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OBJECTIVE—Despite extensive evidence for genetic suscepti-
bility to diabetic nephropathy, the identification of susceptibility
genes and their variants has had limited success. To search for
genes that contribute to diabetic nephropathy, a genome-wide
association scan was implemented on the Genetics of Kidneys in
Diabetes collection.

RESEARCH DESIGN AND METHODS—We genotyped
~360,000 single nucleotide polymorphisms (SNPs) in 820 case
subjects (284 with proteinuria and 536 with end-stage renal
disease) and 885 control subjects with type 1 diabetes. Confir-
mation of implicated SNPs was sought in 1,304 participants of the
Diabetes Control and Complications Trial (DCCT)/Epidemiology
of Diabetes Interventions and Complications (EDIC) study, a
long-term, prospective investigation of the development of dia-
betes-associated complications.

RESULTS—A total of 13 SNPs located in four genomic loci were
associated with diabetic nephropathy with P < 1 X 10~°. The
strongest association was at the FRMD3 (4.1 protein ezrin,
radixin, moesin [FERM] domain containing 3) locus (odds ratio
[OR] = 1.45, P = 5.0 X 10~ 7). A strong association was also
identified at the CARS (cysteinyl-tRNA synthetase) locus (OR =
1.36, P = 3.1 X 10~ ). Associations between both loci and time to
onset of diabetic nephropathy were supported in the DCCT/EDIC
study (hazard ratio [HR] = 1.33, P = 0.02, and HR = 1.32) P =
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0.01, respectively). We demonstrated expression of both FRMD3
and CARS in human Kkidney.

CONCLUSIONS—We identified genetic associations for suscep-
tibility to diabetic nephropathy at two novel candidate loci near
the FRMD3 and CARS genes. Their identification implicates
previously unsuspected pathways in the pathogenesis of this
important late complication of type 1 diabetes. Diabetes 58:
1403-1410, 2009

iabetic nephropathy is the leading contributor

to end-stage renal disease (ESRD) in the U.S.

(D). Clinically, diabetic nephropathy is manifest

as a progressive disease process that advances
through characteristic stages. It begins with microalbu-
minuria (leakage of small amounts of albumin into the
urine) and progresses to overt proteinuria. In a large
proportion of these patients, renal function declines and
continues to deteriorate until ESRD is reached, and
replacement therapy is indicated (2—4). Overall, ESRD
develops in ~20% of all patients with type 1 diabetes
(5,6).

Despite evidence that genetic susceptibility plays a role
in the development of diabetic nephropathy in type 1
diabetes (7-9), success in identifying the responsible ge-
netic variants has been limited (10,11). This has been
attributable, in part, to the small size of the DNA collec-
tions available to individual research groups and the
narrow focus of the searches on candidate genes. Another
challenge that has received little attention in previous
studies is the possibility that successive stages of diabetic
nephropathy are influenced by different genetic factors
(12,13).

To conduct a statistically robust study that provides
genome-wide coverage for detection of common variants
that may have relatively small, but pathogenically signifi-
cant, effect on risk of diabetic nephropathy in type 1
diabetes, the Genetics of Kidneys in Diabetes (GoKinD)
collection was established (14). A genome-wide scan of
this collection was supported by the Genetic Association
Information Network (GAIN) initiative (15). This report
presents 1) results of this genome-wide association scan in
the GoKinD collection, 2) replication of the significant
associations in this scan with time to onset of diabetes-
associated complications (severe nephropathy) in the
Diabetes Control and Complications Trial (DCCT)/
Epidemiology of Diabetes Interventions and Complications
(EDIC) study, and 3) characterization of expression of the
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identified candidate diabetic nephropathy genes in normal
human cell lines.

RESEARCH DESIGN AND METHODS

Subjects for the GoKinD collection were recruited through two centers
with different methods of ascertainment and recruitment (14). The George
Washington University (GWU) Biostatistics Center coordinated the recruit-
ment of volunteers (through mass media advertisement) living throughout
the U.S. (excluding New England) and Canada to 1 of 27 clinical centers
located across the U.S. and Canada. The Section of Genetics and Epide-
miology at the Joslin Diabetes Center (JDC) recruited and examined
patients of the Joslin Clinic from New England who were already enrolled
in the Joslin Kidney Study on the Genetics of Diabetic Nephropathy, a
clinic-based cohort study in which case subjects with diabetic nephropathy
and a random sampling of eligible control subjects were identified and
recruited (16).

