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ABSTRACT A “most probable state” equilibrium statisti-
cal theory for random distributions of hetons in a closed basin
is developed here in the context of two-layer quasigeostrophic
models for the spreading phase of open-ocean convection. The
theory depends only on bulk conserved quantities such as en-
ergy, circulation, and the range of values of potential vor-
ticity in each layer. The simplest theory is formulated for a
uniform cooling event over the entire basin that triggers a
homogeneous random distribution of convective towers. For a
small Rossby deformation radius typical for open-ocean con-
vection sites, the most probable states that arise from this
theory strongly resemble the saturated baroclinic states of the
spreading phase of convection, with a stabilizing barotropic
rim current and localized temperature anomaly.

Open-ocean deep convection, which occurs in the Labrador
Sea, the Greenland Sea, and the Mediterranean Sea in the
current world climate, is an important phenomenon that
strongly influences the thermohaline circulation governing the
poleward transport of heat in the ocean. These basins with
open-ocean convection are characterized by a small Rossby
deformation radius compared with the basin scale so that
rotational effects become important on comparatively small
length scales. For a recent comprehensive survey, see the
review in ref. 1.

One important aspect of open-ocean convection is the
spreading of heat and vorticity throughout the ocean inte-
rior in response to strong surface cooling. It is obviously an
interesting problem to develop simplified statistical theories
that predict the extent and structure of the spreading phase
of open-ocean convection without resolving the fine-structure
details of the dynamics but rely only on bulk conserved
quantities such as energy and circulation. Such theories po-
tentially can yield effective parametrization of the mesoscale
effects of open-ocean convection in ocean general circulation
models.

Here, we develop an equilibrium statistical model for the
spreading phase of open-ocean convection and analyze its pre-
dictions in the context of localized temperature anomalies,
which are called hetons (2), for the two-layer quasigeostrophic
equations (3-5). In this model, random distributions of ele-
mentary hetons mimic the geostrophically balanced response
to convective mixing forced by surface cooling. The hetons
model the localized exchange of mass between the two layers
in the fluid, which raises the interface between the colder wa-
ter below and the warmer water above. We find that the equi-
librium statistical theory predicts a cold temperature anomaly
confined within a barotropic rim current, which is in quali-
tative agreement with numerical integration of heton models
(3-9).

After preliminary background discussion on the two-layer
quasigeostrophic equations, we introduce the “most proba-
ble state” equilibrium statistical theory. This theory involves
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a “maximum-entropy” principle that utilizes only a few judi-
ciously chosen physical constraints involving the total energy,
the total circulation in each layer, and the a priori extrema of
potential vorticity in each layer. The statistical theory yields
specific equilibrium solutions of the inviscid two-layer quasi-
geostrophic equations that represent the most probable mean-
field large-time response to a statistical ensemble of hetons
generated by a surface cooling event. Conditions guaranteeing
the nonlinear (and linearized) stability of the mean-field sta-
tistical steady states are applied throughout the paper. There
is both rigorous mathematical (6, 7) and computational ev-
idence in more idealized settings (8, 9) for the validity and
utility of the predictions of such a statistical theory employing
these constraints.

Two-Layer Quasigeostrophic Formalism

Specifically, the quasigeostrophic fluid model treated in this
paper is comprised of two stably stratified layers that evolve
in a unit basin with extent —1/2 <x <1/2 and —1/2 <y <
1/2. The two layers are assumed to have constant density and
identical depth so that F, the “rotational Froude number,” is
the same for both layers (10). The potential vorticities of the
upper and lower layers, ¢q; and g,, and the upper and lower
layer stream functions, ¢, and i,, are coupled through the
relations

@1 =AYy — F(¢hy — 1)
G = Ay + F(Py — 4,).

The nondimensional parameter F is the square of the ratio of
length scales, F = 1/L%, where Ly is the Rossby deformation
radius nondimensionalized by the (unit) basin length scale.
The dynamic equation for the two-layer fluid is expressed
by the material conservation of potential vorticity in each
layer,

(1]

aq,

Jat
aq,

Jt

together with the conditions of no normal flow at the lat-
eral boundaries of the basin. Here, and throughout the pa-
per, upper-layer quantities are designated by subscript 1, and
lower-layer quantities by subscript 2.

