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The complexes of the respiratory chain represent mosaics of nuclear and mitochondrially encoded components. The
processes by which synthesis and assembly of the various subunits are coordinated remain largely elusive. During
evolution, many proteins of the mitochondrial ribosome acquired additional domains pointing at specific properties or
functions of the translation machinery in mitochondria. Here, we analyzed the function of Mrpl36, a protein associated
with the large subunit of the mitochondrial ribosome. This protein, homologous to the ribosomal protein L31 from
bacteria, contains a mitochondria-specific C-terminal domain that is not required for protein synthesis per se; however, its
absence decreases stability of Mrpl36. Cells lacking this C-terminal domain can still synthesize proteins, but these
translation products fail to be properly assembled into respiratory chain complexes and are rapidly degraded. Surpris-
ingly, overexpression of Mrpl36 seems to even increase the efficiency of mitochondrial translation. Our data suggest that
Mrpl36 plays a critical role during translation that determines the rate of respiratory chain assembly. This important
function seems to be carried out by a stabilizing activity of Mrpl36 on the interaction between large and small ribosomal

subunits, which could influence accuracy of protein synthesis.

INTRODUCTION

The respiratory chain of mitochondria allows eukaryotes to
use oxidative phosphorylation (OXPHOS) as a highly effi-
cient way to generate ATP. The complexes driving oxidative
phosphorylation are a mosaic of proteins encoded by the
nuclear and the mitochondrial DNA. Therefore, assembly of
the respiratory chain and the ATPase requires not only
expression and import of many nuclear-encoded proteins
but also translation of mitochondrially encoded proteins.
The mitochondrial genome encodes only a handful of pro-
teins. The effort to express this small number of components
in the mitochondrial matrix is immense, and even in simple
eukaryotes such as Saccharomyces cerevisine >250 nuclear
encoded proteins are required for mitochondrial gene ex-
pression (Sickmann et al., 2003). Dysfunction of any of these
components can lead to respiratory deficiency, which is
often causative for human diseases (Shoubridge, 2001;
DiMauro and Schon, 2008).

The small mitochondrial genome of bakers yeast encodes
rRNAs, tRNAs, and eight major polypeptides from which
seven are core subunits of the OXPHOS complexes: Cox1,
Cox2, Cox3 of cytochrome ¢ oxidase (COX); cytochrome b of
the bc, complex; and Atp6, Atp8, and Atp9 of the F,F -
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ATPase. To avoid misfolding and aggregation of these very
hydrophobic proteins, membrane insertion occurs in a co-
translational manner. In contrast to ribosomes of the bac-
terial and eukaryotic cytosol, mitochondrial ribosomes in
bakers yeast are tightly and permanently coupled to the
membrane into which the translation products are inserted
(Fiori et al., 2003; Jia et al., 2003; Ott ef al., 2006). The insertion
machinery of the inner membrane is physically attached to
the large subunit of the ribosome to facilitate cotranslational
insertion. Oxal is a central component of this insertion ma-
chinery. This multispanning membrane protein contains a
C-terminal domain that binds to ribosomes in close proxim-
ity to the polypeptide exit tunnel (Jia ef al., 2003; Szyrach et
al., 2003). Mbal, a peripheral membrane protein, functions
as a ribosome receptor that coordinates the positioning of
the ribosomal exit tunnel to the insertion site of the inner
membrane (Ott et al., 2006). Once the mitochondrially en-
coded core subunits are inserted into the inner membrane,
they associate with nuclear-encoded subunits in a stepwise
assembly process that is coordinated by numerous assembly
factors (Schulte, 2001; Carr and Winge, 2003; Ackerman and
Tzagoloff, 2005; Herrmann and Funes, 2005; Fontanesi et al.,
2008).

Presumably due to its specialization on the synthesis of
very few proteins, the mitochondrial translation machinery
strongly differs from those of the bacterial and eukaryotic
cytosol. Also, translational control is carried out by a very
distinct system in mitochondria. At least in baker’s yeast, a
specific membrane-associated translational activator is re-
quired for translation of certain mRNAs (Costanzo and Fox,
1990; Naithani et al., 2003; Towpik, 2005). These translational
activators might in addition play a role in the spatial and
temporal organization of mitochondrial protein synthesis,
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but their precise function remains unclear. Similarly, the
mitochondrial ribosome is very different from its ancestral
bacterial type ribosome. Generally, mitochondrial ribosomes
underwent major remodeling in the course of evolution and
almost doubled their protein mass, in part by addition of
several novel ribosomal proteins (Sharma et al., 2003). Con-
versely, many conserved ribosomal proteins were extended
by new domains, implying new functional features to meet
the specific requirements of the organelle (Schneider and
Ebert, 2004; Smits et al., 2007). However, the relevance of
these additional domains is not known.

One protein that acquired an extra domain during evolu-
tion is Mrpl36 (previously also called MrpL36), a component
of the large ribosomal subunit (Williams ef al., 2004). This
protein consists of three parts: 1) an N-terminal mitochon-
drial targeting sequence that is proteolytically removed in
the matrix; 2) a conserved domain that is similar to L31, a
bacterial protein of unknown function that is loosely asso-
ciated with the ribosome (Eistetter et al., 1999); and 3) a
C-terminal extension domain (CE domain) that is only
present in mitochondria but not in bacterial L31 proteins
(Williams et al., 2004). Deletion of the entire protein leads to
a respiration deficient phenotype. Interestingly, Mrpl36 was
initially identified as a high copy suppressor of specific cox2
mutants (Bonnefoy et al., 2001). Genetic analyses suggested
two distinct functions of the mature Mrpl36 protein: the L31
domain is necessary for respiratory and translational activity
of yeast mitochondria. The CE domain, however, is dispens-
able for respiratory activity but might play some unknown
function in translational regulation. Even when expressed
on its own, this domain was found to be sufficient to sup-
press the defects of specific cox2 mutants (Williams et al.,
2004). However, it remains still unclear how overexpression
of a single ribosomal protein can help to overcome respira-
tory deficiency in these suppressors.

In this study, we analyzed the role of Mrpl36 for protein
synthesis in mitochondria. We find that deletion of the CE
domain does not affect protein synthesis per se. However,
the absence of this domain leads to decreased amounts of
Mrpl36 and inhibits productive folding and assembly of
translation products. This results in rapid degradation
of translation products and severe defects in the biogenesis
of respiratory chain complexes, in particular of cytochrome
c oxidase. In contrast, overexpression of Mrpl36 seems to
even increase efficiency of translation. Interestingly, Mrpl36
associates with mitochondrial ribosomes in a dynamic
manner and contributes to the interaction between both
ribosomal subunits. Our observations are consistent with
Mrpl36 being important for productive protein synthesis
in mitochondria because it determines whether transla-
tion products are integrated into functional complexes or
turned over by proteolysis.

