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Summary
Adherens juctions and Tight junctions comprise two modes of cell-cell adhesion that provide
different functions. Both junctional complexes are proposed to associate with the actin cytoskeleton,
and formation and maturation of cell-cell contacts involves reorganization of the actin cytoskeleton.
Adherens junctions initiate cell-cell contacts, and mediate the maturation and maintenance of the
contact. Adherens junctions consist of the transmembrane protein E-cadherin, and intracellular
components, p120-catenin, β-catenin and α-catenin. Tight junctions regulate the paracellular
pathway for the movement of ions and solutes in-between cells. Tight junctions consist of the
transmembrane proteins occludin and claudin, and the cytoplasmic scaffolding proteins ZO-1,-2, and
-3. This review discusses the binding interactions of the most studied proteins that occur within each
of these two junctional complexes and possible modes of regulation of these interactions, and the
different mechanisms that connect and regulate interactions with the actin cytoskeleton.

Introduction
The Adherens junction (AJ) and Tight junction (TJ) provide important adhesive contacts
between neighboring epithelial cells. Although these junctions comprise different proteins,
there are similarities in the roles of specialized transmembrane proteins in forming extracellular
adhesive contacts between cells, and intracellular links to the actin cytoskeleton and signaling
pathways including the regulation of gene transcription.

Classical cadherins, such as E-cadherin, are the major transmembrane protein of the Adherens
junction and initiate intercellular contacts through trans-pairing between cadherins on opposing
cells [1]. Classical cadherins also bind directly and indirectly to many cytoplasmic proteins,
particularly members of the catenin family, which locally regulate the organization of the actin
cytoskeleton, cadherin stability and intracellular signaling pathways that control gene
transcription [2]. Formation of the Adherens junction leads to assembly of the Tight junction,
but E-cadherin is not required to maintain Tight junction organization [3]. Surprisingly,
HepG2-AJ- cells unable to form Adherens junctions slowly form functional Tight junctions
[4]. The occludin and claudin family of transmembrane proteins form the core of the Tight
junction and control ion selectivity and permeability of the paracellular pathway between
adhering cells. Occludin and claudins bind to members of the MAGUK family of cytoplasmic
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proteins that interact with the actin cytoskeleton and other signaling proteins that also localize
to the nucleus [5].

Recent studies of these adhesion complexes have provided new insights into molecular
mechanisms involved in the formation, maintenance and function of protein components. This
review will focus on the formation and interactions of these two junctional complexes,
mechanisms of regulation and dynamics of protein interactions, and how they interact with and
regulate the actin cytoskeleton.

1. Adherens Junction
The Adherens junction performs multiple functions including initiation and stabilization of
cell-cell adhesion, regulation of the actin cytoskeleton, intracellular signaling and
transcriptional regulation. The core of the Adherens junction includes interactions among
transmembrane glycoproteins of the classical cadherin superfamily, such as E-cadherin, and
the catenin family members including p120-catenin, β-catenin, and α-catenin. Together, these
proteins control the formation, maintenance and function of adherens junctions.

1.1 E-cadherin
E-cadherin is a single-pass, transmembrane glycoprotein (Fig. 1) that belongs to the classical
cadherin family of Ca2+-dependent adhesion proteins; other members of this family include
N-, P, and R-cadherin [6]. Classical cadherins have five characteristic extracellular cadherin
(EC) repeat domains. These domains form trans-cadherin interactions between neighboring
cells and initiate weak cell-cell adhesion and formation of the Adherens junction [7]. Binding
of Ca2+ to each EC domain is required for the correct conformational organization of the
cadherin extracellular domain [8]. Recent structural studies indicate that trans-pairing of EC1
domains is critical for cadherin adhesion [9]. Indeed, expression of two cadherin mutant
proteins in which the EC1 domains were swapped revealed that the correct EC1 domain
determined aggregation and sorting of specific motor neuron pools in the spinal cord [9,10].
It remains possible, however, that other EC domains are important since a monoclonal antibody
DECMA-1, against an epitope mapped to the EC4/EC5 region [11], blocks cell-cell adhesion
[12].