It is well known that the system of equations in 2 conserves
the energy,

+ Vi - Vg =0
[2]
+ Vi, - Vg, =0,

2
E=-3 [aquaa 31

j=1

the circulations in each layer,
r=[aqaa j=12 (41
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and, indeed, any arbitrary function G of the potential vorticity
in each layer,

/g(q/.)dA, ji=1, 2. [5]

This last family of conserved quantities in 5 is a consequence
of the material conservation of potential vorticity in each
layer.

It is natural to decompose the stream functions of a two-
layer fluid into barotropic and baroclinic components, ¢
and 'J/Ta

" :‘/’1+¢’2
=T
[6]
bt
T \/E .

The barotropic component therefore measures the part of the
flow that is common to both layers, while the baroclinic com-
ponent measures the part of the flow due to vertical shear.

The temperature anomaly can be shown to depend entirely
on the baroclinic component of the stream function (10),

— Fr. [7]

Thus, a perturbation that pushes the fluid interface upward
and establishes a local maximum displaces the warmer fluid
in the upper layer with colder fluid from the lower layer, low-
ering the average temperature in the fluid column. This con-
figuration, which is essentially a heton, is associated with a
cyclonic vortex in the upper layer and a matching anticyclonic
vortex in the lower layer.

The energy in a two-layer model, with nonzero F, can be
partitioned among three distinct components, one that is en-
tirely barotropic—the barotropic kinetic energy—and two that
depend on the baroclinic fields—the baroclinic kinetic energy
and the potential energy. Given the decomposition defined
above in 6, the total energy, E, is conserved,

E=Ey,+K; +P, [8]

where the energy components are defined by
1
Barotropic Kinetic Ey = 5 / [Vipg|?
S 1 2
Baroclinic Kinetic E; = 3 |[Vipr| 91
Potential P =F / s

The Link Between Equilibrium Statistical Theories and
Heton Models for Open-Ocean Convection

An elementary heton (2) is a purely baroclinic structure with
potential vorticity having the form

q:(x) = Agq;5,,
¢ (x) = (_qu')ﬁx,:

where Ag; > 0 is the strength of the ith heton, x; = (x;, y;)
is a random location in the basin, and 6, is the Dirac delta
function at x. Such elementary hetons in 10 are introduced
in ref. 3 to model the geostrophically balanced response to
the small-scale convective mixing resulting from local surface
cooling.

In basins with small Rossby deformation radii—i.e., with
Lp << 1, where Ly = /1/F, which is typical in regions of
open-ocean convection—convective mixing yields local ther-
mal anomalies and flow fields that are strongly confined within

[10]
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the distance O(Ly) to the vicinity of the location x;. Follow-
ing the exchange of mass between the layers, the upper layer
flow is cyclonic while the lower layer flow is anticyclonic. The
effect of surface cooling over the basin is therefore well mod-
eled by a superposition of heton structures in 10 with constant
strengths, Ag; = AQ, independent of i, placed at random lo-
cations x; separated by L.

The heton strength, AQ, and the total amount of potential
vorticity introduced into each layer of the fluid, AT, are de-
termined by the strength and duration of the surface cooling

event, so that
/41=_/Q2=Ar- [11]

Thus, AT" depends on the total buoyancy lost over the cooling
period. The statistical theory is based on these quantities, AQ,
and AT, together with the total energy, E, in the flow. We refer
to ref. 3 for the detailed analytical formulas associated with
the above heton model.

The link between the heton model and the equilibrium sta-
tistical theory is established by calculating the prior probability
distributions for the potential vorticity in each layer, IIj;, that
are compatible with the heton forcing strength, AQ, and the
total circulation, AI', which is determined by a standard maxi-
mum entropy calculation (11). The result is the two probability
densities for the microscale distribution of hetons,

e (X)

x 0; .

