultured and/or to other
experimental particulars129.

Short-term plasticity: GABAergic transmission
Cognitive processes such as working memory and executive function are mediated by the PFC.
The functions of the PFC are executed by pyramidal neurons, and the activity of these neurons
is intricately controlled by inhibitory and excitatory synaptic inputs. Abnormal GABAergic
and glutamatergic transmission in this area has been implicated in schizophrenia and is thought
to contribute to the cognitive deficits that are associated with the disorder115. Despite the fact
that ErbB4 is prominently expressed in interneurons113, 118, most studies have focused on
its role in pyramidal cells. We showed that there was ErbB4 immunoreactivity at the terminals
of GABAergic neurons that seemed to innervate pyramidal neurons in the PFC112 (Fig. 6b).
Biochemical and electrophysiological studies have shown that exogenous NRG1 stimulates
GABA release in response to depolarization, with no discernible effect on basal release112.
This effect of NRG1 was blocked by an ErbB4 inhibitor and did not occur in cortical slices
from Erbb4-mutant mice. Intriguingly, treatment with ecto-ErbB4 or inhibition of NRG1–
ErbB4 signalling attenuated activity-dependent GABA release, indicating that GABA
transmission is determined by the level of NRG1–ErbB4 signalling112.

Glutamatergic activity is known to increase GABAergic transmission130; it is therefore
possible that the NRG1 regulation of evoked GABA release might be mediated by a
glutamatergic mechanism. However, the NRG1-mediated enhancement of GABA release was
not attenuated by inhibitors of NMDA and AMPA receptors112. Therefore, it is likely that
NRG1 regulates GABA release by directly activating ErbB4 receptors on presynaptic
terminals. This notion is supported by the observation that NRG1 increases depolarization-
evoked GABA release from synaptosomes, which are isolated from any neural networks, and
decreases paired-pulse ratios of evoked inhibitory postsynaptic potentials (IPSCs) in response
to two consecutive stimulations, suggesting that NRG1 might facilitate vesicle release that is
evoked by neuronal activation112. These results identify a novel function for NRG1–ErbB4
signalling: NRG1, through activity-dependent GABA release, regulates signal integration by
pyramidal neurons. The final output of pyramidal neurons depends on glutamatergic and
GABAergic inputs that are both regulated by NRG1. This function of NRG1 could have
implications for working-memory deficits in patients with schizophrenia and in people with
neurological disorders such as epilepsy112 (Fig. 6c).

Long-term plasticity
It is widely accepted that long-term plasticity, such as late-phase LTP, requires new protein
synthesis. There is evidence to support the notion that NRG1 regulates long-term plasticity in
the brain. First, NRG1 has been shown to stimulate the expression of receptors for key
neurotransmitters, including glutamate, GABA and ACh64, 106, 107, 108, 109, 131; it could
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thus potentially regulate excitatory and/or inhibitory neurotransmission. Importantly, protein
synthesis is necessary for the NRG1-mediated increase of GABA-induced currents in
cerebellar granule cells64, the decrease of miniature IPSC amplitudes in CA1 hippocampal
neurons108 and the increase in the peak amplitude of the ACh-induced current in hippocampal
GABAergic neurons106. In addition, NRG1 stimulates the expression of Ca2+-activated K+

channels in parasympathetic neurons132, 133. Considering the distinct synaptic localization
of ErbB4, it is tempting to speculate that NRG1 might regulate local protein synthesis at
synapses. Finally, expression and processing of NRG1 are regulated by neuronal activity24,
25, 26, 27, so the increased neurotransmission that is induced by NRG1 and the subsequent
production of more NRG1 are likely to contribute to long-term synaptic plasticity.

NRG1 and ErbB signalling in neuronal survival
In vitro studies indicate that NRG1 can be neurotrophic and neuroprotective for cortical
neurons134, motor neurons135, dopaminergic neurons136, cochlear sensory neurons137 and
PC12 cells138; it also protects neurons following ischaemia139, 140, 141. How this effect
relates to schizophrenia awaits further investigation.