The cytoplasmic domain of E-cadherin binds proteins that regulate E-cadherin endocytosis,
recycling and degradation, intracellular signaling and gene transcription, and local control of
the actin cytoskeleton [2,7]. Upon formation of intercellular contacts, cadherins cluster and
spread laterally thereby strengthening the contact [13–15]. Clustering of cadherins in a
maturing contact requires the cytoplasmic juxtamembrane domain [16]. Within the
cytoplasmic domain there are two relatively well-defined catenin binding domains (CBD)
encompassing a 94 amino acid juxtamembrane domain (JMD) that binds p120-catenin [16],
and an extended region to the C-terminal that binds β-catenin [17] (Fig. 1).

Cadherin-mediated cell-cell adhesion is highly dynamic enabling the reorganization and
dispersal of cells, for example, during epithelial-to-mesenchymal transition in normal
development and carcinogenesis [18]. In epithelial derived tumors, loss of cell-cell adhesion
is correlated with down-regulation of E-cadherin as well as increased proliferation and tumor
invasiveness [19–23]. For example, E-cadherin regulates normal cell-cell adhesion in the
mammary gland and expression of E-cadherin in breast cancer has been studied in relation to
prognosis, diagnosis, and potential therapy [21]. Lobular carcinoma, accounting for ~15% of
breast cancer, is characterized by a reduction or elimination of E-cadherin expression [24–
26]. Approximately 85% of cases are associated with a loss of heterozygocity (LOH) of the E-
cadherin gene on chromosome 16q [27,28]. Ductal carcinoma, accounting for ~80% of breast
cancer, is associated with a reduction in both E-cadherin and α-catenin [29], moreover loss of
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α-catenin was associated with advanced stages and poor patient survival [30]. Together these
observations provide strong evidence that regulation of E-cadherin and associated protein
expression and localization are factors involved in carcinogenesis.

1.2 Catenins
E-cadherin is the core transmembrane protein of the Adherens junction and is required for
binding and localization of a number of important cytoplasmic proteins termed catenins that
connect the cadherin complex to the actin cytoskeleton and several signaling pathways (Fig.
2). The catenin family comprises p120-catenin, β-catenin and α-catenin. An experimentally
induced decrease in E-cadherin expression by siRNA [3] causes a delay in the correct
localization of adherens junction core proteins, α- and β-catenin, and the tight junction-
associated protein ZO-1.

1.2.1 p120-catenin—p120-catenin was first identified as a substrate for Src- tyrosine
receptor kinase [31], and later defined as a member of the catenin family based on sequence
homology to an armadillo domain of β-catenin [32] (Fig. 2A). There are four isoforms of p120
resulting from either post-translational modifications or different internal translation start sites
[33]. p120-catenin binds E-cadherin [34] at a highly conserved octapeptide sequence
(YDEEGGGE) [35] within the juxtamembrane domain [16,36,37]. Mutations of the E-cadherin
JMD have shown that this domain is both necessary and sufficient for recruitment of p120-
catenin to Adherens junctions [38] (Fig. 1).

Association of p120-catenin with the JMD of E-cadherin has been proposed to stabilize E-
cadherin at the plasma membrane during the formation of cell-cell contacts. Expression of
different cadherin cytoplasmic domains [16] and mutation analysis of the JMD [35,38]
demonstrate the p120-catenin-E-cadherin interaction is required for increased adhesiveness of
cells. Furthermore, siRNA-mediated knock-down [39] and competitive expression of other
cadherins [40–42] suggest that p120-catenin increases the retention of the cadherin complex
at the plasma membrane. Loss of p120-catenin-induced stabilization of E-cadherin is linked
to tumor progression and invasion [19,20]. Phosphorylation of p120-catenin increases binding
affinity to E-cadherin [43]. Binding of p120-catenin to the JMD may prevent cadherins from
being internalized and degraded [39,41,42] or lead to the recycling of internalized cadherin
back to the plasma membrane [44]. One possible mechanism of targeting cadherin for
degradation involves Hakai, an E3-ubiquitin ligase, which binds E-cadherin in a Src-dependent
manner [45] (Fig. 1). Expression of Hakai increased both the ubiquitination and rate of E-
cadherin endocytosis [45], but it is not known if p120-catenin binding is involved in this
degradation pathway. Note, however, that loss of p120-catenin in an E-cadherin null
background has also been shown to increase cell-cell adhesion, raising the possibility that p120-
catenin plays additional roles in modulating cell-cell adhesion [46].

