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Abstract

Real networks, including biological networks, are known to have the small-world property, characterized by a small
‘‘diameter’’, which is defined as the average minimal path length between all pairs of nodes in a network. Because random
networks also have short diameters, one may predict that the diameter of a real network should be even shorter than its
random expectation, because having shorter diameters potentially increases the network efficiency such as minimizing
transition times between metabolic states in the context of metabolic networks. Contrary to this expectation, we here
report that the observed diameter is greater than the random expectation in every real network examined, including
biological, social, technological, and linguistic networks. Simulations show that a modest enlargement of the diameter
beyond its expectation allows a substantial increase of the network modularity, which is present in all real networks
examined. Hence, short diameters appear to be sacrificed for high modularities, suggesting a tradeoff between network
efficiency and advantages offered by modularity (e.g., multi-functionality, robustness, and/or evolvability).
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Introduction

Network diameter (D) has long been of interest. The pioneering

finding of Milgram [1] that two random individuals can connect to

each other through on average 5–6 intermediate steps suggested

that the human acquaintanceship network is a small world,

prompting the popular phrase ‘‘six-degrees of separation’’. There

appear to be several different descriptions of the small-world

property, but it is the small diameter that is referred to throughout

this article. Biological networks such as metabolic networks and

protein interaction networks also show the small-world property

[2–4]. In the context of metabolic networks, the small-world

architecture has been suggested to serve to minimize transition

times between metabolic states [3]. However, subsequent

theoretical work demonstrated that even random (irregular)

networks, including the simplest one that is formed by connecting

nodes entirely randomly (known as the Erdős-Rényi or ER

network [5]), show small diameters, having D*ln N=ln k, where

N is the number of nodes in the network and k is the mean number

of edges per node (i.e., mean degree) [6]. In ER networks, node

degree follows a Poisson distribution. In real networks, however,

node degree often approximates power-law distributions [7]. It has

been shown that random power-law networks with exponents

between 2 and 3 have D*ln ln N, sometimes referred to as the

ultra-small-world property [8]. Because even random networks

have the small-world property, it is of no surprise that real

networks also show this character. Nevertheless, an interesting

question is whether the diameter of a real network is even shorter

than its random expectation, because having short diameters can

potentially increase the network efficiency of exchanging mass

and/or information [9,10], not only in biological networks (e.g.,

the metabolic network), but also in transportation, communica-

tion, and computer networks [11,12]. Watts and Strogatz reported

that the diameters of three real networks (power grid, film actors,

and nematode neural network) are larger than those of ER

random networks with the same numbers of nodes and mean

degrees [6]. However, it is unclear (1) whether the difference in

diameter is statistically significant, (2) whether a greater-than-

expected diameter is generally true in all real networks, and (3)

most importantly, whether their observation is simply caused by

the use of an inappropriate null model (ER) for real networks. We

here address these questions and report the unexpected finding

that all real networks analyzed have greater-than-expected

diameters and discern the cause of this phenomenon.

Results and Discussion

Real networks have greater-than-expected diameters
We compare the diameter of a real network with that of its

randomly rewired network in which the connections between

nodes are randomized while the degree of every node remains

unchanged (see Methods). We find that all 13 real networks

examined, including two linguistic, three technological, four social,

and four biological networks, have diameters greater than their

random expectations (Table 1). Frequency distributions of

minimal path lengths show that the greater-than-expected

diameters are not caused by the presence of a small number of

extraordinarily long minimal paths in the networks, but due to the

existence of many elongated minimal paths (Fig. S1). Overall, the

diameters of real networks are 2.3–128.3% greater than their

random expectations, with a median difference of 17.4% (Table 1).

Consistent with our findings, Albert and Barabási briefly noted

that many real networks have longer diameters than those

computed under the power-law degree distribution [13], an

observation that may be explained by the deviation of the actual

degree distribution from the power-law distribution [14]. In our
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analysis, however, this explanation can be ruled out because we

used the true degree distribution in estimating the expected

diameter.