NRG1 and ErbB4 as susceptibility genes
Mutations in NRG1 and ERBB4 that are associated with schizophrenia

Schizophrenia has a strong genetic component, and several susceptibility genes for
schizophrenia have been identified3. Meta-analyses of whole-genome linkage scans identified
8p as a susceptibility locus for the disorder142, 143. Extensive fine-mapping of the 8p locus
and haplotype-association analysis of affected families in Iceland narrowed the region to 8p12
−8p21, and NRG1, which lies in this region, was identified as a candidate gene for
schizophrenia110 (Fig. 7a). The original ‘core at-risk haplotype’ (hereafter referred to as the
‘deCODE haplotype’) consisted of five single-nucleotide polymorphisms (SNPs)
(SNP8NRG221132, SNP8NRG221533, SNP8NRG241930, SNP8NRG243177 and
SNP8NRG433E1006) and two microsatellites (478B14−848 and 420M9−1395) in a region
spanning the 5' end of NRG1 and extending into the second intron. The association of
SNP8NRG221533 and two other SNPs, rs3924999 and rs2954041, in NRG1 was soon reported
in an independent study of Chinese Han schizophrenia family trios (consisting of the father,
the mother and the affected offspring)144. The genetic association between NRG1 and
schizophrenia has been confirmed in follow-up studies in multiple populations in Scotland,
Ireland, the United Kingdom, the Netherlands, Korea and China145, 146, 147, 148, 149, 150,
151, 152, 153, 154, 155. Most of the 80 schizophrenia-associated SNPs are localized to the 5'
region110, 146, 149, 152, 153, 154, 155 and 3' region149, 150, 152, 155, 156 of NRG1.
Evidence suggests that the 5' SNPs regulate NRG1 expression in patients with
schizophrenia157, 158, 159. The risk allele SNP8NRG243177, which is part of the original
deCODE haplotype, is associated with decreased activation of frontal and temporal lobe
regions, increased development of psychotic symptoms and decreased premorbid IQ160.
Together, these results provide strong evidence that NRG1 is a schizophrenia-susceptibility
gene in many populations, although studies of Japanese, Irish and Spanish cohorts showed
poor association161, 162, 163.

Of note are SNPs that generate changes in the coding region of NRG1. A missense mutation
(Val to Leu) was identified in the transmembrane region of the NRG1 protein164. The change
from Val to Leu is a conservative mutation that lengthens the aliphatic side chain of the amino
acid by only a single hydrocarbon. The functional implication of this NRG1 mutation remains
unclear. Interestingly, the rs3924999 mutation (Arg to Gln) in the Type-II-NRG1-specific
region is significantly associated with deficits in pre-pulse inhibition, a measure of attentional
processes and sensorimotor gating165 (although the rs10503929 mutation (Met to Thr) was
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not associated with changes in prepulse inhibition165). The rs3924999 mutation is also
associated with an increased score on the Perceptual Aberration Scale (PAS) but not on the
Schizotypal personality Questionnaire (SPQ)166. These results suggest that the rs3924999
mutation might have a role in causing the prepulse inhibition deficits and schizotypal
personality in patients with schizophrenia.

ERBB4, which spans 1.15 Mb on chromosome 2q34, has also been suggested to be a
susceptibility gene for schizophrenia in populations of Ashkenazi Jews, Caucasians and
African Americans155, 158, 159, 167, 168 (Fig. 7b). This gene was among several that were
identified as being disrupted by microdeletions or microduplications in patients with
schizophrenia169. In a case-control association analysis of Ashkenazi Jews, three SNPs of
ERBB4 showed a highly significant association with the disease158. A 46 kb core at-risk
haplotype comprising three SNPs (rs707284, rs839523 and rs7598440) that surround exon 3
was identified by allele, genotype and haplotype frequency analysis158. A separate mutation
screen identified an additional 15 SNPs in ERBB4 that are associated with schizophrenia167.
The SNP in intron 12, rs4673628 (intervening sequence 12−15 C>T), shows a significant
genetic interaction with the original NRG1 ‘Icelandic’ schizophrenia-associated haplotype. The
nature of the interaction seems to be an excess of rs4673628 heterozygotes among patients
with schizophrenia who carry the Icelandic NRG1 risk haplotype. One open question is how
the mutations might be pathogenic. A recent study indicated that abnormal expression of the
CYT-1 isoform of ERBB4 (Fig. 3) might be caused by mutations at rs4673628, at the three
intronic risk SNPs surrounding exon 3 and at a core-risk haplotype159. This would implicate
abnormal PI3K/Akt signalling in the pathologic mechanisms.