MATERIALS AND METHODS

Yeast Strains and Growth Media

All strains used in this study were isogenic to wild-type strain W303-1A,
except for the strain Aarg8/cox2::ARG8™ (Bonnefoy and Fox, 2000), which was
isogenic to D273-10B. For generation of the mrpl36AC mutants, the codons for
amino acids 116-177 of the MRPL36 gene were replaced by a stop codon
followed by either a HIS3 or a kanamycin resistance cassette. Yeast cultures
were grown at 30°C in lactate medium, YP (1% yeast extract and 2% peptone)
medium supplemented with 2% of either galactose (Gal) or glucose (D), or
minimal medium supplemented with 20 ug/ml adenine, histidine, uracil, and
tryptophan, and 30 ug/ml leucine and lysine. Mitochondria were isolated as
described previously (Daum ef al., 1982). Mitochondrial DNA stability was
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estimated by plating identical amounts of YPD-grown cells on plates contain-
ing either 2% glucose or 2% glycerol and comparing the numbers of colonies.

Construction of Plasmids

For overexpression of Mrpl36, Mrpl36-1xHA, Mrpl36'-115, and Mrpl36!-11°-
1xHA, the according fragments were cloned into the EcoRI and Sall sites of
the 2u plasmid pYX242 (Novagen, Madison, WI) containing the triosephos-
phate isomerase (TPI) promoter. To express the CE domain of Mrpl36, we
fused the mitochondrial targeting sequence of Oxal-*® to the N terminus of
Mrpl36%5-177. For in vitro transcription/translation, the open reading frames
of MRPL36 and MRPL3 were cloned into EcoRI and Sall sites of pGEM4
(Promega, Madison, WI).

Labeling of Mitochondrial Translation Products In Vivo

Cells were grown on minimal medium containing either 2% galactose or
raffinose. A cell amount corresponding to an ODsgs ,,,, of 0.5 was collected,
washed twice with growth medium, and incubated at 30°C for 10 min in the
same buffer supplemented with 0.15 mg/ml of all amino acids except methi-
onine. After inhibiting cytosolic protein synthesis with 0.15 mg/ml cyclohex-
imide, labeling of mitochondrial proteins was started by addition of 10 uCi
of[*5S]methionine. Labeling was stopped after the indicated time points by
addition of lysis buffer (300 mM NaOH, and 180 mM B-mercaptoethanol).
After incubation for 15 min on ice, proteins were precipitated with 12%
trichloroacetic acid. Pellets were resolved in sample buffer, subjected to SDS-
polyacrylamide gel electrophoresis (PAGE) on 16:0.2% acrylamide/bisacryl-
amide gels (Preuss ef al., 2005) and analyzed by autoradiography and Western
blotting.

Fractionation of Mitochondrial Ribosomes on Linear
Sucrose Gradients

Isolated mitochondria (1 mg) were lysed for 30 min at 4°C in 1% dodecyl-
maltoside, 25 mM KCl, 1 mM phenylmethylsulfonyl fluoride (PMSF), and 20
mM HEPES/KOH, pH 7.4. In some experiments, either 5 mM EDTA and 80
mM puromycin or 5 mM MgCl, and 1 mg/ml chloramphenicol were in-
cluded. After a clarifying spin for 15 min at 25,000 X g at 4°C, the extract was
layered onto a continuous 4 ml of sucrose gradient (10-30% sucrose in 0.1%
dodecyl-maltoside, 25 mM KCl, 1 mM PMSF, and 20 mM HEPES/KOH, pH
7.4) and centrifuged for 1 h at 257,000 X g in an SW60 Ti rotor (Beckman
Coulter, Fullerton, CA) at 4°C. Sixteen fractions were collected, and proteins
were precipitated with 12% trichloroacetic acid. The resulting pellets were
dissolved in sample buffer and separated by SDS-PAGE. Alternatively, a
crude ribosomal fraction was obtained by centrifugation through a 1.2 M
sucrose cushion. After centrifugation for 1 h at 190,000 X g at 4°C in a TLA100
rotor (Beckman Coulter), the pellets were dissolved in sample buffer, and the
supernatant was precipitated with 12% trichloroacetic acid.

Separation of Assembled Respiratory Complexes by Blue
Native (BN)-PAGE

Isolated mitochondria were resuspended in solubilization buffer (50 mM
NaCl, 50 mM imidazole, 2 mM 6-aminohexanonic acid, and 1 mM EDTA) and
lysed for 15 min at 4°C by addition of 1% dodecyl-maltoside or 2.6% digito-
nin, respectively (Wittig et al., 2006). After a clarifying spin for 15 min at
25,000 X g, the lysate was supplemented with 5% glycerol and subjected to a
4-13% polyacrylamide gradient gel at 4°C. The gel was either stained with
Coomassie Brilliant Blue or blotted onto polyvinylidene difluoride (PVDF)
membrane and analyzed by Western blotting.

Miscellaneous

Determination of enzyme activities of the respiratory chain, labeling of mito-
chondrial translation products, and import of precursor proteins in isolated
mitochondria has been described previously (Preuss et al., 2005). Immuno-
electron microscopy of chemically fixed cells was performed as described
previously (Vogel et al., 2006). The antibody against the hemagglutinin (HA)-
tag was purchased from Covance Research Products (Princeton, NJ). The
antibody against Mrpl36 was obtained by immunizing a rabbit with purified
full-length Mrpl36. Western blotting signals were quantified using AIDA
software (Raytest, Straubenhardt, Germany).