p120-catenin also functions as a regulator of cell motility through the actin cytoskeleton by
interacting with Rho family GTPases [47] (Fig. 2A). Over-expression of p120-catenin in
fibroblasts [37] or MDCK cells [47] increased membrane extensions and cell migration. These
effects correlated with an increase in activated Rac and Cdc42 [47]. In p120-catenin knock-
down experiments, invasiveness of A431 cells in a three-dimensional matrix was reduced,
while re-expression of p120-catenin that could not be phosphorylated restored cell motility.
While migration of cells was restored, an increase in Rac activity was not observed even though
Rac activation is generally associated with increased cell migration [48]. Differences in p120-
catenin effects on cell motility could be due to differences in cell lines, and further studies are
needed to characterize the downstream effects of p120-catenin on Rac activity. Moreover,
p120-catenin may also regulate cell motility and invasiveness by inhibiting RhoA activity
independent of p120-catenin-E-cadherin binding [46,47]. In vitro, p120-catenin binds RhoA-
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GDP which would have the effect of sequestering RhoA from activation by a guanine exchange
factor (GEF) [49]. The affinity of the p120-catenin-RhoA interaction is reduced by Fyn-
mediated phosphorylation of p120-catenin (Y112), and increased by Src-dependent
phosphorylation of p120-catenin (Y117, Y228) [50]. In addition, p120-catenin interacts with
p190RhoGAP, as a downstream effect of Rac activation, and may recruit p190RhoGAP to the
plasma membrane resulting in local inhibition of Rho mediated contractility and antagonizing
Rac and Rho signaling [51].

1.2.2 β-catenin—Beta-catenin, which was originally identified in Drosophila as the segment
polarity protein armadillo [52,53], contains 13 repeats of a characteristic armadillo domain of
~42 amino acids that form triple α-helix [54] (Fig. 2B). Beta-catenin binds the C-terminal
cytoplasmic domain of E-cadherin (Fig. 1) in a phospho-regulated manner [2]. Three serine
residues in the cadherin cytoplasmic domain (S684, S686, S692) are phosphorylated by CKII
and GSK-3β kinases which create additional interactions between β-catenin and E-cadherin
resulting in a large increase in the affinity of the interaction (~9pM affinity; [55,56]). In
contrast, tyrosine phosphorylation of β-catenin at Y489 or Y654 disrupts binding to cadherin,
and at Y142 binding to α-catenin is weakened [57]. The structural basis for these effects is due
to β-catenin Y654 forming a hydrogen bond with E-cadherin Asp665, which stabilizes the
interaction of the cadherin region 2 helix with the last two armadillo repeats of β-catenin
[55]; phosphorylation of Y654 would prevent this interaction thereby eliminating binding of
this region of cadherin and sharply reducing the cadherin/β-catenin affinity. The kinases
involved in β-catenin phosphorylation have been identified and include: Src phosphorylation
at Y654 [58,59], Abl kinase phosphorylation at Y489 [60], EGF receptor phosphoylation of
Y654 [61], and Fer kinase phosphorylation at Y142 [43]. Recently, a detailed analysis of the
thermodynamics of the β-catenin/E-cadherin interaction proposed that the C-terminal tail of
β-catenin (post-armadillo domain) regulates the binding affinity for β-catenin and its ligands
[62].

While there is a great deal of information on the interaction of β-catenin and E-cadherin, there
is little demonstrating whether β-catenin dissociates from E-cadherin (for example during E-
cadherin internalization), in part because the affinity of this interaction is very high [55]. The
regulation of cytosolic β-catenin is critical as β-catenin can bind to the transcription factor Tcf/
Lef and mediate the transcription of a genes involved in cell proliferation, a signaling pathway
activated by Wnt [63]. It is proposed that the E-cadherin/β-catenin interaction occurs in the
endoplasmic reticulum (ER) and is required for cadherin exit from the ER [64]. Normally
cytosolic levels of β-catenin are low due to rapid targeting of excess β-catenin to the proteosome
[65,66]. However, recent studies have identified a role for BCL9-2, a transcription factor
involved in epithelial-mesenchymal transition, in mediating a switch between the adhesive and
transcriptional functions of β-catenin. This switch is caused by phosphorylation of Y142 on
β-catenin, which favors BCL9-2 binding and precludes other protein-protein interactions, and
results in translocation of β-catenin to the nucleus and induction of specific gene transcription
[67]. Significantly, BCL9-2 RNAi induces an epithelial phenotype in the colon cancer cell line
SW480 and causes β-catenin to translocate from the nucleus to the plasma membrane [67].