A detailed description of the GoKinD collection has been published (14).
Briefly, subjects enrolled in GoKinD had type 1 diabetes diagnosed before age
31, began insulin treatment within 1 year of their diagnosis, and were between
18 and 59 years of age at the time of enrollment. Participation in the
DCCT/EDIC study was an exclusion criterion so that the two study popula-
tions would be independent. Case subjects with diabetic nephropathy had
either persistent proteinuria, defined by a urinary albumin-to-creatinine ratio
=300 pg/mg in two of the last three measurements taken at least 1 month
apart, or ESRD (dialysis or renal transplant). Control subjects had type 1
diabetes for at least 15 years and normoalbuminuria, defined by an albumin-
to-creatinine ratio <20 pg/mg in two of the last three measurements taken at
least 1 month apart (if a third measurement was required, a value <40 p.g/mg
was necessary for inclusion), without ever having been treated with ACE
inhibitors or angiotensin receptor blockers, and they were not being treated
with antihypertensive medication at the time of recruitment into the study.
For additional information regarding the definition of case and control
subjects used in this analysis, refer to the report by Mueller et al. (14). In total,
1,879 subjects (935 case and 944 control subjects) were recruited into
GoKinD. The GWU panel included 437 case subjects with diabetic nephropa-
thy (58 with proteinuria and 379 with ESRD) and 446 control subjects; the JDC
panel included 498 case subjects with diabetic nephropathy (268 with pro-
teinuria and 230 with ESRD) and 498 control subjects. Further details are also
provided in the supplementary information, which is available in an online
appendix at http://diabetes.diabetesjournals.org/cgi/content/full/db08-1514/DC1.

Confirmation of our findings in the GoKinD collection was sought in
genome-wide association data from the DCCT/EDIC study, a long-term,
prospective investigation of the development of diabetes-associated compli-
cations (17,18). Of the original DCCT cohort recruited between 1983 and 1989,
1,375 subjects (95%) were retained in the EDIC follow-up study. Participants
in EDIC underwent baseline examinations between 1994 and 1995 and have
since participated in annual follow-up examinations to assess the develop-
ment or progression of complications. As of EDIC year 12 (2005), this cohort
had 16-22 years of follow-up, and 132 cases of severe nephropathy (protein-
uria or ESRD) had been documented in 1,304 Caucasian DCCT/EDIC partic-
ipants. This phenotype is the closest to the phenotype used in the GoKinD
collection. Detailed clinical characteristics of the DCCT/EDIC study have
been published (13,17,18). Additional details are also provided in the supple-
mentary information.

Genotyping. The GoKinD collection was genotyped on an Affymetrix 5.0
500K single nucleotide polymorphism (SNP) array by the GAIN genotyping
laboratory at the Eli and Edythe L. Broad Institute (Cambridge, MA). A
description of study genotyping is available in the supplementary information.
Additionally, two SNPs, rs39075 and rs1888747, were genotyped in the
GoKinD collection using TagMan (Applied Biosystems, Foster City, CA)
technology by the genetics core of the Diabetes and Endocrinology Research
Center at the JDC in accordance with the manufacturer's protocols. DNA
samples used for the genotyping of these SNPs in the GoKinD collection were
obtained through the National Institute of Diabetes and Digestive and Kidney
Diseases central repository (www.niddkrepository.org).

SNP quality control. After internal quality control, the GAIN genotyping
laboratory released genotypes for 467,144 SNPs. Several quality control
metrics, including filters for minor allele frequency < 0.01, rejection of
Hardy-Weinberg assumptions (P < 10~°), and differential rates of missing data
(by case/control status) were applied to these data. After reconciliation of
SNPs eliminated by these analyses, the resulting data contained 359,193
autosomal SNPs. More details are available in the supplementary information
and supplementary Table 1.

Sample quality control and SNP imputation. The application of quality
control criteria reduced the GoKinD population from 1,879 to 1,705 individuals
of European ancestry. Samples from the two GoKinD panels that constitute
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this sample are 379 GWU case subjects (49 with proteinuria and 330 with
ESRD), 413 GWU control subjects, 441 JDC case subjects (235 with protein-
uria and 206 with ESRD), and 472 JDC control subjects. The measured
genotypes for these individuals were augmented by imputation of ungeno-
typed SNPs across two mega—base pair regions flanking each of the lead SNPs
in the GoKinD collection (where linkage disequilibrium, as measured by 72,
decayed to <0.20 for all lead SNPs). A total of 8,245 imputed HapMap SNPs
across these four loci were included in our association analysis. Further
details of sample quality control and imputation procedures are available in
the supplementary information and supplementary Table 2.