RESULTS

Both Domains of Mrpl36 Are Critical for Efficient
Respiratory Growth

The mature protein Mrpl36 consists of two domains (Figure
1A). The N-terminal region is similar to bacterial L31 pro-
teins (Williams ef al., 2004). The C-terminal region is not
present in bacteria and represents a C-terminal extension
domain (CE domain) with high probability to form a coiled-

Molecular Biology of the Cell



Mrpl36 in Mitochondrial Translation

Figure 1. Both domains of Mrpl36 are critical A CE domain mu§
for respiratory growth. (A) Schematic repre- 3
sentation of Mrpl36 and mrpl36AC. The pre- g Glycerol
dicted probabilities to form coiled-coil struc- Mrpl36 g wt + empt
! y vector
tures (Lupas, 1997) are expressed in percentage. B g
. . . . B Amrpl36 + empty vector
MTS, mitochondrial targeting signal. (B) Dele- 136AC ]
. . mrpisbi + empty vector
tion of the CE domain of Mrpl36 reduces growth . . . E
on nonfermentable carbon sources. The indicated " T20TPLOxal " MRIBR ™™ 16
cells were grown in full medium containing ga- s B P + 2p TPI Mrpi36™"*-1xHA g
lactose to log phase. Serial 10-fold dilutions were P — + 24 TPI Mrpl36-1xHA
spotted on YP plates containing 2% glucose or
o, 1 O
2% glycerol, and pla.tes were incubated at 30 C Glucose
for 2 and 4 d, respectively. (C) The L31 domain is &8
sufficient to support respiratory growth. The in- W Er e—— emply vector
dlcate_d_strams were grown on synthetl.c medium Amrpl36 s - 24 TPI Oxat"**-Mrpl36* """
containing galactose to log phase. Serial 10-fold o s o W o W 24 TPI Mrpl36" - 1xHA
dilutions were spotted on synthetic media con- mp - - =+ 2uTPI Mrpl36-1xHA
1INni 0, 0,
taining 2% glucose or 2% glycerol, and plates S —

Glycerol

were incubated at 30°C for 3 and 6 d, respectively.
(D) Steady-state levels of the different Mrpl36
forms. Lysates of the indicated cells grown on ga-
lactose-containing media were prepared and ana-
lyzed by Western blotting using antibodies against
Tom70 (loading control), the HA-tag, and Mrpl36.
Black arrow indicates Mrpl36AC, and white arrow
indicates Mrpl36AC-HA. Asterisk (*), possible deg-
radation product.

coil structure. To assess the relevance of this mitochondria-
specific domain, yeast mutants were constructed that did
not express Mrpl36 or only a truncated version lacking the
C-terminal 62-amino acid residues (mrpl36AC). Mrpl36-defi-
cient cells were not able to grow on nonfermentable carbon
sources such as glycerol (Figure 1B, right). In contrast, the
mrpl36AC mutant could respire but exhibited a pronounced
growth defect. This defect could not be explained by an
increased instability of the mitochondrial DNA, as the frac-
tion of cells unable to grow on a nonfermentable carbon
source was <5% (data not shown).

The growth defect of mrpl36AC cells could either be the
consequence of a missing function of the CE domain in the
mutant or, more indirectly, a negative effect of the truncation
on the L31 domain, or both. To test which domain is re-
quired for efficient respiratory growth, we expressed C-
terminally HA-tagged versions of Mrpl36AC and Mrpl36
from a high copy plasmid by using the constitutive pro-
moter of the TPI in mrpI36AC cells. The growth defect of
mrpl36AC cells on glycerol was corrected when either full-
length Mrpl36-HA or Mrpl36AC-HA were expressed from
the plasmids. In contrast, overexpression of a mitochondri-
ally targeted CE domain did not improve respiratory growth
(Figure 1C). From this we conclude that the L31 domain is
required, and if overexpressed also sufficient, to support
respiratory growth, in line with previous results (Williams et
al., 2004). Cells expressing the plasmid-borne Mrpl36
showed in comparison to wild-type cells clearly increased
levels of Mrpl36. The deletion of the CE domain leads to a
profound destabilization of Mrpl36, so that even upon over-
expression from a plasmid, Mrpl36AC did not reach the
level of the endogenous protein (Figure 1D). In summary,
our data indicate that the L31 domain is required for respi-
ratory growth, whereas the CE domain is required for sta-
bility of Mrpl36 and possibly other functions.

mrpl36AC Cells Exhibit Reduced Translation Efficiency
and Stability of Mitochondrially Encoded Proteins

Mrpl36 is a ribosomal protein, suggesting a function of both
domains in mitochondrial protein synthesis. We therefore
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tested whether deletion of the CE domain of Mrpl36 has a
direct effect on the synthesis of mitochondrially encoded
proteins. Labeling of mitochondrial translation products
with [3*S]methionine in vivo revealed that both wild-type
and mrpI36AC cells synthesize all eight mitochondrially en-
coded proteins (Figure 2A). However, the amount of radio-
labeled proteins in mrpl36AC was lower than in wild-type
cells, in particular for COX subunits. The most severe reduc-
tion was found for Cox1, which has been reported not to be
efficiently synthesized in mutants defective in COX assem-
bly (Perez-Martinez et al., 2003; Barrientos et al., 2004; Mick
et al., 2007; Pierrel et al., 2007). However, overexpression of
the translational activator of Cox1, Mss51, did not mitigate
the growth defect (data not shown). Cox2, which is synthe-
sized as a precursor protein with an N-terminal leader pep-
tide, was processed to its mature form, indicating proper
topogenesis in the mutant. Insertion of mitochondrial trans-
lation products into the inner membrane and binding of
Oxal and Mbal to the ribosome were not changed in
mrpl36AC mitochondria (Supplemental Figure 1). Appar-
ently, mitochondrial translation of the mrpI36AC cells can
produce all the mitochondrially encoded polypeptides. Sim-
ilarly, all the membrane proteins are inserted efficiently into
the inner membrane.

Next, we set out to follow the fate of the newly made
polypeptides during prolonged chase periods. To this end,
mitochondrially encoded proteins were radiolabeled for 15
min. Then, cycloheximide and [**S]methionine were re-
moved by extensive washing, and protein synthesis was
allowed to occur in the presence of unlabeled amino acids.
Under those conditions, cells can synthesize all the nuclear-
encoded subunits to induce assembly of the labeled mito-
chondrial translation products into functional OXPHOS
complexes. The newly synthesized translation products of
wild-type cells were stable for at least 150 min (Figure 2B). In
contrast, the labeled polypeptides were rapidly and contin-
uously degraded in the mrpI36AC cells (Figure 2B, quantifi-
cation in C and D). This instability was surprising because
translation in the mutant produces less proteins, which

= — ——
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A B

Figure 2. mrpl36AC cells exhibit reduced transla-

wt G TTUPIIEAE | ; wt —MRI30AC | tion efficiency and stability of mitochondrially en-
255 7510 25 5 7510 Pulse (min) 0 30 90 150 0 30 90 150  Chase (min) coded proteins. (A) Cells of the indicated strains
(kDa] (Rasl were grown in synthetic media containing 2% ga-
Ao SUERE o So = - ~Var1 g syn ‘ niainng £/ g