Real networks have greater-than-expected clustering
coefficients

Another commonly described feature of small-world networks is a

high clustering coefficient (C) [6]. The clustering coefficient for a

node is defined by the proportion of links between the nodes within

its neighbourhood divided by the number of links that could

possibly exist between them [6]. The clustering coefficient of a

network is the mean clustering coefficient of all nodes in the network

[6]. We found that in 12 of the 13 real networks (except the dolphin

association network), C is greater than the expected value

determined from its randomly rewired networks, and this difference

is statistically significant in 7 cases (Table S1). However, there is no

consistent relationship between C and D among the randomly

rewired networks of each real network (Table S1), suggesting that

the greater-than-expected diameters of real networks cannot be

explained by the greater-than-expected clustering coefficients.

Furthermore, across the 13 real networks, the correlation between

the expected C and expected D from their randomly rewired

networks appears negatively (Spearman’s R = 20.57, P = 0.047),

while the correlation between the Z-score for C and Z-score for D is

not significant (Spearman’s R = 20.13, P = 0.68).

Here Z-score refers to the number of standard deviations by

which an observed C (or D) deviates from its chance expectation in

a randomly rewired network.

Network modularization enlarges the diameter
If shorter diameters are beneficial to at least some networks,

why do all networks have longer diameters than expected by

chance? We hypothesize that this phenomenon relates to the

modularization in networks, which refers to the fact that networks

can often be divided into sets of nodes (i.e., modules) such that

links within modules are much denser than between modules.

Modularization could lead to the enlargement of the network

diameter because it increases the minimal path length between

modules and because there are usually more pairs of nodes across

modules than within modules in a highly modular network. To

verify our hypothesis, we conduct computer simulations. In each

set of simulations, we fix the numbers of nodes and edges in a

network but adjust the connections to increase the modularity.

Briefly, a random network is generated from m fully connected

modules that are interlinked by one edge. At each step, a new node

with K intra-module edges and S inter-module edges is randomly

added to a module. These edges are attached to existing nodes via

the preferential attachment model (see Methods). The degree

distribution of the generated network was reported to approach

power-law [15]. By adjusting parameters K and S, we can generate

Table 1. The diameters and modularities of 13 real networks.

Diameter Modularity

Networks
# of
nodes Observed Expected

%
difference

Z-
score14 P-value Observed Expected

%
difference

Z-
score14 P-value

Characters in ‘‘Les Miserables’’1 77 2.64 2.50 5.6 3.58 0.0003 0.56 0.29 93.4 30.12 ,1024

Words in ‘‘David Copperfield’’2 112 2.54 2.48 2.3 1.81 0.0703 0.31 0.29 4.8 1.67 0.0949

Dolphins3 62 3.36 2.70 24.3 14.40 ,1024 0.53 0.37 40.8 11.59 ,1024

Political blogs4 1224 2.74 2.59 5.7 23.5 ,1024 0.43 0.14 206.9 189.27 ,1024

Co-authorship5 7610 7.03 5.42 29.6 64.70 ,1024 0.81 0.49 64.9 12.50 ,1024

Football6 115 2.51 2.23 12.5 54.30 ,1024 0.60 0.28 119.2 44.68 ,1024

Power7 4941 18.99 8.32 128.3 14.30 ,1024 0.93 0.73 28.5 105.10 ,1024

Airline8 810 3.06 2.61 17.4 3.53 0.0004 0.31 0.13 130.0 114.70 ,1024

Electronic circuits9 512 6.86 5.64 21.6 12.40 ,1024 0.81 0.63 28.6 35.96 ,1024

Protein-protein interaction10 1870 6.81 5.78 17.8 9.19 ,1024 0.81 0.72 13.2 18.23 ,1024

Neural11 297 2.46 2.35 4.5 3.38 0.0007 0.40 0.22 80.0 51.26 ,1024

Transcriptional regulatory12 3459 3.72 3.39 9.7 3.60 0.0003 0.60 0.47 29.5 58.29 ,1024

Metabolic13 563 8.78 6.54 34.3 18.67 ,1024 0.84 0.73 14.5 14.72 ,1024

1The network of coappearances of characters in Victor Hugo’s novel ‘‘Les Miserables’’. Nodes represent characters and edges connect any pair of characters that appear
in the same chapter.