β-catenin binds IQGAP, fascin, and α-catenin (see also α-catenin sub-section; Fig. 2B). The
α-/β-catenin interaction dissociates upon binding to IQGAP, an actin binding protein activated
by the small GTPases Rac1 and Cdc42 [68]. Activation of IQGAP by Rac1 or Cdc42 disrupts
IQGAP binding to β-catenin resulting in rebinding of α-catenin to β-catenin and, hence,
functional assembly of the cadherin core complex and initiation of cell-cell adhesion. β-catenin
has also been identified by yeast 2-hybrid as a directly interaction partner of the actin bundling
protein fascin, whose binding site within β-catenin overlaps that of E-cadherin, and therefore
competes with E-cadherin for binding β-catenin [69].
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1.2.3 α-catenin—The textbook model of the adherens junction states that α-catenin is the
link between the cadherin/beta-catenin complex and the actin cytoskeleton. Indeed, α-catenin
binds and bundles actin filaments in vitro [29] and binds to β-catenin [17] (Fig. 2C), but a
ternary complex of E-cadherin/β-catenin/α-catenin and actin had not been tested [70].
However, recent evidence demonstrated that this simultaneous interaction could not be
reconstituted in vitro [70].

Alpha-catenin exists in either a monomeric or homo-dimeric state. The β-catenin/α-catenin
binding domain and the α-catenin homodimerization domains overlap within amino acids 57–
143 on α-catenin [71], but the actin and β-catenin binding domains on α-catenin do not (Fig.
2C). In vitro binding assays demonstrated that monomeric α-catenin binds β-catenin, but not
actin. Conversely, homo-dimeric α-catenin binds actin filaments but not β-catenin [70]; a-
catenin homo-dimer binding to actin also appears to compete binding of the Arp2/3 complex
to actin filaments thereby suppresses actin polymerization [72]. This allosteric switch between
monomeric and dimeric states appears to be the molecular explanation for the lack of
simultaneous binding of α-catenin to both β-catenin and actin filaments. In vitro studies showed
that dimerization of α-catenin occurs at a 10-fold higher concentration than that of the
monomeric pool of α-catenin in the cytoplasm of epithelial cells, indicating that α-catenin must
be locally concentrated prior to dimerization perhaps by clustering the cadherin-catenin
complex during cell-cell adhesion. A dynamic crosstalk between the α-catenin plasma
membrane pool (monomeric, β-catenin bound) the cytoplasmic pool (monomeric) and
cytoskeleton pool (dimeric, actin-bound) has been proposed where α-catenin switches between
the adherens complex and binding the actin cytoskeleton [72].

A new model for Adherens junction connection to the cytoskeleton has been proposed [70,
72]. It is suggested that the increase in local concentration of α-catenin at the membrane during
clustering of the cadherin-catenin complex at cell-cell contacts provides a local increase in α-
catenin concentration sufficient to drive α-catenin dimerization in the cytoplasm. α-catenin
dimers would locally inhibit Arp2/3 and thereby the formation of branching networks of actin
filaments characteristic of lamellipodia of migrating cells. At the same time, α-catenin dimers
bind to and bundle existing actin filaments, resulting in actin reorganization from branched to
bundled arrays. This model predicts that the interaction of α-catenin with the cadherin/β-catenin
complex is labile such that α-catenin can dissociate from the cadherin complex and dimerize
in the cytoplasm. Indeed, the interaction between α- and β-catenin may be concentration-
dependent (see above) or phospho-regulated. Two large-scale proteomic analyses identified
S641 and S652/S655 as phosphorylation sites on α-catenin [73,74]. Phosphorylation of tyrosine
148 on α-catenin has been shown to increase binding to β-catenin [75]. Further investigation
into the dynamics of different α-catenin pools is needed to verify the physiological relevance
of these different α-catenin binding states. In addition, further studies are required to test
whether an increased local concentration of α-catenin is sufficient to drive the switch from
branched to bundled actin cables, and whether additional factors such as kinases and
phosphatases are necessary for this switch to occur.