45 oy =1 —Cox1 —Cox1 lactose. Cytosolic translation was inhibited by cy-
35— —— “ = Coxz | - RS -Cox2 [_ cloheximide, and mitochondrial translation prod-
s B gi"% 5 8 & ~Cytb 15 ucts were radiolabeled for the indicated times.
25 e e —— - < At%% £ -l (gtﬂgi g Labeling was stopped by alkaline lysis and sam-
5 P> 12 ples were separated by SDS-PAGE. Western blot-
18- g 18- g ting against Tom70 and Tim23 served as loading
14= 2 14- Z  controls. (B) Mitochondrial translation products
were labeled in vivo in the indicated strains for 15
—Atp8/9 - Atp8I9 min. Next, [**S]methionine and cycloheximide
were removed by extensive washing. The cells
- . % — B .0 g were further incubated in complete synthetic me-
i c . £ dium with 2% galactose. After the indicated times,
2 2 proteins were extracted by alkaline lysis and ap-
—————— Tir23 |& S ———— - Tm23 |2 plied to SDS-PAGE and autoradiography. (C) Sig-
nals of the experiment presented in B were densi-
C D tometrically analyzed. The start value (0 min) was
S VAt oia Coxt o saa COXZ i Cytb  gn COXIADS oo set to 1. Solid line, wild type; dashed line,
s B 1N\ il B . & Ebo mrpl36AC. (D) Stability of Cox3/Atp6 in wild-type

c e c [ = . £ . FXd s .
g g £ -8 £ EZT and mrpl36AC cells as quantified from four inde-
T R %% 0 3 %0 T 30 % % 3 8 s 9% pendent experiments. The _1rut1al s1gnal.(0_ mm). was
Time [min] ~ Time[min]  Time[min]  Time [min]  Time [min] set to 1 and compared with the remaining signal

should be assembled into functional OXPHOS complexes at
least as efficiently as in wild-type cells.

Steady-State Levels of Mitochondrially Encoded Proteins
Are Reduced in mrpl36AC Cells

The increased degradation of the newly synthesized pro-
teins suggests that respiratory chain complexes are present
in lower amounts in mrpl36AC mitochondria. To test this, we

after 150 min. A Student’s  test was used to reveal
significance.

prepared mitochondria from strains grown under respira-
tory (lactate) or fermentative (galactose) growth conditions.
Under respiratory growth conditions, OXPHOS complexes
have to accumulate to allow growth, whereas they are not
essential on a fermentable carbon source. Western blotting
with antibodies against various mitochondrial proteins re-
vealed unchanged steady-state levels of proteins involved in
protein import, export, and mitochondrial translation,

A B Figure 3. Steady-state levels of mitochondrially
wt_mrpI36AC  wt  mrpl36AC W~ o o encoded proteins are reduced in mrpl36AC cells.
Mito (pg) 10 20 50 10 20 50 10 20 50 10 2050 {Q\%@ rb@\? {569' (A) Mitochondria.lly encodeq 'proteins. fa11 to ac-
Tom70 — === - p—— & & 6‘@ & 6‘& cumulate on media not requiring respiration. In-
dicated amounts of mitochondria prepared from
Tim23: (S S S . : - [kDa] D cultures grown on lactate or galactose were sep-
OxQ] = el | o o Hllliﬂr\rf’: [kDa) aratgd by SDS-PAGE anq analyzed by Western
Mbad — g —wr [ WP g i 670 blottmg.' (B) Mitochondria prepa.red from the
P — o W 440 two strains grown on lactate medium were sol-
- —p — ubilized in 2.6% digitonin (left) or 1% dodecyl-
Mrp51 bty IR - < 160 maltoside (right) and separated by BN-PAGE.
Alpd = — e ———  — P V- 160 The gel was stained with Coomassie (left) or
corz o blotted onto PVDF membrane (right) and ana-
— ' = lyzed by Western blotting. The positions of the
Cyte, —— - b o “ supercomplexes are indicated. V,, ATPase
Cyth == = —e—e dimer; I1I,/IV,, dimeric bc; complexes associated
coc - Cox2 Cor2 with a dimer of COX complexes; III,/IV, dimer
- = —— Western Blot of bcl complexes associated with a monomeric
COX complex; V, ATPase monomer. Arrow (left)
Lactate Galactose indicates a band containing nonassembled nu-
(¢] clear encoded subunits of the respiratory chain.
C D © = P y
@\"b o (C) The enzyme activities depicted were mea-
& 4\\@ sured with the mitochondria isolated from lac-
120 be, COX ATPase T - empty vector tate grown cultures. Data were normalized to
T I e - - - % - - 2uTPlOxat™Mmi3e™  malate dehydrogenase and activities of the wild-
; 80 - - = - 4 - 2uTPIMrpI36" - 1xHA type mitochondria were set to 1. (D) Overexpres-
= 50 - - - - -+ 2uTPIMrpl36-1xHA sion of Mrpl36AC-HA allows the accumulation
S a0 b dbinbbiah Acol of mitochondrially encoded proteins under
20 = growth conditions not requiring respiration. Ly-
© G T O & O - e enaneses Tom70 sates of cells grown with galactose as carbon
- & ,,gov & ot Cox2 source were prepared and analyzed with West-
(é" Q& 5’ = - ern blotting against Tom70 (loading control),
& € & Cox2, and aconitase (Acol).
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among them translocase of the outer membrane (Tom) 70,
translocase of the inner membrane (Tim) 23, Oxal, Mbal,
Mrp20 (large ribosomal subunit), and Mrp51 (small ribo-
somal subunit) (Figure 3A). In contrast, the amounts of Cox2
were severely reduced in mitochondria from mrpI36AC cells
(Figure 3A, left). Similarly, subunits of the bc, complex
(Cor2, cytochrome b) or the ATPase (Atp4) were signifi-
cantly reduced, at least under fermentative growth condi-
tions (Figure 3A, right). Apparently, OXPHOS subunits are
diminished in mrpl36AC cells. If growth absolutely requires
respiratory activity, these proteins can accumulate to some
extent.