2The network of common adjective and noun adjacencies for the novel ‘‘David Copperfield’’ by Charles Dickens. Nodes represent the most commonly occurring
adjectives and nouns in the book.

3The network of frequent associations between 62 dolphins in a community living off Doubtful Sound, New Zealand.
4The network of political blogs. Nodes represent blogs and edges are the links between blogs.
5The network of scientists posting preprints on the high-energy theory archive at www.arxiv.org, 1995–1999. Nodes are authors and edges connect coauthors.
6The network of American football games between Division IA colleges during regular season Fall 2000. Nodes are teams and edges connect teams that contest in a
game.

7The network of the Western States Power Grid of the United States. Nodes are power plants, stations and households, and edges are powerlines.
8The network of scheduled air line connections in United States, 2005. Nodes are airports and edges are scheduled direct flights.
9Electronic circuits. Nodes are electronic elements and edges are electronic connections.
10The protein-protein interaction network of the budding yeast S. cerevisiae. Nodes are proteins and edges connect proteins that interact with each other.
11The neural network for the worm C. elegans. Nodes are neurons and edges link neurons that connect.
12The transcriptional regulatory network of the budding yeast S. cerevisiae. Nodes are genes and edges connect genes that regulate one another.
13The metabolic network of the bacterium E. coli. Nodes are metabolites and edges connect metabolites that can be converted by a biochemical reaction.
14Z-score, number of standard deviations by which the observation deviates from the expectation.
doi:10.1371/journal.pone.0005686.t001

Network Diameters

PLoS ONE | www.plosone.org 2 May 2009 | Volume 4 | Issue 5 | e5686



networks with desired modularity. We find that the network

diameter increases as the modularity increases in these simulated

networks (Fig. 1a). But the relationship between diameter and

modularity is not linear; when the diameter is short, a small

percentage increase in diameter allows a substantial percentage

increase in modularity (Fig. 1a). A similar concave curve is

observed when the increases in diameter and modularity are

measured by Z-scores, rather than the absolute values (Fig. 1b).

Using a similar simulation, we confirmed the relationship between

modularity and diameter using networks with a fixed number of

modules but different mean degrees (Fig. S2).

If modularization is truly the cause of the higher-than-expected

diameters of real networks, all real networks should have

modularities greater than expected from their randomly rewired

networks. This is indeed the case [16] (see also Table 1). The

percentage excess in modularity (compared to the random

expectation) ranges from 4.8 to 206.9% for the 13 networks, with

a median of 40.8%. This percentage excess exceeds that for

diameter in 10 of the 13 networks, a nonrandom pattern that is

consistent with the simulation result in Fig. 1 (P = 0.046, one-tail

binomial test).

The observation that the modularity of a real network is greater

than that of its randomly rewired networks does not prove that

high modularity is a design principle of real networks, as high

modularity may arise as a byproduct of other processes, such as the

evolution by gene duplication process in the growth of some

biological networks [17]. Here we investigate whether the

preferential attachment model of Barabási and Albert (BA model),

a widely used model for generating power-law networks with

exponent .2 [7,18], can explain the observed high modularity.