Statistical analysis. GoKinD samples were collected under two separate
ascertainment protocols (JDC and GWU panels) so that tests for latent
residual stratification were performed. Cochran-Armitage tests of trend for the
JDC versus GWU control subjects, and JDC versus GWU case subjects,
revealed an overdispersion in the test statistics for both control and case
subjects compared with the complete null. The median genomic control
parameters were estimated at A = 1.13 for control subjects and A = 1.097 for
case subjects. Permutation analysis within the control subjects and within the
case subjects resulted in a stratification significance of P < 10~? for both case
and control subjects. Therefore, the primary association analysis used in
the study was a stratified test of association combining case-control tests of allele
frequencies in JDC and GWU strata. Combined P values and odds ratios (ORs)
were calculated using a Cochran-Mantel-Haenszel procedure. Homogeneity
across strata was assessed using the Breslow-Day statistic. All genome-wide
statistical association analyses were performed using PLINK and R (19). Further
details of quality control procedures, software, statistical analysis and adjust-
ments, and cluster plots are available in the supplementary information. Data
from our analysis of the GoKinD collection are available for specific SNPs and/or
genes upon request.

Genotyping and analysis of the DCCT/EDIC data. Genotypes of the
DCCT/EDIC study participants were generated with the Illumina HumanlM
Beadchip. Briefly, quality control measures resulted in 840,354 SNPs suitable
for statistical analysis. Population substructure was assessed to ensure that all
included samples were of European ancestry. Multivariate Cox proportional
hazard analyses were performed on data from 1,304 Caucasian subjects using
time to onset of severe nephropathy, defined by an albumin excretion rate
(AER) >300 mg/24 h on at least two consecutive examinations or dialysis/
renal transplant with prior persistent microalbuminuria (two consecutive
AERs >30 mg/24 h) as the outcome phenotype (n = 132). Among those with
severe nephropathy, 116 subjects developed only proteinuria (AER >300
mg/24 h), whereas 16 progressed to ESRD. The DCCT cohort (primary
prevention versus secondary intervention), treatment (intensive versus con-
ventional), and interaction between cohort and treatment were used as
covariates in the analysis of the effect of an independent additive SNP genetic
factor. This model was examined for all associated loci in GoKinD and
subsequently tested for both statistical significance and the same direction of
effect for associated alleles (20-22).

Gene expression. The expression of candidate genes was examined in four
primary human cell lines derived from cells that have been implicated in the
pathogenesis of kidney complications (endothelial cells from the iliac artery,
adult dermal fibroblasts, mesangial cells, and epithelial cells from proximal
tubules) by quantitative real-time PCR. Sources of these cells, cell culture
conditions, and protocols used in these experiments are available in the
supplementary information.

RESULTS

Genome-wide association scans for genes associated
with diabetic nephropathy in type 1 diabetes. The
application of metrics for SNP and sample quality resulted
in the analysis of 359,193 autosomal SNPs and 1,705
GoKinD samples of European ancestry (885 control sub-
jects and 820 case subjects) (Ssee RESEARCH DESIGN AND
METHODS and the supplementary information). Clinical
characteristics of the JDC and GWU panels are summa-
rized in Table 1. Because different ascertainment protocols
were used by the JDC and GWU, the resulting data were
found to exhibit significant stratification. As a result, the
primary association analyses were conducted using a
stratified test of association.

Although no SNP achieved genome-wide significance
(0.05/359,193 = 1.4 X 107 7), the primary association
analysis identified 11 SNPs representing four distinct
chromosomal regions with P < 1 X 10~° (Fig. 1 and Table
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TABLE 1
Baseline clinical characteristics of the GoKinD collection
JDC GoKinD JDC GWU GoKinD GWU
control GoKinD case control GoKinD case
subjects subjects subjects subjects
n 472 441 413 379
Men/women 220/252 233/208 143/270 190/189
Age at diagnosis of type 1 diabetes (years) 129+ 7.5 11.5 = 6.7 129 = 7.2 12.1 = 6.6
Duration of type 1 diabetes (years)* 26.4 £ 8.0 270+ 78 24.2 + 7.3 2.9 + 7.6
Age at examination (years) 39.4 £ 65 42.0 £ 7.1 37.1 = 8.8 444 £ 6.5
Laser treatment (%) 22 84 10 85
A1C (%)T 75+ 1.7 85 * 1.6 74+ 1.1 78+ 1.4
ACR in control subjects (ug/mg) 7.0 £3.7 — 6.3 £3.6 —
Case subjects with proteinuria/ESRD 235/206 49/330
ACR in subjects with proteinuria (pug/mg) 1,671 = 1,634 1,282 * 1,096
ESRD duration (years) 75 *+54 7.2 £ 5.6
Kidney transplant (%) 86 95

Clinical characteristics are the mean values = SD for all Caucasian patients (n = 1,705) included in the current analysis after the application
of quality control metrics (see supplemental information regarding sample quality control analysis and population substructure and ancestry
analysis). *The duration of type 1 diabetes in control subjects and in subjects with proteinuria is based on the duration at examination. Among
ESRD case subjects, this is based on the duration of type 1 diabetes at the onset of ESRD. All other clinical characteristics are based on
measurements performed at examination. TMean A1C values do not include data from case subjects that have undergone pancreas

transplantation (11% of JDC case subjects and 58% of GWU case subjects); ipercentages are of ESRD group.