The observed decrease in abundance of the OXPHOS
complexes in mrpl36AC cells lead us to investigate a possible
assembly defect in this mutant. Mitochondrial OXPHOS
complexes form high molecular assemblies (Arnold et al.,
1998; Schagger and Pfeiffer, 2000). In yeast, dimers of bc,
complex associate with either the monomer or the dimer of
COX complex giving rise to trimeric (IIL,/IV) or tetrameric
(II1,/1V,) supercomplexes (Cruciat et al., 2000). To analyze
the organization of the respiratory chain in mrpI36AC cells,
we lysed mitochondria isolated from cultures grown on
lactate media with the mild detergent digitonin and sepa-
rated the complexes by BN-PAGE. In mitochondria from
wild-type cells, mitochondrial supercomplexes migrated
with an apparent molecular mass of 800 kDa and were easily
detectable in Coomassie-stained gels (Figure 3B, left lane). In
contrast, no supercomplexes were observed in mitochondria
from the mrpl36AC strain. Interestingly, a new complex oc-
curred (Figure 3B, arrow) in the mutant, with an apparent

Mrpl36 in Mitochondrial Translation

mass of 280 kDa. Mass spectrometric analysis revealed that
this complex contains several nuclear encoded OXPHOS
subunits: Corl, Qcr7, and Cor2 from the bc, complex and
Cox4 and Cox6 from the COX complex (Supplemental Fig-
ure 2). This complex might represent a nonnative association
of nuclear-encoded subunits, which seems to be due to the
reduction of mitochondrially encoded subunits in the mutant.

Next, we asked whether the defect in supercomplex for-
mation is due to defects in the assembly of the bc, complex,
the COX complex, or both. Therefore, we assessed abun-
dance of respiratory chain complexes by BN-PAGE by using
dodecyl-maltoside as detergent. Mitochondrial supercom-
plexes dissociate in dodecyl-maltoside and the separated
OXPHOS enzymes can be analyzed by Western blotting.
Mitochondria from the mrpl36AC strain showed a prominent
reduction of the COX complex, whereas levels of the bc,
complex remained unchanged (Figure 3B, right). These find-
ings were also reflected in the activities of the OXPHOS
complexes (Figure 3C), which revealed severely reduced
activities of the COX complex in the mutants. Diminished
activities were also observed for the oligomycin-sensitive
ATPase and the bc; complex, but the defects were less
pronounced.

This defect to accumulate OXPHOS complexes could ei-
ther be due to the low level of Mrpl36AC in the mrpl36AC
strain or due to the missing CE domain. Therefore, we asked
which domain of Mrpl36 is required to support stable ex-
pression of mitochondrially encoded proteins. To test this,
we prepared extracts of cells grown on galactose and asked
whether mrpl36AC cells transformed with plasmids express-

A & B C cox2::ARGE"
Q‘O‘b cox2::ARG8" . wt mrpl36AC
...?‘ I " 1
dp,- wi ) mrpl36AC . 10 20 50 100 10 20 50 100 Mito (ug)
\‘K\ Y 25 5 7510 25 5 7.510 Pulse (min) .
: s s 1iIM23
[kDa]
Arg8 45 _ i 2 _Arg8
— — ~Var1 . I < i
45— . arl g —Cox1 | > B MRS
B — Cox1 - —. a
35— w— —Cox2 bl gyﬁ; 5 — Arg8
sl R _-Cox
R = —.Cytb - = =<Atpe |5 .
25 Cox3 18- 5 -3 | 98
- — e = 2 i A"
— S Atp6 14 - z Longer exposure
i D SD +Arg
- - —Atp8/9 wt
. e
PR - = 1% mrpl36AC %
-'.———_-—-- Tom70 |m o
- T - & cc
P L —Atp8/9 g &
’ mrpl36AC

Figure 4. Mitochondrial translation generates unproductive proteins in mrpl36AC cells. (A) Labeling profiles of mitochondrial translation
in cells with wild-type and cox2::ARG8™ mitochondrial genomes. (B) Cells of the indicated strains were grown in synthetic media containing
2% galactose. Cytosolic translation was inhibited by cycloheximide. Mitochondrial translation products were radiolabeled for the indicated
times, after which labeling was stopped by alkaline lysis. (C) Steady-state levels of Arg8. Proteins of isolated mitochondria were separated
by SDS-PAGE and probed with antibodies against Arg8. Western blotting against Tim23 and Mrp20 was used as loading control. (D) Cells
of the indicated strains were spotted in 10-fold dilutions onto media with or without arginine and incubated for 3 d at 30°C.
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ing different versions of Mrpl36 can regain the capacity to
accumulate mitochondrially encoded proteins under fer-
mentative growth conditions. Wild-type cells accumulated
robust amounts of Cox2 (Figure 3D). In contrast, mrpl36AC
cells with an empty vector or a vector encoding a mitochon-
drially targeted CE domain of Mrpl36 had strongly reduced
steady-state levels of Cox2. Importantly, mrpI36AC cells ex-
pressing Mrpl36-HA or Mrpl36AC-HA from a plasmid were
able to accumulate Cox2 at almost wild-type levels. This
indicates that the relative amounts of the L31 domain deter-
mine the ability of the cells to accumulate mitochondrially
encoded proteins.

In summary, we conclude that OXPHOS complexes fail to
accumulate in the mrpl36AC cells despite the relatively nor-
mal production of mitochondrially encoded proteins and the
presence of imported nuclear-encoded subunits.

Mitochondrial Translation Generates Unproductive
Proteins in mrpl36AC Cells

Our results could be interpreted in two ways: First, either
the absence of the CE domain or the reduced amounts of the
L31 domain might directly influence the assembly of respi-
ratory chain complexes. Alternatively, the efficiency of the
translation reaction in mitochondria could be reduced in the
mutant, i.e., the primary or secondary structure of the trans-
lation products might be incorrect preventing their produc-
tive assembly. To differentiate between both possibilities, we
analyzed biogenesis and stability of a soluble matrix protein
that is normally not synthesized in mitochondria. We reasoned
that if the assembly machinery for membrane complexes is
defective, folding and activity of this protein should not be

A wt B
————— Suciose |

impaired. In contrast, if this soluble protein is synthesized but
unstable, mitochondrial protein synthesis apparently produces
unproductive polypeptides in mrpl36AC cells.