2. Tight Junctions
Tight junctions have been proposed to have two mutually exclusive functions: a fence function
which prevents the mixing of membrane proteins between the apical and basaolateral
membranes; and a gate function which controls the paracellular passage of ions and solutes in-
between cells. Tight junctions contain two types of transmembrane proteins, occludins and
claudins, which confer these functions (Fig. 3), and associated cytoplasmic proteins (Fig. 4)
that may link tight junctions to the actin-cytoskeleton and the adherens junction.
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2.1 Transmembrane components of tight junctions
2.1.1 Occludin—Occludin is a ~65 kDa tetraspan protein with two extracellular loops [5,
76] (Fig. 3A). There are two isoforms of occludin that result from alternative mRNA splicing,
but have similar tissue distributions [77]. Localization of occludin to tight junctions is regulated
by phosphorylation in both epithelial and endothelial cells [78]. Western blot analysis of
occludin reveals a range of molecular weights (62–82 kDa) that are sensitive to alkaline
phosphatase treatment. Multiple phosphorylation sites have been identified on tyrosine [79],
serine, and threonine residues [78]. Non-phosphorylated occludin is localized to both the
basolateral membrane and in cytoplasmic vesicles, whereas phosphorylated occludin is
localized to tight junctions [78]. Multiple kinase and phosphatases are proposed to regulate
occludin phosphorylation states and its localization and function within the tight junction. The
non-receptor tyrosine kinase c-Yes co-localizes and co-immunoprecipitates with occludin in
Ras-transformed MDCK cells [80]. In addition, when c-Yes is inhibited by CGP77675 occludin
phosphorylation and tight junction localization are decreased, and trans-epithelial resistance
(TER), a measure of paracellular permeability, is increased [80]. Protein Kinase C (PKC)
stimulated by phorbol 12-myristate 13-acetate and 1,2 dioctanoylglycerol in low calcium
increases occludin phosphorylation and localization to tight junctions [81]. Incubation of C-
terminal occludin with purified PKC identified Ser 338 of occludin as a phosphorylation site
[81]. However, stimulation of PKC with 12-0-tertradecanoylphorbol-13-acetate (TPA, another
phorbol ester) led to a decrease in threonine phosphorylation which correlated with an increase
in TER although the subcellular localization of occludin was not affected [82]. TPA has further
been shown to increase gene transcription of occludin [83]. The difference in stimulation of
PKC by phorbol esters may depend on additional proteins that are being stimulated including
chimaerins [84], protein kinase D, and/or diaclglycerol kinases [85]. The catalytic subunit of
protein phosphatase 2A (PP2A), a serine/threonine phosphatase, decreases occludin
phosphorylation and increases TER while okadaic acid, a PP2A inhibitor, increases occludin
phosphorylation and decreases TER [86].. Thus, multiple regulation pathways may provide
redundancy to ensure that occludin localizes correctly to the Tight junction.

The extracellular domains of occludin are shown to function in localization of occludin to tight
junctions and in regulating the paracellular permeability barrier between cells (Fig. 3).
Synthetic peptides corresponding to a 20 amino acid sequence within the second extracellular
loop of occludin, but not other adherens or tight junction proteins, increased TER and decreased
occludin levels, as a result of increased protein turnover, and localization to the tight junction
[87]. Photoactivatable crosslinking indicates that second loop extracellular loop of occludin
interacts with claudin and junction adhesion molecule (JAM), and disruption of these
interactions inhibited reformation of tight junctions after calcium repletion [88]. It should be
noted however that the occludin null mouse does not exhibit deficiencies in barrier function,
but does have an abnormal gastric morphology [89]. Tricellulin a tight junction protein
localized at tricellular junctions, may provide functional redundancy that allows for intact
barrier function in the occludin null mouse [90].