Among the 13 real networks, the power and metabolic networks

have exponents greater than 2 (2.75 and 2.40 respectively). We use

a modified BA model to grow networks that have the same

numbers of nodes and edges as the observed networks (see

Methods). We then compare the modularity of the real, randomly

rewired, and BA-model networks. In both power and metabolic

networks, the observed modularity is significantly greater than the

modularity of the BA-model networks and that of randomly

rewired networks (Fig. 2a, 2c). Similar results are found for the

diameter (Fig. 2b, 2d). Because other models for generating

power-law networks are in principle similar to the BA model

[13,19–21], it is unlikely that the high modularity of the two real

networks can be explained by these other models. Rather, the

high modularity may have been directly favored in these

networks [22]. Computer simulation shows that modular

structures can arise when a network faces multiple alternating

tasks [23]. On the one hand, high modularity allows a system to

acquire and abandon functional units without causing pleiotropic

effects, thus improving the evolvability of the system. On the

other hand, numerical experiments also demonstrated that

modularization provides robustness against random perturbations

in network structure [24], presumably also due to the separation

of different functions by modules. These benefits of modularity

have been used practically such as in software design, where

individual functions are assigned to distinct modules and the

software is then assembled by connecting different modules

[25,26]. Diameter is apparently not as much of a concern as

modularity in software design.

It is interesting to ask if modularization is the sole reason of the

higher-than-expected diameters in real networks. We conducted a

second type of random network rewiring, by conserving the

modular structure of the network as well as the within-module and

between-module degrees of every node (see Methods). Our results

show that although modularization is insufficient to fully explain

the greater-than-expected diameter in 8 of the 13 networks, it does

explain a large fraction of the excess (Table S2).

Figure 1. Correlation between network diameter and modularity in simulated networks when diameter and modularity are
measured in (a) absolute values and (b) Z-scores. Each point represents a network and each line connects the networks of the same series. The
number of modules is fixed at 4, 6, 8, 10 and 12 for series A, B, C, D, and E, respectively. Within each network series, the ratio (R) of the number of
between-module edges to that of within-module edges changes from 30:1 to 1:30 so that modularity gradually increases. The same pattern is
observed when we examine the relationships of mean diameter and mean modularity of 50 randomly rewired networks of a simulated network with
preserved modules (see Fig. S3). In (b), 8 networks are shown for each series to allow clarity of the figure (R = 1:30, 5:26, 9:22, 13:18, 17:14, 21:10, 25:6,
and 29:2, respectively). Z-score is the number of standard deviations by which an observed value deviates from its expected value. Here the expected
value and the standard deviation are estimated by random network rewiring.
doi:10.1371/journal.pone.0005686.g001

Network Diameters

PLoS ONE | www.plosone.org 3 May 2009 | Volume 4 | Issue 5 | e5686



Implications
Despite the fact that real networks exhibit the small-world

property and that shorter diameters may be beneficial to some

networks, we show that all networks examined here, including

biological networks, have diameters greater than their random

expectations. We suggest that modularization may be a universal

characteristic of real networks, due to the advantages it brings to

network multi-functionality, robustness, and evolvability. As a

consequence, the network diameter has to be sacrificed to

accommodate modular structures. Because shorter diameters

could provide higher functional efficiency, our result suggests a

tradeoff between network efficiency and multi-functionality,

robustness, and/or evolvability. Although there are many

networks unstudied in this work, our analysis covers major types

of networks and the results are likely to reflect a general pattern of

real networks. This being said, it would be interesting to look for

those rare networks whose diameters are shorter than the chance

expectations and study what benefits offered by shorter diameters

offset the advantages of modularity. In the case of biological

networks such as the metabolic network or transcriptional

regulatory network, it would be particularly interesting to examine

the relationships among network diameter, modularity, and

function.

Methods

Datasets
The sources of the 13 networks analyzed in this work are listed

in Table S3.

Modularity, diameter, and clustering coefficient
Modularity is defined according to Newman and Girvan [27].

Briefly, when the nodes of a network are separated into modules,

one can compute Q~
PK
s~1

ls
L
{ ds

2L

� �2
h i

, where K is the number of

modules, L is the total number of edges in the network, ls is the

number of edges between nodes in module s, and ds is the total

number of degrees of the nodes in module s. The highest Q value

of all possible module separations is called the network modularity.