To this end, we analyzed the biogenesis of a mitochondri-
ally encoded version of the matrix protein Arg8. Arg8 is an
enzyme essential for the biosynthesis of arginine. We made
use of an elegant approach that was instrumental for the
genetic dissection of mitochondrial gene expression (Steele
et al., 1996). In the system we used, arginine prototrophy
requires expression of Arg8 from a mitochondrial genome
where the recoded open reading frame of ARG8 was in-
serted in place of the open reading frame of COX2
(cox2::ARG8™) (Bonnefoy and Fox, 2000). In vivo labeling
revealed that cox2::ARG8™ cells do not synthesize Cox2 but
Arg8, with an apparent molecular mass of 46 kDa (Figure
4A). The synthesis of Arg8 was not abolished in mrpl36AC
with a mitochondrial genome containing cox2::ARG8™:
When we labeled mitochondrial translation products in
vivo, Arg8 was synthesized efficiently in both cell types
(Figure 4B).

Next, we assessed the steady-state levels of Arg8 in
mitochondria by Western blotting. Surprisingly, Arg8 was
hardly detectable in mrpI36AC mitochondria and could only
be visualized upon very long exposure times (Figure 4C).
Consistently, this strain showed a severe growth defect on
arginine-deficient media, although no difference in growth
was observed in the presence of arginine (Figure 4D). In
summary, Arg8 can be efficiently synthesized by mrpl36AC
ribosomes but this protein, like endogenous translation
products, does not accumulate to wild-type levels but rather
is rapidly removed by degradation. This led us to the con-
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Interaction of ribosomal subunits is destabilized in mrpl36AC mitochondria. Translation products of wild-type (A) or mrpl36AC
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(B) mitochondria were labeled with [**S]methionine. (C) Labeling of translation products in wild-type mitochondria was stopped after 20 min
by the addition of puromycin. Next, mitochondria were reisolated, lysed with 1% dodecyl-maltoside, and the cleared lysate subjected to
velocity centrifugation on a linear sucrose gradient. The gradient was fractionated and analyzed by autoradiography and Western blotting.

Quantifications of the signals for Mrp20 and Mrp51 are presented.
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clusion that not only respiratory growth but also, more
generally, growth depending on mitochondrial translation
requires an intact Mrpl36.

Ribosomes Are Destabilized in Mitochondria from
mrpl36AC Cells

The defect in stability of newly synthesized proteins seems
to be the direct consequence of either the deletion of the CE
domain of Mrpl36 or the reduced amounts of the L31 do-
main, resulting in unstable polypeptides. Little is known
about how mitochondrial protein synthesis is kept accurate,
but the observed defect should be linked to the function of
Mrpl36 within the context of the mitochondrial ribosome.
Therefore, we asked whether the association of mitochon-
drial ribosomal subunits is similar in mrpl36AC and wild-
type cells. To this end, mitochondria were allowed to syn-
thesize proteins in the presence of [**S]methionine before
they were lysed. The lysates were subjected to density gra-
dient centrifugation. Subsequently, the gradients were frac-
tionated and analyzed using autoradiography and Western
blotting. Mitochondrial ribosomes from wild-type cells mi-
grated deep into the gradient and could be separated into
two different fractions: a fraction containing mainly the
small subunit (SSU, Figure 5A quantification), and a fraction
containing assembled ribosomes (ASR, Figure 5A quantifi-
cation). In contrast, in mitochondria from mrpl36AC cells,
two different populations were observed. In one fraction,
only the small subunit was recovered (SSU, Figure 5B, quan-
tification), whereas in the other fraction almost exclusively
the large subunit was detected (LSU, Figure 5B, quantifica-
tion). However, assembled ribosomes were hardly present
in lysates of the mrpl36AC mitochondria. From this we con-
clude that under conditions in which wild-type mitochon-
drial ribosomes are stable, ribosomes from the mrpl36AC
mitochondria are destabilized.

Next, we asked whether the migration behavior of mrpl36AC
ribosomes reflected the migration behavior of inactive ribo-
somes. Puromycin releases nascent chains from the ribo-
some, which is known to result in an efficient dissociation of
cytosolic ribosomes. Therefore, we incubated wild-type mi-
tochondria with puromycin. However, these puromycin-
treated wild-type ribosomes did not disassemble efficiently
and migrated in two fractions, one composed of mainly SSU
(Figure 5C, quantification) and another containing ASR (Fig-
ure 5C, quantification). Only upon treatment with both pu-
romycin and Mg?*-chelating agents were ribosomes effi-
ciently dissociated (Supplemental Figure 3A). In contrast,
pretreatment with chloramphenicol did not stabilize mrpl36AC
ribosomes (Supplemental Figure 3B). Together, we conclude
that mitochondrial ribosomes are destabilized in mrpl36AC
cells.

Overexpression of Mrpl36 Can Suppress a Mutant with a
Defect in Accuracy of Mitochondrial Translation

The increased degradation of translation products in mrpI36AC
mitochondria could be due to defects in their structure.
We reasoned that combination of this mutation with mu-
tations that reduce accuracy of translation might further
impair respiratory competence of mrpI36AC cells. To this
end, we analyzed whether the CE domain of Mrpl36
interacts genetically with Gufl, the mitochondrial homo-
logue of bacterial LepA (Bauerschmitt et al., 2008). LepA is
a factor that mediates the back translocation of the ribo-
some to prevent amino acid misincorporation (Qin et al.,
2006). Conversely, presence of LepA in an in vitro trans-
lation assay increases accuracy (Qin ef al., 2006). Cells
deficient in either Gufl or the CE domain of Mrpl36 could
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Figure 6. MRPL36 interacts genetically with GUF1. (A) The indicated
strains were grown on galactose-containing medium to log phase.
Serial 10-fold dilutions were spotted on YP plates containing 2% glu-
cose or 2% glycerol, and plates were incubated at 30°C for 2 and 4 d,
respectively. (B) The indicated cells were transformed with 2u plas-
mids either containing or not containing MRPL36 under the control of
the TPI promoter. The cells were grown on galactose-containing syn-
thetic medium to log phase. Serial 10-fold dilutions were spotted on
synthetic media without leucine containing either 2% glucose or 2%
glycerol and incubated at 30°C for 3 and 6 d, respectively. (C)
MrplI36AC or the CE domain of Mrpl36 cannot suppress the Agufl
phenotype. Agufl cells containing the indicated plasmids were ana-
lyzed as described in B.
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grow on a nonfermentable carbon source. In contrast, the
combination of both deletions inhibited respiratory
growth completely (Figure 6A).