2.1.2 Claudin—The claudin family consists of at least 24 members ranging from 20–27 kDa
[5,91] (Fig. 3B). Although claudins do not share sequence similarity with the occludin family,
they also comprise a tetra-span transmembrane protein [92] with two extracellular loops [5,
91]. Claudins recruit occludin to tight junctions [92]. With the exception of claudin 12, the
intracellular C-terminal of all other claudin family members ends in the dipeptide sequence
YV [93]. This sequence binds in the groove of PDZ domain proteins. Inhibition of this domain
of does not affect localization of claudin to tight junctions but inhibits the association of
ZO-1,-2, and -3 proteins [94]; this interaction will be discussed in the next sub-section.
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Claudins form the protein strands of the tight junction that were observed previously by freeze-
fracture electron microscopy [95]. When claudins were overexpressed in L fibroblasts lacking
endogenous claudin they formed “paired” strands within areas of over-lapping cell-cell
interactions [92]. These ‘paired strands’ were dynamic, breaking and re-annealling, and
forming end-to-end and side-to side interactions. It is thought that these strands provide a
physical barrier between apical and basolateral membrane; the fence function.

The gate function of the tight junction controls the paracellular pathway for ion movement in-
between cells in an epithelial layer. Claudins directly regulate the gate function as paracellular
tight junction channels (PTJC) that have biophysical properties similar to those of traditional
ion channel including ion charge selectivity, permeability dependence on ion concentration,
and competition for movement of permeative molecules [96]. While the majority of channels
established by claudin interactions allow the passage of cations, the passage of anions has also
been observed [5]. Remarkably, changes in the type of claudin expressed, or single amino acid
substitutions in claudins effects claudin ion selectivity. For example, expression of claudin 8
in MDCK II cells, which lack endogenous claudin 8, reduced the paracellular movement of
mono- and divalent cations while not affecting the movement of anions or uncharged solutes
[97]. A single substitution of amino acid 65 from a negative to positive charge within the first
extracellular loop of claudin 15 caused an increase in Na2+ permeability. Mutating three
positive charges to negative within the same region switched the ion selectivity of the claudin
channel from Na2+ to Cl− [98]. Swapping the extracellular loops of claudin 4 and claudin 2
revealed that the first extracellular loop is sufficient to determine charge selectivity of the ion
channel [99]. Claudin-16, which is expressed solely in the kidney [100], forms a non-selective
cation channel, and mutant claudin-16 results in renal wasting of magnesium and calcium
[101].

2.2 Cytoskelatal connectors
2.2.1 ZO proteins—ZO-1, ZO-2, and ZO-3 are members of the MAGUK (membrane-
associated guanylate kinase homologs) family with binding domains to Adherens and Tight
junction proteins in addition to the actin cytoskeleton (Fig. 4). The MAGUK family is
characterized by their PDZ domain, SH3 domain and guanylate kinase homologous domain
[102]. ZO-1 [103–105] and ZO-2 [106] have both been shown to bind α-catenin, while the C-
terminus of ZO-3 is sufficient to bind to p120-catenin in vitro [107]. In addition, in vitro binding
assays demonstrated ZO-1 [108,109] and ZO-2 [106] bind directly to occludin. ZO-1 has been
isolated as a homodimer and is proposed to dimerize through the second PDZ domain [110].
Upon tyrosine phosphorylation of occludin, interactions between all ZO proteins and occludin
are reduced [111]. The proline rich C-terminal of ZO-1 [108] and ZO-3 [112] bind F-actin in
co-sedimentation assays, while ZO-2 does not bind actin [108,113] (Fig. 4). ZO-2 does,
however, bind the actin-associated protein 4.1R [114]. ZO-1 can bind ZO-2 or ZO-3
independently, but ZO-2 and ZO-3 cannot form a binary complex [113]. In addition, in a ZO-1
knock-out/ZO-2 knock-down cell line, exogenous expression of either ZO-1 or ZO-2 alone
could restore claudin localization to tight junctions as seen by immunofluorescence [115]. The
multiple interactions between the ZO proteins may provide different scaffolds and/or
connections to the actin-cytoskeleton (Fig. 4).

ZO-1 has been proposed to be a scaffolding protein between transmembrane and cytoplasmic
proteins, and possibly form a link between the Adherens and Tight juctions. While ZO-1 can
bind α-catenin, evidence is lacking that ZO-1 can bind actin and α-catenin simultaneously. In
addition, homo-dimerization of ZO-1 has been proposed to provide a link between the ZO-1/
ZO-2 and ZO-1/ZO-3 complexes, which would link occludin (TJ) to p120-catenin (AJ)
although the interaction between these two ZO-1 complexes has yet to be investigated [110]
(Fig. 4). It should be noted, however, the C-terminal of ZO-3, which binds to p120-catenin,
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overlaps with the binding region to N-terminal ZO-3 (Fig. 4). It has been proposed that this
switch in binding could sequester p120-catenin from regulation of RhoA activity thus affecting
actin polymerization [107].

