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Abstract

Anti-tumor immune responses can be stimulated by interfering with regulatory T cell (Tyeg) function.
However this effect is short-lived unless T cell memory to tumor antigens can be generated. Our
recent studies show that Tyeq cells not only limit primary responses to tumor/self antigens in tumor-
bearing hosts, but also prevent the natural generation of T cell memory to such antigens. Here we
discuss the role of regulatory T cells in suppressing T cell memory after surgical excision of tumors,
and the potential clinical benefits of overcoming this suppression.
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Background

The generation of CD8 T cell memory is one of the major goals of tumor immunotherapy. For
years, studies in infectious disease models have demonstrated that memory T cells are required
for pathogen clearance and protection against re-infection. More recently, these lessons are
being applied to cancer models. While surgery currently remains the leading cure for solid
tumors, memory T cell responses may be required for the durable prevention of tumor
recurrence and metastasis following surgery. In vitro-generated memory CD8 T cells have also
been shown to be highly effective at treating large established melanomas (1,2). However, in
stark contrast with infectious disease models, most human tumors are poorly-immunogenic,
and a majority of tumor antigens are unaltered self proteins. This presents a significant
challenge, as mechanisms of central and peripheral tolerance prevent the priming of T cell
responses against self antigens. Even if tolerance is broken, T cells remain exposed to self
antigens in the periphery, which may lead to the development of functionally-impaired
memory, as observed with chronic viral infections (3,4).

Despite these challenges, some vaccination strategies have been capable of inducing long-lived
protective T cell responses against poorly-immunogenic tumors. In one of the earliest
examples, Engelhard and co-workers showed that a CD40L-matured dendritic cell vaccine
could generate CD8 T cell recall responses against the melanocyte differentiation antigen
tyrosinase, as well as long-term protection against melanoma (5). Cytokines can also drive the
development of memory in vivo, as shown by the development of a durable and protective
central and effector memory CD8 T cell response following administration of a DNA vaccine
encoding the tumor antigen Fra-1 and the cytokine IL-18 (6). Co-stimulatory molecules may
also play an important role. A xenogeneic DNA vaccine encoding gp100, which typically
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induces only short-term immunity, induced long-lived T cell responses and tumor protection
when coupled with a stimulatory antibody to GITR (7). However, aside from these studies,
there are few examples of active immunotherapy inducing durable T cell memory to tumor/
self antigens. More frequently, memory is demonstrated following the immune-mediated
rejection of primary tumors. For example, regression of B16 melanoma, induced by a GM-
CSF-producing tumor cell vaccine and CTLA-4 blockade, protected mice from tumor
challenge as long as 100 days post-vaccination (8). Such studies illustrate that some aspect of
active tumor rejection may lead to the development of immunological memory.

Interestingly, historical data show that progressive tumors themselves can induce functional T
cell memory. In the 1980°s North found that protective T cell memory resulted after surgical
excision of a highly-immunogenic methylcholanthrene-induced tumor (9). This memory arose
naturally in response to tumor growth and without a need for vaccination. However it was
crucial to excise primary tumors when they were small to prevent the generation of
“suppressor” cells that would attenuate the response. Notably, post-surgical immunity was only
a phenomenon of highly-immunogenic tumors, and was not observed in hosts bearing poorly-
immunogenic cancers (10).

In hindsight, the “suppressor” cells identified by North may likely have been tumor-induced
regulatory T cells (Treg). Treg Cells are crucial mediators of peripheral tolerance (11). They
possess a CD4*CD25Foxp3™ phenotype, and arise both in the thymus and through the
conversion of Foxp3~ CD4* T cells in the periphery (11,12). Treg Cells suppress the
development of CD8 T cell memory in infectious disease models (13), but until recently their
role in preventing memory against poorly-immunogenic tumors had not been shown.

Many studies have illustrated that Tyeq cells prevent primary T cell responses against poorly-
immunogenic cancers (11,12). We previously demonstrated that CD4*CD25" T cells
suppress the de novo priming of CD8 T cells in response to growth of the poorly-immunogenic
B16 melanoma (14). If Tyeq cells were depleted during growth of the melanoma, mice primed
CD8 T cells against differentiation antigens expressed by both the tumor cells and normal
melanocytes. Melanoma tumor-bearing mice that lacked Teq cells also developed concomitant
immunity, evidenced by the rejection of a secondary melanoma inoculated at a different site.
Thus, Tyeq cells functioned early to suppress the de novo priming of immunity against this
poorly-immunogenic tumor. However whether such tumor/self antigen-specific T cells could
develop into functional T cell memory remained unknown.