HO}()\) = A Q,+ , J= 17 25 [12]
Je v IQF(/\)d/\

where I}(A) represents a uniform distribution with unit area
over the interval [a, b], and Q;, and Q;_ are the extrema for
the potential vorticity in the jth layer induced by the heton
forcing. In 12 the two constants, y; (with y, = —v,), are de-
termined uniquely by the conditions

/)\ IT5,(A) dA = (1AL, j=1, 2. [13]

The probability measures, IIj;(1), therefore encode the least-
biased information given both the amplitude, AQ, and the to-
tal circulation strength, AT, of the hetons.

We can interpret the prior probability measures in the fol-
lowing manner: pick the locations, x;, at random in the basin
and pick the heton strengths, Ag; at random from the prob-
ability distributions, II5;(A), and then the law of large num-
bers (12) guarantees that the probability measures, ITj; (1) and
IT§,(A), given uniformly over the basin are well approximated
by superpositions of random heton structures,

1 N
91 N l§=1 qi X;
[14]

1 N
= — E —Agq;)é
q2 N i=1( ql) X; 2

for large enough values of N.

A schematic of the initial random heton ensemble is shown
in Fig. 1. A measure of the statistical spreading of hetons is
given by

ATl
20" L7, [15]

which roughly quantifies the percentage area of the basin do-
main covered by hetons, so that 0 L, 1 (see, for example,
Fig. 1).
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Distribution of Hetons in the Initial Ensemble
of a Two-Layer QG Fluid

Upper Layer
Fluid Interface

Lower Layer

A Q - strength of an individual heton
(proportional to displacement of fluid interface)

AT - total strength of entire heton ensemble

AT Lz Average area of basin domain
-r that contains hetons

AQ

FiG. 1. A schematic showing the distribution of hetons in the ini-
tial ensemble. The heton strength parameter, AQ, is proportional
to the displacement of the interface in a two-layer quasigeostrophic
model. The length parameter, L3 = AI'/AQ, measures the average
area of the unit basin that is initially seeded with hetons.

The Langevin Equilibrium Statistical Theory

Equilibrium statistical theories predict the long-term struc-
tures that arise at statistical equilibrium based on the con-
served quantities contained in the initial flow. The key obser-
vation underlying the Langevin statistical theory is that physi-
cally useful results may be derived without accounting for all
the vortical invariants listed in 5. Recent numerical and theo-
retical considerations for damped and driven flows give strong
support for utilizing only a few robust constraints such as the
vortex extrema in each layer (8, 9), which for the heton en-
semble described above are

upper layer extrema 0, AQ [16]
lower layer extrema —AQ, 0.

Here, we develop a statistical theory based on only a few con-
straints, i.e., from the energy, E, in 3, the circulations, AI', in
4, and the extrema of the potential vorticities, in 16 (6, 7).
We achieve this through a coarse-graining procedure that
replaces the fine-scale structure of the potential vorticity fields
with statistical descriptions in terms of one-point probability
distributions, p;(x, A) and p,(x, A), one for each layer, where
the parameter A varies over the range of potential vorticities.
For any point x in the basin domain and any two numbers,
a; and B;, p;(x, A) describes the probability distributions of

7 . N .
potential vorticity in each layer, i.e.,

B;
Prob{e; q;(x) Bj}:/ pi(x, A)dA, j=1,2. [17]

As the fluid evolves into ever finer scales, which is typical
of two-dimensional fluids, dominant mean-field potential vor-
ticities, g, and g,, emerge on the largest scale, which are the
solutions observed at long times. The one-point distributions
and the most probable mean-field quantities are related by
the Mean-Field Equations,

g = / Ap;(x, A)dA, [18]

which together with the vorticity-stream function relations, 1,
and the boundary conditions of no normal flow gives a cou-
pled, nonlinear elliptic equation for the mean-field stream
functions, ; and i,.
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To calculate the most probable state that emerges from a
microscale distribution of hetons, we compute the one-point
probability distributions, p, and p,, that maximizes the Shan-
non entropy, S, subject to the prior distributions in each layer,
115, (1) and TIg,(A) (11),

S(py5 P2 HSD H;;z

2

_ pj(x’ A)

=y o 22N gaa o
flffp/(x )in 15, (A)

The distributions p, and p, are constrained by the energy, in
3, and probability measure definition, in 17.