In this work, we used the simulated annealing algorithm [22] to

divide modules and calculate Q. Empirical and simulation studies

showed that this algorithm has the best performance among all

available algorithms because it provides the most accurate module

separation and highest Q [28].

Diameter is defined as the average shortest path length over all

pairs of nodes in the network and was calculated using the

program ‘‘Topnet’’ [29]. For the yeast transcriptional regulatory

Figure 2. Observed and expected modularities and diameters of the power and metabolic networks. The top panels represent the
power network and the bottom panels represent the metabolic network.
doi:10.1371/journal.pone.0005686.g002
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network where the edges are naturally directed, we treated all

edges as undirected for simplicity. Clustering coefficient of a node

is the ratio of number of connections in the neighborhood of a

node and the number of connections if the neighborhood was fully

connected. Here neighborhood of node A means the nodes that

are connected to A but does not include A itself. Clustering

coefficient of a network is the mean clustering coefficient of all

nodes and was calculated by ‘‘Topnet’’ [29].

Randomly rewired networks
For a given network, we generated its randomly rewired

networks by conserving the degree of every node, using the

method previously described [30,31]. Briefly, starting from a real

network, the method randomly selects two edges from the network

and swaps the connections under the condition that this exchange

will not generate multiple edges between two nodes. For example,

the algorithm changes an edge between nodes 1 and 2 and an edge

between nodes 3 and 4 to an edge between 1 and 3 and an edge

between 2 and 4. This process is repeated many times to produce a

sufficiently randomized network. In this study, we generated 50

randomly rewired networks for each real network and computed

the means and standard deviations of diameter and modularity of

these 50 networks.

Randomly rewired networks with conserved modules
To study if modularization is sufficient to explain the greater-

than-expected diameter in real networks, we developed an

algorithm to rewire a network randomly while preserving its

original modules. First, we identify modules in a network using

simulated annealing [22]. Second, we apply the random rewiring

algorithm described above to each module. That is, we only rewire

within-module edges by conserving the within-module degree of

each node. Third, we randomly rewire inter-modular edges by

conserving the between-module degree of each node. We

generated 50 randomly rewired networks for each real network

and computed the means and standard deviations of diameter and

modularity of these 50 networks. The rewired network from these

three steps will have a modularity that is either equal to or higher

than that of the original network (Table S2). If modularization is

sufficient to explain the high-than-expected diameter in real

networks, the diameter of the rewired networks is expected to be

close to that of the original network. However, the observed

diameter is still greater than that of rewired networks in 8 of the 13

networks at 5% significance level (Table S2), suggesting that for

these networks, modularization contributes partly, but not fully, to

the excess of diameter over the random expectation. For 3 of the

remaining 5 networks, the observed diameter is shorter than that

of rewired networks, although the difference is not statistically

significant. This phenomenon could be due to (i) stochastic error in

estimating the expected diameter, (ii) imperfect design of the

random rewiring with preserved modules, which produces

networks with increased modularity, or (iii) presence of forces

that reduce diameters under the constraint of a certain level of

modularity.

Computer simulation for investigating the relationship
between modularity and diameter

Five sets of simulations were conducted. Within each set, all

networks have the same numbers of nodes, edges, and modules,

but different modularities. The networks were generated as

previously described [15]. Briefly, the algorithm starts from a

network of m fully connected modules, each having M nodes. Each

pair of modules are connected by a single random edge. Then, the

algorithm adds one node into a randomly selected module with

n = K+S edges, where K is the number of within-module edges and

S is the number of between-module edges. We used n = 31. These

edges are attached to existing nodes via the preferential

attachment model [7]. A total of N nodes are added. The degree

distribution of the generated network was reported to approach

the power law [15]. By adjusting parameters K and S, we can

generate networks with desired modularity. The parameters used

in each set of simulations are listed in Table S4.