Removing T4 cells during tumor growth drives the natural development of
T cell memory

We recently asked whether tumor growth and Tyeq depletion could induce functional T cell
memory by studying immunity following curative surgery in mice bearing B16 melanoma
(15). As in our previous work (14), mice were inoculated with B16 melanoma, and then Tyeq
cells were eliminated with a CD4 depleting antibody. This strategy eliminates CD4*CD25* T
cells, as well as any CD4" precursors of induced Tyq cells. Following Tieq depletion,
intradermal primary tumors were surgically excised to attenuate T cell priming and to extend
the lifespan of the mice. Defining T cell memory was challenging because classical memory
T cells are defined based on their ability to persist following the clearance of antigen (4).
Because tumor/self antigens are never cleared, we chose to employ an operational definition
of memory as a functional T cell response present at least 1 month following surgery.

To assess the development of T cell memory, mice were challenged with B16 tumor cells in
the flank 1 month after surgery. Not surprisingly, mice that had received surgical treatment
alone were overtaken by secondary tumors. Mice that had received CD4 depletion alone, but
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no primary tumor, also succumbed to the second tumors. However, 40-60% of mice that had
been depleted of CD4 T cells during growth of their primary tumors were protected against
secondary tumors given as long as 2 months after surgery. Moreover, these mice developed
systemic immunity, evidenced by their rejection of lung tumors inoculated intravenously. Lung
tumors that were already established at the time of surgery were also rejected, indicating a
potential control of metastatic disease. Importantly, the depletion of CD8 T cells abrogated
this long-lived tumor protection, providing evidence of CD8 T cell memory.

These data established that growth of a poorly-immunogenic tumor could induce functional T
cell memory, although the specificity of these memory T cells was not known. Our previous
work had shown that short-term CD8 T cell responses in Tyeq-depleted, B16 melanoma-bearing
mice were specific for tumor/self antigens (14). Among these antigens were the melanosomal
membrane proteins TRP-2/DCT and gp100 (14). However, due to immunological tolerance
and antigen persistence, it seemed unlikely that T cells against melanosomal proteins would
be sustained following surgery. Because of this, we were surprised to find memory CD8 T cells
specific for both TRP-2/DCT and gp100 in mice with post-surgical immunity. TRP-2/DCT-
specific T cells were present at least 30 days post-surgery, and IFN-y and IL-2-producing
transgenic T cells specific for gp100 were found as long as 150 days following surgery. Thus
tumor-growth in the absence of Tyeq cells induced durable T cell memory against self antigens
expressed by the tumor.

Because little was known about T cell memory against tumor/self antigens, it was also
important to characterize these T cells with regards to their phenotype and localization. Based
on infectious disease models, the memory CD8 T cell compartment can be divided into two
phenotypically and functionally-distinct subpopulations: central (Tcy) and effector (Tgwm)
memory (16). In vitro generated Ty have been shown to be more potent than Tgy for
mediating tumor rejection (2). However, it was unknown whether tumor antigen-specific
Tcm could be generated in hosts with persistent peripheral self antigen. Interestingly, we found
that mice with post-surgical immunity developed a mixed population of antigen-specific
Tem and Tewm. Tem dominated the population and were found in lung as well as lymphoid
tissues, whereas T represented a smaller population that was only found in lymphoid tissues.
These data illustrated that T cells recognizing tumor/self antigens can develop into long-lived
populations of Tgp and T, even in the face of persistent antigen.

Finally, we observed thata high proportion of Teg-depleted tumor-excised mice also developed
an autoimmune response against normal melanocytes. This was evidenced by the outgrowth
of white hair (on black mice) beginning at the surgery site, and progressing to other locations
with time. This demonstrated that melanoma growth can induce an immune response against
normal host melanocytes, and that such autoimmunity is normally prevented by Tyeq cells.
Melanocyte-specific autoimmunity also provided further confirmation of a potent post-surgical
immune response against shared tumor/self antigens.