Behavioural studies of mice with hypomorphic NRG1 and ERBB4
It has been challenging to generate convincing animal models for abnormal behaviours that
are unique to humans, such as the positive and negative symptoms in schizophrenia170. In
rodents, positive symptoms are thought to be modelled by hyperactivity in response to novelty
and hypersensitivity to psychostimulants, whereas negative symptoms are modelled by
impaired social interaction and anhedonia. By contrast, cognitive deficits are not uniquely
human and can thus be measured in rodents.

Studies of Nrg1- and Erbb4-mutant mice have provided support for the potential role of
mutations in these genes as risk factors for schizophrenia. Nrg1- and Erbb4-hypomorphic or
conditional-knockout mice showed ‘schizophrenic-like’ deficits, whereas Erbb2- and Erbb3-
heterozygote-null mice seem to be behaviourally normal31, 171. Nrg1(ΔEGF)+/− and Nrg1
(ΔTM)+/− mice are generally hyperactive in a number of tests, including the novel open-field
test and the alternating-Y maze31, 110, 172. Interestingly, the hyperactivity of Nrg1
hypomorphs can be reversed by clozapine, an atypical antipsychotic that is used to treat
schizophrenia, at a non-sedating dose. Hypomorphs of Nrg1(ΔIg)+/− mice (which have a
heterozygous deletion in the Ig domain) are impaired in latent inhibition but exhibit normal
activity in open-field and running-wheel tests in comparison with control littermates173.
However, they display behaviours that are thought to indicate a schizophrenia-like phenotype,
such as clozapine-induced suppression of open-field and running-wheel activity. Mice with an
Erbb4 mutation that was generated specifically in the brain did not seem to have altered motor
behaviour174. However, a more detailed analysis of these mutant mice revealed that they were
more active than control animals at the initial stage of the behavioural evaluation but became
less active than controls in longer, more comprehensive evaluations at older ages171. Deletion
of the gene that encodes the NRG1-cleavage enzyme BACE generates similar ‘schizophrenic’
phenotypes to those that are observed in Nrg1+/− mice175, supporting the model that disruption
of NRG1 signalling might participate in the pathogenesis of schizophrenia.
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Recently, Nrg1-hypomorphic animals were shown to exhibit a selective disruption in their
behavioural response to social novelty and increased aggression towards a conspecific172.
These mice, however, were apparently normal in measures of emotionality/anxiety, spatial
learning and working memory. The relatively mild phenotypes of Nrg1 heterozygous mutants
might be due to functional redundancy supplied by NRG2 and/or NRG3, mutations in the genes
of which have been associated with schizophrenia155. Finally, transgenic female mice
expressing DN-ErbB4 in hypothalamic astrocytes exhibited delayed onset of puberty and
reproductive development176. These observations demonstrate that Nrg1- and Erbb4-mutant
mice exhibit behaviours that are similar to those of established rodent models of
schizophrenia177.

NRG1 hypotheses of schizophrenia
Consistent with the ‘abnormal neural development’ model of schizophrenia44, 115, 178,
NRG1–ErbB signalling is evidently involved in important processes of brain development.
Loss of function of NRG1 or ErbB4 or perturbation of NRG1 signalling can cause deficits in
the migration of pyramidal and GABAergic neurons, neurite outgrowth and axon projection,
the myelination of axons and synapse formation. The resulting anatomical abnormalities could
underlie the altered neurotransmission and cortical function that leads to psychotic symptoms
and cognitive impairments. In addition, NRG1 has acute effects on both glutamatergic and
GABAergic pathways, and it thus contributes to a second mode of action. Evidence from
Nrg1-hypomorphic and Erbb4-mutant mice supports the idea that mutations in NRG1 and
ERBB4 have a role in the aetiology of schizophrenia.