After obtaining a simulated network, we conducted random

network rewiring and computed Z-scores for diameter and

modularity from 50 rewired networks (Fig. 1b). We also conducted

random network rewiring by preserving modules and computed

the mean diameter and mean modularity from 50 rewired

networks. The relationship between the mean diameter and mean

modularity (Fig. S3) is highly similar to that between diameter and

modularity in the original simulated networks (Fig. 1a), indicating

that the relationship we observed in Fig. 1a is not due to the

specific means of network simulation, but reflects a general

relationship between diameter and modularity.

Generation of random power-law networks
To generate a power-law random network with a desired

exponent, we adopted the Dorogovtsev–Mendes–Samukhin

(DMS) method [18]. Briefly, a new node is added to the existing

network and m edges are added simultaneously. The probability

that node i attracts a link is Pi~
kizk0P
l

klzk0ð Þ, with 2m,k0,‘. Here

ki is the degree of node i, l is the set of all nodes in the network, kl is

the degree of node l. This is a more general method than the

standard BA model [7] because of the presence of the constant k0.

For such attachment probability, one gets a power-law degree

distribution with an exponent c = 3+k0/m. Hence, as the initial

attractiveness k0 grows from 2m to ‘, c increases from 2 to ‘.

When k0 = 0, the model is equivalent to the standard BA model

[7]. We generated networks with DMS model for the power and

metabolic networks which have exponents of 2.75 and 2.40,

respectively. The distributions of exponents in the simulated

power-law networks for the power and metabolic networks are

shown in Fig. S4 and Fig. S5, respectively. The means of

exponents for the two generated network sets (50 networks in each

set) are 2.73 and 2.38, respectively, close to the real ones.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0005686.s001 (0.01 MB

PDF)

Table S2

Found at: doi:10.1371/journal.pone.0005686.s002 (0.01 MB

PDF)

Table S3

Found at: doi:10.1371/journal.pone.0005686.s003 (0.01 MB

PDF)

Table S4

Found at: doi:10.1371/journal.pone.0005686.s004 (0.01 MB

PDF)

Figure S1 Distributions of shortest path lengths in four

representative networks. In each panel, closed bars are for the

real network, whereas open bars are for a randomly rewired

network. The networks presented are (a) the dolphin network, (b)

the airline network, (c) the protein-protein interaction network,

and (d) the electronic circuit network.

Network Diameters
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Found at: doi:10.1371/journal.pone.0005686.s005 (0.08 MB

PDF)

Figure S2 Correlation between network diameter and modu-

larity in simulated networks when diameter and modularity are

measured in absolute values. Each point represents a network and

each line connects the networks of the same series. The number of

modules is fixed at 2 for all series. The average degree is fixed at

49.7, 59.6, 62.25, 66.33, 99.56 and 99.6 for series A, B, C, D, E

and F, respectively. Within each network series, the ratio (R) of the

number of between-module edges to that of within-module edges

changes from 20:2 to 2:20 to enhance modularity.

Found at: doi:10.1371/journal.pone.0005686.s006 (0.12 MB

PDF)

Figure S3 Correlation between network diameter and modu-

larity in simulated networks. Each point represents a network and

each line connects the networks of the same series. The number of

modules is fixed at 4, 6, 8, 10 and 12 for series A, B, C, D, and E,

respectively. Within each network series, the ratio (R) of the

number of between-module edges to that of within-module edges

changes from 30:1 to 1:30 so that modularity gradually increases.

Here, the diameter and modularity values are averages from 50

randomly rewired networks (with preserved modules) of the

original simulated networks. Error bars show one standard

deviation.

Found at: doi:10.1371/journal.pone.0005686.s007 (0.14 MB

PDF)

Figure S4 The distribution of exponents in the 50 power

networks simulated by the modified BA model. The real power

network has an exponent of 2.75.

Found at: doi:10.1371/journal.pone.0005686.s008 (0.12 MB

PDF)

Figure S5 The distribution of exponents in the 50 metabolic

networks generated by the modified BA model. The real metabolic

network has an exponent of 2.40.