The maximization of 19 subject to the constraints of en-
ergy and probability measure is solved by the method of La-
grange multipliers in the calculus of variations. We introduce
the multiplier 6 associated with the energy constraint. A stan-
dard calculation yields that for the most probable state, the
probability densities in each layer take the form,

"M I (A) .
pj(x,A) = — o = 1,2. [20]
[ e IT5;(X) dA

The most probable coarse-grained state is found by substi-
tuting the probability distribution in 20 into the mean-field
potential vorticities in 18. Upon substitution of the prior dis-
tributions shown in 12, the mean-field equations for a random
heton ensemble in initially quiescent flow take the following
form in the Langevin statistical theory,

7= (14 £ 20~ )
=AY, = F() = )
T

[21]

which, along with the boundary conditions of no normal
flow are a pair of coupled, nonlinear elliptic equations
for the mean-field stream functions, Ji' Here, we have
L[x] = coth[x] — 1/x, which is known as the Langevin func-
tion. Below we calculate the most probable states for the
Langevin statistical theory by a maximum-entropy numerical
procedure due to ref. 13.

Most Probable States for the Pure Heton Case

In this section we present the predictions of the equilibrium
statistical theory for the spreading phase of a statistical en-
semble of hetons distributed uniformly throughout a quies-
cent basin. Although the hetons are purely baroclinic and
their placement is homogeneous, the maximum-entropy solu-
tion is typically a central monopole asymmetrically distributed
between the two layers with roughly 90% of the energy budget
being barotropic. The temperature anomaly, which is defined
in 7, forms a relatively cool core that lies within the barotropic
vortex, showing that hetons tend to cluster in the basin center,
“governed” by the barotropic flow.

The scale of the vortices, both barotropic and baroclinic, are
determined by two nondimensional length scales: L, = /1/F,
the Rossby deformation radius, and L; = \/AI'/AQ, which
measures the density of hetons in the initial ensemble. For
small values of the Rossby deformation radius, Ly << 1,
which is typical for the sites of open-ocean convection (1), the
statistical equilibrium flows establish a barotropic governor,
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which is a barotropic rim current that confines the tem-
perature anomaly and suppresses baroclinic instability. For
increasing L, the barotropic governor remains in place and
provable nonlinear stability is established for a large range
of L. For all solutions provided in this paper the heton
strength is AQ = 2.0, and the Rossby deformation radius is
Ly =0.05.

For small deformation radius, low heton density, L, = 0.19,
and moderate energies, E < 0.00017, the most probable states,
which are calculated by solving the coupled mean-field equa-
tions in 21 for the upper- and lower-layer stream functions,
are asymmetric monopoles. Thus, a random bombardment
of baroclinically symmetric hetons in a uniform basin cool-
ing event yields, at statistical equilibrium, an asymmetric ar-
rangement of potential vorticity between the two layers. The
potential vorticity accumulates in the center of the domain,
with a broader cyclonic vortex in one layer and a more con-
centrated cyclonic vortex in the other, with nearly 90% of the
energy budget being barotropic.

An example for £ = 0.000056 is shown in Fig. 2. A more
concentrated vortex appears in the upper layer and a broader
vortex in the lower layer. The barotropic and baroclinic
portions of the stream function show that the asymmet-
ric monopole establishes, in the absence of any preexisting
barotropic flow, its own barotropic governor. The extent of
the barotropic stream function is broader than the baroclinic
stream function, an effect that is illustrated by the relative
widths of the stream function surfaces. Since the tempera-
ture anomaly is proportional to the baroclinic stream field by
7, this shows that the heat in the statistical equilibrium so-
lution accumulates in a compact region in the center of the
basin.