If Mrpl36 determines more directly the accuracy of the
mitochondrial translation system, overexpression of Mrpl36
might overcome the growth defects of Agufl cells. To test
this, we expressed Mrpl36 from a plasmid, resulting in 3
times more Mrpl36 in the mitochondrial matrix as found in
wild-type mitochondria. Agufl cells showed a pronounced
growth defect on synthetic media with glycerol as carbon
source (Figure 6B). Overexpression of Mrpl36 in these cells
suppressed this defect and resulted in a respiratory growth
similar to wild type.

Next, we asked which domain of Mrpl36 is responsible for
the observed suppression of the Agufl phenotype. To test
this, we overexpressed either Mrpl36AC or a mitochondri-
ally targeted CE domain in these cells and tested the growth
on media containing either glucose or glycerol (Figure 6C).
Neither the L31 domain nor the CE domain, when expressed
separately, could revert the growth phenotype of AgufI cells.
From this, we conclude that only the full-length Mrpl36 can
suppress a GUF1 deletion.

Overexpressed Mrpl36 Accumulates in a Soluble Pool in
the Matrix, from Which the Protein Can Dynamically
Integrate into the Ribosome

How could this positive effect of overexpression of Mrpl36
be explained? We found that Mrpl36 is a factor required to
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stabilize the interaction between large and small ribosomal
subunits. We estimated that Mrpl36 is present in more or
less stoichiometric amounts compared with other ribosomal
proteins such as Mrp20 (data not shown). Therefore, all
translating ribosomes should contain one copy of Mrpl36.
Overexpression should only have an impact, if Mrpl36 could
dynamically associate with the ribosome and change be-
tween a ribosome-bound and a soluble state. Therefore, we
overexpressed Mrpl36 in wild-type cells and investigated
whether the overexpressed protein was bound quantita-
tively to the ribosome or accumulated in the matrix. In
mitochondria from cells overexpressing Mrpl36 and from
wild-type cells, comparable quantities of Mrpl36 were re-
covered with ribosomes (Figure 7A, quantification). In con-
trast to wild-type mitochondria, however, a large portion of
Mrpl36 was recovered in the soluble fraction when Mrpl36
was overexpressed, in line with previous observations
(Williams et al., 2004). Mrpl36 was exclusively recovered in
the soluble fraction of mitochondria from a rho? strain that
does not contain assembled mitochondrial ribosomes. This
indicates that Mrpl36 can be present in the mitochondrial
matrix as a stable soluble protein, in contrast to other ribo-
somal proteins such as Mrp51.

How could an increased pool of soluble Mrpl36 help to
improve efficiency of translation? Dynamic exchange of
Mrpl36 during the translation reaction could enable soluble
Mrpl36 from the matrix to assemble into preexisting ribo-
somes. To test this, we imported radiolabeled precursor of
Mrpl36 into isolated mitochondria. On import, the mito-
chondrial targeting signal was proteolytically removed by
mitochondrial processing peptidase and the mature Mrpl36
was present in a protease-resistant localization. Next, mito-
chondria were lysed and fractionated by centrifugation
through a sucrose cushion. In wild-type mitochondria,
Mrpl36 was imported efficiently and was recovered quanti-
tatively with the preexisting ribosome (Figure 7B). In con-
trast, after import into rho® mitochondria, Mrpl36 was
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largely recovered with the soluble fraction. Other mitochon-
drial ribosomal proteins such as Mrpl3 (Figure 7C), Ppel,
and Mrp20 (data not shown) did not assemble into ribo-
somes upon import into wild-type mitochondria. From this
we conclude that Mrpl36 can dynamically integrate from a
soluble pool into the ribosome.

Mrpl36 Dynamically Interacts with the Ribosome In Vivo

The ability of Mrpl36 to assemble into preexisting ribosomes
in organello inspired us to test whether changes of interac-
tions of Mrpl36 with mitochondrial ribosomes can be ob-
served more directly. To test this, we determined the distri-
bution of Mrpl36 and Mrp20 relative to the inner membrane
using immunoelectron microscopy of chemically fixed cells.
In yeast mitochondria, ribosomes tightly interact with the
inner membrane and the insertion component Oxal. Mrp20,
a tightly bound ribosomal subunit of the polypeptide exit
tunnel, was shown to interact with Oxal even under condi-
tions in which translation was inhibited with puromyecin (Jia
et al., 2003). To investigate the intramitochondrial distribu-
tion of Mrp20 or Mrpl36 in vivo, we followed the localiza-
tion of both proteins. First, antibody concentrations were
adjusted to concentrations yielding very low levels of deco-
ration to ensure highly specific detection (Vogel et al., 2006).
Next, we measured the distance of the center of each 10-nm
gold particle relative to the inner membrane (Figure 8A). In
cells from cultures fixed under normal growth conditions,
both Mrpl36 and Mrp20 were mainly associated with the
inner membrane (Figure 8B). In contrast, when cells were
pretreated with puromycin for 30 min before fixation,
Mrpl36 shifted partially to a matrix localization (Figure 8A,
right and B, top), whereas Mrp20 did not change localization
and was found as a membrane-associated protein (Figure
8B, bottom). This indicated that under normal growth con-
ditions, Mrpl36 is bound to ribosomes. When ribosomes are
inactive, Mrpl36 at least partially dissociates from the ribo-
some. This implies that Mrpl36 interacts mainly with ac-
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Figure 8. Mrpl36 dynamically interacts with the ribosome in vivo.
(A) Wild-type cells were grown in lactate containing media in the
absence (left) or presence (right) of puromycin and fixed with glu-
taraldehyde and formaldehyde. Next, mitochondrial ribosomal pro-
teins were localized by postembedding immunogold labeling of
cryosectioned cells. The distance of each gold particle relative to the
inner membrane was measured. (B) Statistical analysis of the distri-
bution of gold particles in mitochondria from cells grown in the
absence (left) or presence of puromycin (right). Particles were
grouped according to their distance to the inner membrane. n
indicates the number of gold particles analyzed.

tively translating ribosomes. We conclude that Mrpl36 in-
deed dynamically associates with and dissociates from
mitochondrial ribosomes.