Implications

The study of post-surgical immunity has demonstrated that Teg cells are a fundamental obstacle
to the development of T cell memory in hosts bearing poorly-immunogenic tumors (Figure 1).
As seen in most patients with cancer, our model shows that surgery alone does not induce
protection against poorly-immunogenic tumors (Fig. 1; left). However in our model, surgery
in conjunction with the depletion of CD4* Treg Cells enables the development of long-lived
tumor protection and CD8 T cell memory, as well as melanocyte-specific autoimmunity (Fig.
1; right). The relative contribution of naturally-occurring and tumor-induced Tyeq cells to the
suppression of priming remains unknown, and future work will be required to characterize the
kinetics of Tyeq responses in tumor-bearing mice (Fig. 1). However, based on the robust and
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undiminished tumor protection that we observe following surgery, one could speculate that the
Treg cells that re-emerge in tumor-excised hosts are less suppressive than those that arise in
tumor-bearing hosts.

Treg depletion several days prior to surgery could potentially be modeled in the clinic for the
treatment of minimal residual disease. The best strategy for Ty depletion in vivo remains to
be determined, because cell-surface markers specific for Tyeq cells have remained elusive. Total
CD4 depletion is one possibility, as it clearly induces durable protective memory despite the
temporary loss of CD4 helper T cells which have been thought to be crucial for the development
of memory (17). Targeting CD25 with an IL-2-diptheria toxin fusion protein is another option
that has already proven effective for the depletion of Teq cells in the peripheral blood of cancer
patients (18). Alternatively, GITR stimulation and CTLA-4 blockade, which have been used
in conjunction with vaccines to induce T cell memory (7,8) may act directly or indirectly to
attenuate Tyeq function (11). Importantly, in this model of post-surgical immunity, the tumor
itself serves as the source of antigen, presumably priming T cell responses against a multitude
of tumor antigens. While our studies analyzed memory responses against tumor/self antigens,
itis likely that T cells specific for many antigens collectively provide tumor protection. Such
adiverse T cell repertoire may help to prevent the emergence of antigen loss variants, in contrast
to immunotherapies that target only single antigens.

Following Tyeq depletion and surgery, we observe long-lived tumor protection and persistent
populations of functional T¢p and Tep. This was somewhat unexpected in light of studies
with chronic viral infections, where a prolonged exposure to high loads of antigen leads to
dramatic functional impairments within the memory T cell compartment. Such responding
CD8 T cells progressively lose functions and are eventually deleted (3,19). However, it is
important to note that this is not always the case. For example we have previously observed in
murine gammaherpesvirus (MHV-68) infection, that most antiviral effector functions are intact
(20). In fact, CD8 T cells from MHV-68 persistently infected mice mediate more efficient
control of a challenge infection compared to cells from mice that have cleared the virus (20).
Therefore some memory cells generated in the face of persisent antigen may actually be better
adapted for long-term immune surveillance. Memory T cells in mice with post-surgical
immunity might also possess this capability.

In summary, there is now convincing evidence that functional CD8 T cell memory can be
generated against tumor/self antigens. In contrast to studies which employ active
immunization, our study shows that poorly-immunogenic tumors themselves can induce
tumor-specific T cell memory after the hurdle of T,eq suppression is overcome. This work
stresses the importance of exploring immunotherapies in conjunction with Teq depletion and
the surgical treatment of cancer to provide long-lived and meaningful control of recurrent and
metastatic disease.
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Figure 1. Model for the generation of post-surgical tumor protection and T cell memory in hosts
bearing poorly-immunogenic tumors

Surgery alone is insufficient for providing immunity against poorly-immunogenic tumors
which do not naturally prime functional CD8 T cell responses, and may instead induce Tyeg
development (left panel). However, the depletion of CD4 T cells eliminates natural and induced
populations of Tyeq cells, thereby enabling the priming of protective anti-tumor immunity
during growth of a poorly-immunogenic tumor (right panel). This tumor-primed immune
response develops into functional CD8 T cell memory against tumor/self antigens following
surgical excision of the primary tumor (right panel). CD4 depletion in tumor bearing mice also
leads to concurrent autoimmunity against the normal tissue counterpart of the tumor (right
panel). This model demonstrates that Tyeq depletion in hosts bearing poorly-immunogenic
tumors is sufficient for the generation of CD8 T cell memory following surgical tumor excision
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