Effect of Heton Density on Most Probable States

For increasing L,—i.e., raising the heton density in the orig-
inal ensemble—both the barotropic and baroclinic portions
of the equilibrium solutions spread. As the flow extends to
the basin scale, the portion of the energy that is barotropic

Barotropic Streamfunction

-05 -05
Baroclinic Streamfunction
-3
x 10

Fic. 2. Barotropic and baroclinic stream functions for the
maximum-entropy asymmetric monopole for L, = 0.05, L, = 0.19,
and E = 0.000056.
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Barotropic Potential Vorticity

-0.5 -05
Baroclinic Potential Vorticity

-05 -0.5

F16. 3. Barotropic and baroclinic potential vorticity surfaces for
Ly =0.05, E =0.000156, and L; = 0.39. This example is nonlinearly
stable.

decreases slightly, and provable nonlinear stability may be es-
tablished for large enough L, (14).

The most probable barotropic and baroclinic potential vor-
ticity fields for deformation radius, L = 0.05, and energy,
E = 0.000156, are shown in Fig. 3 for L; = 0.39. In contrast
to the example shown in Fig. 2, in which the potential vortic-
ity fields are concentrated in the center of the basin, here the
barotropic and baroclinic components of the potential vortic-
ity extend to the basin scale. However, even as the equilibrium
solutions spread with increasing L, the barotropic portions of
the flow circumscribe the baroclinic fields and thus establish
barotropic governors. For the example provided in Fig. 3, the
length scale L is sufficiently large to ensure provable nonlin-
early stability.

Temperature anomalies for the same deformation radius
and energy are shown in Fig. 4 A-C for L; = 0.19, 0.27, and
0.39. An additional example is shown in Fig. 4D for a higher
value of L; = 0.5, and energy, E = 0.0011, which is prov-
ably nonlinearly stable. At small L, the hetons cluster into a
sharply localized peak in the center of the basin. The fluid that
surrounds the cold core is relatively flat, with an even distribu-
tion of heat. As the density of hetons in the initial ensemble
increases, the magnitude of the anomaly decreases, the width
of the core spreads, and the heat content in the surrounding
flow increases, but remains uniformly distributed. The exam-
ple shown in Fig. 4D demonstrates that a flow with significant
cool thermal anomalies in the basin center can be nonlinearly
stable (14).

Summary and Concluding Discussion

A “most probable state” equilibrium statistical theory for the
spreading phase of open-ocean convection has been intro-
duced and developed within the context of heton models for
two-layer quasigeostrophic flow. The “most probable” equi-
librium statistical states at large times are predicted through
a maximum-entropy principle involving only a few judiciously
chosen conserved quantities for the inviscid dynamics: energy,
circulation, and extrema for potential vorticity in each layer.
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Temperature Anomalies
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FiGg. 4. Temperature anomalies for the asymmetric monopoles
with L, = 0.05, E = 0.000156, and L, = 0.19 (A), 0.27 (B), and
0.39 (C). The final example in D has £ = 0.0011 and L, = 0.5. The
two examples in the bottom row are both nonlinearly stable.
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The statistical theory predicts the coarse-grained mean-field
response to a random cooling event over the entire basin as
represented by a random heton distribution with a prescribed
maximum amplitude, AQ, and circulation anomaly, AI'.

For the situation with a small Rossby deformation radius
compared to the basin scale, Ly = 0.05, the typical most
probable states are asymmetric monopoles with the over-
whelming energy contribution being barotropic (85-90% of
the energy budget) and the temperature anomaly confined
within the region of strong barotropic flow. Thus, the sta-
tistical theory automatically predicts a confined temperature
anomaly with a sheared rim current in qualitative agreement
with numerical integration of heton models (3, 4). Also, the
nonlinear stability of this predicted structure for fixed en-
ergy depends crucially on the size of the nondimensional
parameter L, introduced in 15 with larger values yielding
stability.

An important situation for further study involves the ad-
dition of a statistical ensemble of hetons, mimicking a cool-
ing event, to a preexisting barotropic flow. Basin topography
plays a significant role in the preconditioning for open-ocean
convection (15, 16). An important future research direction is
the influence of topography on the predictions of the equi-
librium statistical theory as well as more general preexisting
basin-scale flows. Another important research direction within
the context of the two-layer models presented here involves
the realizability and metastability of these equilibrium statisti-
cal steady states with damping and forcing representing wind
stress. Such studies have already been developed elsewhere in
simplified contexts (8, 9).
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