Formation of the Adherens junction through E-cadherin is associated with the formation and
localization of the Tight junction proteins, particularly ZO-1 [105,116]. Conversely, expression
of mutated ZO-1 in a ZO null cell line significantly delayed the maturation of the Adherens
junction from “fibroblastic” AJs to “polarized epithelial” AJs [117]. The region necessary for
proper localization of tight junctions has been mapped to the SH3-U5-GUK-U6 on ZO-1
[118]. Exogenous expression of the N-terminal half of ZO-3 can delay the localization of E-
cadherin, β-catenin, and ZO-1 [112]. Further investigation is necessary to elucidate the
connections amongst ZO proteins during contact formation and maturation.

3. Conclusions
The structure of Adherens and Tight junctions is well established. While a number of proteins
that comprise these junctions have been presented in this review, additional proteins are present
within these junctions. For example formin, an actin nucleator binds α-catenin [119] and
cortactin, an actin assembly regulator, binds p120-catenin [120]. In addition, Ankrin-G binds
to the juxtamembrane domain of E-cadherin and recruits beta-2 spectrin to E-cadherin/β-
catenin complexes providing another potential link to the actin cytoskeleton [121]. While this
review focused on the role of conformational states of α-catenin in regulating actin cytoskeleton
reorganization, both formin [119] and cortactin [122] are necessary for actin reorganization in
mature cell-cell contacts. In addition, Ankrin-G and beta-2 spectrin are required for E-cadherin
localization at the plasma membrane in both cultured cells and mouse embryos [121]. The
proteins presented in this review provide evidence for the formation and maintenance of these
junctional complexes. Evidence is beginning to elucidate the physical connections that are
made between the junctions and the actin-cytoskeleton. Questions remain, however,
concerning these physical connections, and the dynamics and regulation of these proposed
connections in vivo.
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Figure 1.
Adherens junctions are comprised of the single pass transmembrane protein, E-cadherin. The
extracellular domain is proposed to form trans-interactions with E-cadherin on neighboring
cells. The intracellular domain has two binding regions; juxtamembrane domain (JMD) and
catenin binding domain (CBD). (TM; Transmembrane) The protein-protein interactions
presented are limited to those involved in connections with the actin cytoskeleton. The asterisks
represent the region proteins have been shown to bind. Not drawn to scale. Information was
gathered based on mutational analysis or co-immunoprecipitation studies; all references are
cited within the text.
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Figure 2.
Adherens junctions are comprised of A) p120-catenin, B) β-catenin, and C) α-catenin. All three
proteins interact with additional proteins known to regulate actin cytoskeleton. Asterisks
represent regions known to bind the respective protein. Numbers associated with the asterisks
correspond to amino acids flanking the binding site. Not drawn to scale. Information was
collected either through mutational analysis or co-immunoprecipitation. Proteins without
asterisks represent interactions demonstrated by co-immunoprecipitation. References are cited
within the text.
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Figure 3.
Tight Junction transmembrane proteins A) occludin and B) claudin, and proposed binding
partners with corresponding binding regions. The asterisks represent the region in which the
proteins have been shown to bind with the occludin and claudin. Not drawn to scale.
Information was gathered based on mutational analysis or co-immunoprecipitation. All
references are cited within the text.
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Figure 4.
ZO proteins are proposed to be a scaffolding protein that could link Tight junctions to the actin
cytoskeleton through a direct interaction with actin or through additional protein interactions.
In addition, ZO proteins may link Adherens junctions to Tight junctions through protein
linkages. Proteins represented are proposed for these functions. Asterisks represent the region
in which the proteins have been shown to bind with ZO protein. Numbers correspond with the
amino acids on the parent ZO protein; not drawn to scale. Information was gathered based on
mutational analysis or co-immunoprecipitation. Proteins without asterisks represent
interactions demonstrated by co-immunoprecipitation but regions were not determined. All
references are cited within the text.
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