It is worth pointing out that most of the genetic variations or SNPs in both NRG1 and
ERBB4 are either intronic or synonymous exonic substitutions or are located in 5' or 3' non-
coding regions8. It therefore remains unclear how these changes affect disease susceptibility.
One plausible hypothesis is that the genetic variations are regulatory and that they thus affect
disease susceptibility by altering the expression or splicing of NRG1 and ERBB4 or by altering
NRG1 or ErbB4 mRNA stability. Recent studies have provided some evidence for this
hypothesis. For example, brain samples from patients with schizophrenia showed increased
mRNA for Type I NRG1 (Refs 157,158,179) and abnormal expression of ErbBs158, 180,
181. Specifically, mRNA levels of Type I NRG1 were elevated both in the PFC and in the
hippocampus157, 171. However, mRNAs of the JMa/CYT-1 isoform of ErbB4 were
upregulated in the PFC but not in the hippocampus158, 159, suggesting that changes in the
expression of ERBB4 isoforms are not secondary to NRG1 abnormalities and do not result from
the general effects of illness state or medication. Whether NRG1 and ErbB4 protein levels are
also altered has been a subject of controversy182, although a recent study showed that NRG1-
ICD and ErbB4 protein levels were increased in the PFC of patients with schizophrenia183.
This might be due to differences in the study participants’ ages or to differences in the
experimental particulars, such as the antibodies that were used.

Gain-of-function and hypoglutamatergic function in schizophrenia
Altered ErbB4 levels might change the balance of ErbB4 homo- and heterodimers and their
downstream signalling pathways. Thus, an increase in the CYT-1 isoform of ErbB4 would be
expected to stimulate PI3K (alterations in which have previously been implicated in
schizophrenia184) and subsequently Akt. Indeed, evidence of increased NRG1 signalling and/
or function was found in the PFC of patients with schizophrenia182, including an increase in
the PSD95–ErbB4 interaction that can further enhance NRG1 signalling118, activation of both
ERK and Akt, and NRG1-induced suppression of NMDA receptor activation. These findings
are exciting and, together with studies of NRG1 and ErbB4 expression in the schizophrenia
brain, provide important links between the susceptibility genes and schizophrenic pathology.
Based on the limited results, we propose a gain-of-function hypothesis of NRG1–ErbB4

Mei and Xiong Page 10

Nat Rev Neurosci. Author manuscript; available in PMC 2009 May 14.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



signalling as a potential mechanism in the pathogenesis of schizophrenia: increased expression
of Type I NRG1 and CYT-1 ErbB4 and/or increased NRG1 signalling in the PFC stimulates
GABA transmission, which is anticipated to reduce the firing rate of glutamate-dependent
pyramidal neurons. This would lead to hypofunction of the glutamatergic pathway, consistent
with the reduced glutamatergic transmission and plasticity that is found in the brains of patients
with schizophrenia114, 116, 117.

The activity of glutamic acid decarboxylase (GAD) and the staining of parvalbumin, a Ca2+-
binding protein that is expressed in a subset of GABAergic interneurons, are reduced in the
PFC of patients with schizophrenia185. In view of the newly identified function of NRG1–
ErbB4 signalling as a potentiator of GABAergic transmission, it is possible that elevated
NRG1–ErbB4 expression and signalling compensate for reduced GAD activity. Conversely,
GAD activity and parvalbumin expression might be repressed in an effort to compensate for
elevated NRG1–ErbB4 expression and signalling. Settling this uncertainty will require a
thorough assessment of the changes in GAD activity, parvalbumin staining and the relative
expression and activity of distinct NRG1–ErbB4 isoforms in schizophrenia patients of different
ages.

Conclusions and perspectives
Recent studies have provided compelling evidence that the NRG1–ErbB4 signalling pathway
is involved in the pathogenesis of schizophrenia. Novel functions of NRG1 and ErbB4 have
been identified in both neural development and synaptic plasticity. These advances have also
raised many questions. Schizophrenia is most commonly viewed as a disorder of
development44. Can a dysfunction in the NRG1–ErbB4-mediated regulation of
neurotransmission be a mechanism of schizophrenia? The effect of NRG1 on both excitatory
and inhibitory neurotransmission in adult-brain slices, including those of Nrg1-mutant mice,
suggests that alterations in the NRG1–ErbB4 signalling pathway might result in dysfunctional
regulation of synaptic plasticity in an already abnormally developed mature brain. Future
studies will be facilitated by animal models that control NRG1–ErbB signalling in space and
time to dissect developmental and post-developmental mechanisms. In particular, gain-of-
function models that increase NRG1–ErbB4 signalling in the adult brain to mimic pathological
findings in patients might be useful.