DISCUSSION

In this study, we analyzed the relevance of the CE domain of
Mrpl36 for the biogenesis of mitochondrially encoded pro-
teins. Although not required for protein synthesis per se, the
presence of this domain is critical for the generation of
respiratory chain complexes, in particular for the COX com-
plex. This observation can be explained in two ways: either
the CE domain of Mrpl36 plays a dedicated role in mem-
brane insertion, folding, or assembly of translation products;
or the CE domain affects assembly more indirectly, for ex-
ample, by being critical for the production of assembly-
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competent products. According to the latter hypothesis, the
translation products that are synthesized in the absence of
the CE domain of Mrpl36 are unproductive and rapidly
removed by the mitochondrial quality control system. The
second explanation seems much more likely and is consis-
tent with the defects observed in the mrpl36AC mutant. The
rather general destabilization of endogenous translation
products as well as of mitochondrially expressed Arg8
clearly argues against a specific function of Mrpl36 in the
insertion or assembly of specific subunits of the respiratory
chain.

We find that in the absence of the CE domain, the remain-
ing L31 domain is destabilized. Importantly, overexpression
of Mrpl36AC can correct the defect in accumulation of mi-
tochondrially encoded proteins in mrpl36AC cells. This indi-
cates that the relative amounts of the L31 domain determine
the ability of the cells to synthesize productive polypeptides
in mitochondria. However, the role of the CE domain is
presumably not restricted to its ability to stabilize Mrpl36:
overexpression of full-length Mrpl36, but not of either the
L31 or the CE domain, can suppress the growth phenotype
of Agufl cells. Moreover, overexpression of the CE domain
was shown to suppress certain COX2 mutations (Williams et
al., 2004), which indicates a function different from the sta-
bilization of the L31 domain.

Why is an intact Mrpl36 critical for the synthesis of func-
tional products? Our data strongly suggest that Mrpl36 is
required to maintain the proper architecture and dynamics
of the assembled ribosome. Despite some exciting insight
into the composition and overall structure of mitochondrial
ribosomes (Sharma et al., 2003), no high-resolution images of
mitochondrial ribosomes exist that could show the position
of Mrpl36. However, its bacterial homologue L31 was local-
ized to the interface of large and small ribosomal subunits,
close to L5, S13, and the tRNA that is positioned in the E site
(Laurberg et al., 2008). The positioning of L31 at such a
critical connection points to an important function of L31 for
the alignment of the two subunits of the bacterial ribosome
and for controlling loading/unloading of the E site. Large
conformational changes in both subunits accompany each
elongation round (Frank and Agrawal, 2000; Stark ef al.,
2000; Valle et al., 2003). Interestingly, L31 is located in prox-
imity to L5 and S13, subunits that undergo large structural
reconfigurations during translocation (Agirrezabala et al.,
2008). It seems likely that Mrpl36 directly influences these
dynamics. This is consistent with the observed dissociation
of mrpl36AC ribosomes. At present, it cannot be discrimi-
nated whether the dissociation is caused by the reduced
levels of the L31 domain or, more directly, by the absence of
the CE domain (Figure 9). It seems conceivable that defects
in the coordination of the translation process lead to a di-
minished accuracy of the products and hence to their in-
creased degradation. This hypothesis is supported by the
observed genetic interaction of MRPL36 with GUF1, a fidel-
ity factor of mitochondrial translation (Qin et al., 2006;
Bauerschmitt et al., 2008).

Mrpl36 was initially found as a multicopy suppressor of
mitochondrial DNA mutations (Bonnefoy et al., 2001). This
suppression was very puzzling because it was unclear how
overexpression of one individual ribosomal protein can
have a positive effect on translation. Here, we show that
Mrpl36 is not a stable component of the mitochondrial ribo-
some but rather associates with the ribosome in a puromy-
cin-sensitive manner. This suggests that, in vivo, Mrpl36 is
specifically associated with actively translating ribosomes.
As pointed out before, increased amounts of Mrpl36 can
suppress the growth defect of certain cox2 alleles (Williams
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Figure 9. Hypothetical model for the role of Mrpl36 in mitochon-
drial protein synthesis. Under normal conditions (left), Mrpl36
binds close to the interface of large and small ribosomal subunit.
This contact leads to a tight interaction of both subunits and hence
allows efficient protein synthesis. In ribosomes from the mrpl36AC
strain (right), this contact is destabilized, resulting in the production
of defective polypeptides. During translation, Mrpl36 dynamically
interacts with the ribosome at an as-yet unidentified step.

et al., 2004). In these mutants, a hairpin structure in the
coding region of the COX2 mRNA is stabilized by additional
hydrogen bonds. We speculate that suppression of these
mutants by overexpression of Mrpl36 could be explained by
a more accurate interaction of ribosomal subunits through-
out the elongation process. Hence, ribosomal translocation
could occur with increased efficiency and thus could al-
low the linearization of more stably folded mRNAs. More-
over, the beneficial effect of overexpression of Mrpl36
suggests that the levels of Mrpl36 determine the rate of
productive protein synthesis in mitochondria, at least in
the mutants analyzed.

The mitochondrial translation machinery produces almost
exclusively highly hydrophobic proteins that serve as reac-
tion centers of the OXPHOS machinery. Especially, the as-
sembly of the COX complex, which reduces oxygen to water
through a series of highly reactive oxygen intermediates, is
highly hazardous for the cell (Poyton, 1998). It therefore
seems of vital interest to tightly control production and
assembly of COX subunits to prevent accumulation of un-
assembled or defective COX subunits. Recently, an elegant
feedback mechanism was identified that controls the synthe-
sis of Cox1, the membrane-embedded reaction center of the
enzyme. This regulation is achieved by the specific binding
of Mss51, a translation factor required for Cox1 synthesis, to
nonassembled Cox1 (Perez-Martinez ef al., 2003; Barrientos
et al., 2004; Mick et al., 2007; Pierrel et al., 2007). Thereby,
assembly defects lead to a sequestration of Mss51 and to an
efficient block of Cox1 synthesis. Our results suggest that
Mrpl36 is part of an additional regulatory mechanism, be-
cause this ribosomal component is critical for the assembly
competence of translation products. Especially, the im-
proved respiratory growth in mutants that overexpress
Mrpl36 points to an active and decisive role of Mrpl36 in the
biogenesis of respiratory chain complexes. In this function,
Mrpl36 obviously cooperates with the mitochondrial quality
control system that recognizes defective translation prod-
ucts and mediates their proteolytic breakdown (Tatsuta and
Langer, 2008).

Not much is known about how the mitochondrial ribo-
some functions in detail, mostly because of the lack of an in
vitro translation assay. Much more work is required to elu-
cidate the exact molecular functions of the mitochondrial
ribosome and its associated proteins. A deep understanding
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of this fundamental machinery might provide important
insight into the organization of OXPHOS assembly in which
translation of the mitochondrially encoded subunits is the
first critical step.
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