Found at: doi:10.1371/journal.pone.0005686.s009 (0.12 MB

PDF)
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5. Erdös P, Rényi A (1959) On random graphs. Publ Math Debrecen 6: 290–297.
6. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks.

Nature 393: 440–442.
7. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science

286: 509–512.

8. Cohen R, Havlin S (2002) Ultra small world in scale-free networks. cond-mat/
0205476.

9. Latora V, Marchiori M (2001) Efficient behavior of small-world networks. Phys
Rev Lett 87: no. 198701.

10. Latora V, Marchiori M (2003) Economic small-world behavior in weighted

networks. Eur Phys J B 32: 249–263.
11. Goh KI, Kahng B, Kim D (2001) Universal behavior of load distribution in

scale-free networks. Phys Rev Lett 87: no. 278701.
12. Adamic LA, Lukose RM, Puniyani AR, Huberman BA (2001) Search in power-

law networks. Phys Rev E 64: no. 046135.
13. Albert R, Barabási A-L (2002) Statistical mechanics of complex networks. Rev

Mod Phys 74: 47.

14. Amaral LAN, Scala A, Barthelemy M, Stanley HE (2000) Classes of small-world
networks. Proc Natl Acad Sci U S A 97: 11149–11152.

15. Chen X, Fu F, Wang L (2006) Prisoner’s dilemma on community networks.
arxiv:physics/0609239.

16. Guimera R, Sales-Pardo M, Amaral LA (2007) Classes of complex networks

defined by role-to-role connectivity profiles. Nat Phys 3: 63–69.
17. Wang Z, Zhang J (2007) In search of the biological significance of modular

structures in protein networks. PLoS Comput Biol 3: e107.

18. Dorogovtsev SN, Mendes JF, Samukhin AN (2000) Structure of growing

networks with preferential linking. Phys Rev Lett 85: 4633–4636.

19. Kumar R, Raghavan P, Rajagopalan S, Sivakumar D, Tomkins A, et al. (2000)

Stochastic models for the Web graph. Proceedings of the 41st Annual

Symposium on Foundations of Computer Science, IEEE Computer Society 57.

20. Krapivsky PL, Rodgers GJ, Redner S (2001) Degree distributions of growing

networks. Phys Rev Lett 86: 5401–5404.

21. Dorogovtsev SN, Mendes JFF (2001) Scaling properties of scale-free evolving

networks: Continuous approach. Phys Rev E 63: no. 056125.

22. Guimera R, Nunes Amaral LA (2005) Functional cartography of complex

metabolic networks. Nature 433: 895–900.

23. Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network

motifs. Proc Natl Acad Sci U S A 102: 13773–13778.

24. Variano EA, McCoy JH, Lipson H (2004) Networks, dynamics, and modularity.

Phys Rev Lett 92: no. 188701.

25. Baldwin CY, Clark KB (2000) Design Rules (Vol. 1) The Power of Modularity.

Cambridge MA: MIT Press.

26. Selby RW (2005) Enabling reuse-based software development of large-scale

systems. IEEE Transactions on Software Engineering 31: 495.

27. Newman ME, Girvan M (2004) Finding and evaluating community structure in

networks. Phys Rev E 69: no. 026113.

28. Danon L, Duch J, Diaz-Guilera A, Arenas A (2005) Comparing community

structure identification. J Stat Mech P09008: 1–10.

29. Yu H, Zhu X, Greenbaum D, Karro J, Gerstein M (2004) TopNet: a tool for

comparing biological sub-networks, correlating protein properties with topolog-

ical statistics. Nucleic Acids Res 32: 328–337.

30. Milo R, Kashtan N, Itzkovitz S, Newman ME, Alon U (2004) On the uniform

generation of random graphs with prescribed degree sequences. arXiv:cond-

mat/0312028v2.

31. Newman ME (2002) Assortative mixing in networks. Phys Rev Lett 89:

no. 208701.

Network Diameters

PLoS ONE | www.plosone.org 6 May 2009 | Volume 4 | Issue 5 | e5686