In addition to NRG1 and ERBB4, many other genes have been associated with schizophrenia,
including those that encode catechol-O-methyl transferase (COMT), dysbindin (DTNBP1),
regulator of G-protein signalling 4 (RGS4), disrupted-in-schizophrenia 1 (DISC1) and
metabotropic glutamate receptor 3 (GRM3, also known as MGLUR3)3, 186. NRG1 activates
various intracellular pathways. Does it regulate the expression of these susceptibility genes
and/or their function? Conversely, is NRG1–ErbB signalling regulated by any of these genes?
These are questions that remain to be addressed in the near future. The answers to these
questions, however, could be complicated by recent studies that suggest that NRG2, NRG3
and EGFR might also serve as risk factors for schizophrenia — all of these proteins can
stimulate ErbB kinases155. Nevertheless, these are exciting times for schizophrenia research.
We anticipate that an improved understanding of the pathogenic mechanisms that are
associated with the identified disease-associated genes might eventually lead to the
development of more effective therapeutics.
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Fig. 1.
a | The six types of neuregulin 1 (NRG1) isoforms are classified according to their distinct
amino-terminal sequences. In the type III isoforms, this sequence contains a cysteine-rich
domain (CRD) that has a transmembrane domain (TMn). All six types of NRG1 isoforms have
an epidermal growth factor (EGF)-like domain. Types I, II, IV and V have an immunoglobulin
(Ig)-like domain between the N-terminal sequence and the EGF domain, with or without the
spacer region (S), whereas the N-terminal-specific region of types III and VI is connected
directly to the EGF domain. Variants are also generated by splicing in the linker regions and
the C-terminal regions. Between the two regions is a C-terminal transmembrane domain (TMc).
b | Most NRG1 isoforms are synthesized as transmembrane precursor polypeptides (pro-
NRG1s) with the EGF domain located in the extracellular region, but in Type III NRG1 both
the N- and the C-terminal regions are located inside the cell. Cleavage by tumour necrosis
factor-α converting enzyme, β-site of amyloid precursor protein cleaving enzyme or meltrin
β(indicated by the lightning arrow) generates mature NRG1s that are soluble, except in the
case of Type III NRG1, which is thought to function in a manner that requires cell contact. The
processing of Type IV, Type V and Type VI pro-NRG1s is less well-characterized but is
thought to resemble that of Type I and Type II.
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Fig. 2.
ErbB proteins are type I transmembrane receptor tyrosine kinases. Each has an extracellular
region containing two extracellular cysteine-rich domains, a transmembrane domain, a short
intracellular juxtamembrane region, a tyrosine kinase domain and a carboxy-terminal tail. In
response to neuregulin 1 (NRG1) stimulation, ErbB proteins become dimerized to form homo-
and heterodimers, such as ErbB2–ErbB3, ErbB4–ErbB4, ErbB2–ErbB4 and ErbB4–epidermal
growth factor receptor (EGFR). ErbB2 does not bind to NRG1 (indicated by the black crosses)
but has an active kinase domain; ErbB3 binds to NRG1 but has an impaired tyrosine kinase
domain (indicated by the purple cross). Therefore, ErbB2 and ErbB3 need to form heterodimers
with each other or with ErbB4 to be functional, whereas ErbB4 homodimers can bind to NRG1
and become activated. Activation of the tyrosine kinase domains leads to auto- and trans-
phosphorylation of the intracellular domains, generating docking sites for the adaptor proteins
Grb2 and Shc, which activate the Raf–MEK–ERK pathway, and for the p85 subunit of PI3K
(indicated in the figure for the ErbB2–ErbB3 heterodimer), which activates the PI3K pathway
and subsequently mTOR-dependent protein synthesis. NRG1 activates CDK5, which is also
stimulated by neuronal activity36. EGFR does not bind to NRG1. Its downstream pathways
include ones that involve JNK, Src, Abl, and PKC in addition to ones that involve ERK and
PI3K/Akt.
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Fig. 3.
a | Inclusion of exon 26 in the intracellular domain of ErbB4 generates CYT-1, whereas its
exclusion gives rise to CYT-2 (Refs 188,189). The extracellular juxtamembrane region of
ErbB4 is encoded by either exon 16 or exon 15, to generate JMa or JMb, respectively. Different
combinations of CYT-1, CYT-2, JMa and JMb thus create 4 isoforms of ErbB4. Exon numbers
are shown on the top of corresponding domain structures. b | CYT-1 contains the motif that
binds to the p85 subunit of PI3K and thus activates this kinase. Thus, although both isoforms
are coupled to the Raf–MEK–ERK pathway, CYT-1 but not CYT-2 activates PI3K and
subsequently Akt188, 189, 190. Both JMa and JMb can be activated by neuregulin 1 (NRG1)
to initiate canonical signalling, but only JMa can be cleaved by tumour necrosis factor-α
converting enzyme188, 191, 192 (indicated by the lightning arrow) to generate a soluble
extracellular polypeptide, ecto-ErbB4 (which contains the NRG1 binding site), and a carboxy-
terminal fragment (ErbB4-CTF). CRD, cysteine-rich domain; TK, tyrosine kinase domain;
TM, transmembrane domain.
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Fig. 4.
In non-canonical forward signalling (bottom cell, right-hand pathway), the carboxy-terminal
fragment (ErbB4-CTF) is cleaved by γ-secretase to produce ErbB4-intracellular domain
(ErbB4-ICD), which can translocate to the nucleus to regulate gene expression. When it is
overexpressed in transfected cells, ErbB4-ICD interacts with several transcriptional regulators,
including Eto2, STAT5, Mdm2 and YAP, to mediate the transcriptional activation or repression
of heterologous promoters (not shown)193, 194, 195, 196, 197, 198. This interaction might
require the phosphorylation of either ErbB4-ICD or the transcriptional regulator and/or the
kinase activity of the ICD domain. For example, neuregulin 1 (NRG1) stimulation promotes
the association of ErbB4-ICD with TAB2, an adaptor protein, in an ErbB4 kinase-domain-
dependent manner41. TAB2 also interacts with the nuclear receptor co-repressor, N-CoR, to
form a ternary complex that, upon translocation into the nucleus, represses the transcription of
genes that are required for the differentiation of neural precursor cells into astrocytes. Backward
signalling (top cell) by pro-NRG1 can proceed by two mechanisms. First, the C-terminal
fragment of pro-NRG1 (NRG1-CTF), which is generated by extracellular cleavage, can be
cleaved again by γ-secretase to generate NRG1-intracellular domain (NRG1-ICD), which can
relocate into the nucleus to regulate gene transcription (left-hand pathway). Second, ErbB4 or
ecto-ErbB4, which is released by extracellular cleavage, can serve as a ligand for pro-NRG1
or Type III NRG1, which function as receptors (right-hand pathway). It is unknown whether
this interaction alters the phosphorylation of pro-NRG1 itself or whether it alters the activation
of an intracellular kinase or phosphatase in pro-NRG1-expressing cells. Precisely how the
signals are transduced also remains unknown. The cytoplasmic tail of pro-NRG1 interacts with
the non-receptor protein kinase LIM kinase 1 (LIMK1)199, 200. This kinase has been shown
to regulate actin dynamics in many cell types, including neurons. Interestingly, NRG1-ICD is
required for NRG1 function in vivo201. Treatment of Type III NRG1-expressing neurons with
a mixture of ecto-ErbB2 and ecto-ErbB4 promotes neuronal survival in vitro and alters the
expression of several apoptotic genes24 (not shown). Canonical forward signalling (bottom
cell, left-hand pathway) is explained in detail in Fig. 2.
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Fig. 5.
a | Neuregulin 1 (NRG1) (indicated by blue shading) is released from neurons to promote the
formation and maintenance of radial glial cells, which are necessary for the radial migration
of neurons from ventricular zones to the pial surface. b | Tangential migration of GABA (γ-
aminobutyric acid)-ergic interneurons requires NRG1 in the cortical region; thalamocortical
axon navigation through the diencephalon requires corridor cells that express NRG1. c |
Myelination and ensheathment of peripheral nerves are controlled by the amounts of NRG1
produced in substrate axons. d | NRG1 from axons might regulate oligodendrocyte
development and myelination of axons in the CNS. e | NRG1 is necessary for the formation of
neuromuscular junctions (NMJs), probably through effects on terminal Schwann cell
differentiation and survival. f | NRG1 stimulates CNS synapse formation. This panel shows
typical excitatory synapses, formed between glutamatergic terminals and spines. DT, dorsal
thalamus; GP, globus pallidus; LGE, lateral ganglionic eminence; MGE, medial ganglionic
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eminence. Part b modified, with permission, from Ref. 69 © (2006) Elsevier Science. Part d
modified, with permission, from Ref. 201 © (2005) Macmillan Publishers Ltd.
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Fig. 6.
a | ErbB4 interacts specifically with the first and second PDZ domains of postsynaptic density
(PSD) protein 95 (PSD95), a scaffold protein, and is localized in the PSD of excitatory
synapses. The interaction with PSD95 enhances neuregulin 1 (NRG1) signalling, presumably
by increasing ErbB4 homodimerization118. NRG1, by activating ErbB4, suppresses long-term
potentiation induction and expression38, 118, 120, 121, 122. The mechanisms that underlie
this effect remain unclear. Through PSD95, ErbB4 signalling might regulate the properties of
NMDA (N-methyl-D-aspartate) receptors (NMDARs), AMPA (α-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid) receptors (AMPARs) and K+ channels (K+ ch)202.
Through the GKAP–Shank–Homer complex, ErbB4 signalling might be involved in regulating
the function of metabotropic glutamate receptors (mGluRs). PSD95 might also recruit ErbB4
to the neuroligin–neurexin complex that is essential for synapse formation203. ErbB2, on the
other hand, interacts with erbin, a protein that contains multiple leucine-rich domains and a
PDZ domain204, 205. This interaction has been implicated in regulating NRG1
signalling206, 207. b | ErbB4 is present in the presynaptic terminals of GABA (γ-aminobutyric
acid)-ergic interneurons112. NRG1 stimulates presynaptic ErbB4 to enhance activity-
dependent GABA release through mechanisms that have yet to be identified. c | A working
hypothesis for how NRG1 might regulate pyramidal neuron activity. The output of pyramidal
neurons in the prefrontal cortex (PFC) is regulated by excitatory glutamatergic neurons (shown
in red) and various inhibitory GABAergic interneurons (shown in green). NRG1 regulates
glutamatergic transmission and/or plasticity by activating PSD-localized ErbB4. There are at
least three types of GABAergic interneurons in the PFC. Wide-arbor basket cells target the
somata and proximal dendrites of pyramidal neurons and adjust the integrated synaptic
response. Chandelier cells (or axon-targeting interneurons) terminate at or near the axon hillock
of pyramidal neurons, forming vertical arrays of terminals termed ‘cartridges’, to regulate the
generation and timing of action potentials. Conversely, Martinotti cells terminate on distal
dendrites of pyramidal cells to influence the dendritic processing and integration of synaptic
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inputs185, 208, 209, 210, 211. By controlling activity-dependent GABA release, NRG1 might
repress the activity of pyramidal neurons. Part c modified, with permission, from Ref. 185 ©
(2005) Macmillan Publishers Ltd.
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Fig. 7.
a | The neuregulin 1 (NRG1) gene is located in a 1.5 Mb region of DNA, at 8p12−8p21. Roman
numerals indicate the type-specific exons. The original deCODE hyplotype including the SNPs
SNP8NRG221132, SNP8NRG221533, SNP8NRG241930, SNP8NRG243177 and
SNP8NRG433E1006 and two microsatellites (478B14−848 and 420M9−1395) is shown.
Exons for individual domains of NRG1 are colour matched with the domain structure in Fig.
1a. b | The 1.15 Mb region of the ERBB4 gene, at 2q33.3−2q34. The SNPs are mainly clustered
around exon 3 and in front of exon 13.
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