2), which were considered for replication. The strongest
association with diabetic nephropathy occurred on chro-
mosome 9q with rs10868025 (OR = 1.45, P = 5.0 X 10 7).
This SNP is located near the 5’ end of the 4.1 protein ezrin,
radixin, moesin (FERM) domain-containing 3 (FRMD3)
gene.

Three additional genomic regions located on chromo-
somes 7p, 11p, and 13q were also associated with diabetic
nephropathy. The rs39059 SNP (OR = 1.39, P = 5.0 X
109 localizes to the first intron of CHN2 (B-chimerin)
isoform 2 and upstream of an alternatively spliced CPVL
(serine carboxypeptidase vitellogenic-like) transcript on
chromosome 7p. The rs451041 SNP (OR = 1.36, P = 3.1 X
10~ %) is located on chromosome 11p in an intronic region
of the CARS (cysteinyl-tRNA synthetase) gene. And, fi-
nally, the region bounded by rs1411766/rs1742858 (OR =
1.41, P = 1.8 X 10~ %) is located in a 42 kb intergenic region
on chromosome 13q.

Analyses of the imputed SNPs in our lead loci identified
11 additional SNPs that were highly correlated with
the original associations (P < 1 X 10 ®). Of these, two
were more strongly associated with diabetic nephropathy
than our lead genotyped SNPs. Imputed SNP rs1888747

(chromosome 9q), which is in partial linkage disequilib-
rium (r* = 0.81) with rs10868025, was more strongly
associated with diabetic nephropathy than the original
SNP (P = 4.7 X 1077 (Fig. 2B). Similarly, two imputed
SNPs in the 7p region (rs39075 and rs39076) were also
more strongly associated than the original SNP in that
region (rs39059) (Fig. 2A). Both imputed SNPs were
genotyped in the GoKinD samples, and the associations
with the imputed data were confirmed (rs39075, P = 6.5 X
1077 and rs1888747, P = 6.3 X 10~ ") (Table 2).

If the etiology of diabetic nephropathy involves the
interaction of a locus with the cumulative effect of hyper-
glycemia, the association of the locus with diabetic ne-
phropathy can vary according to diabetes duration at
diabetic nephropathy onset, such that it is strongest in
early-appearing case subjects and diminishes in later ones,
even reversing in direction in very late-appearing case
subjects (23). We examined the SNPs in Table 2 according
to diabetes duration by stratifying case and control sub-
jects across tertiles of diabetes duration (at the onset of
ESRD or at enrollment into GoKinD for proteinuria pa-
tients and control subjects). The strength of the associa-
tions was consistent across these strata (data not shown).
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FIG. 1. Summary of genome-wide association scan results in the GoKinD collection. The -log,, P values calculated using the Cochran-Mantel-
Haenszel method (adjusting for sex and GoKinD subcollection [JDC/GWU]) across the entire genome are shown for the combined GoKinD
collection. The horizontal dashed line corresponds to a -log,, P value = 5.0 (P = 1 X 10~%). SNPs shown in green (n = 11) exceed this threshold
(because of the resolution of this image, some of the SNPs located on chromosome 13 [n = 7] appear indistinguishable).
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FIG. 2. Summary of genome-wide association results for the chromosome 7p, 9q, 11p, and 13q loci. A: Genome-wide association scan and imputed
data for the chromosome 7p locus. rs39059 (solid red triangle) is located at position IVS1 + 21350 relative to exon 1 of CHN?Z isoform 2 and is
in tight linkage disequilibrium with rs39075 (r> = 0.96), located at position IVS1 + 42572. rs39059 and rs39075 reside —69,318 and —90,540 kb,
respectively, upstream of CPVL isoforms 1 and 2. A third alternate transcript (isoform 3) is predicted for CPVL and contains an exon that extends
to intron 1 of CHNZ2. rs39059 and rs39075 are located at positions —20579 and —41801, respectively, relative to this transcript. A, SNPs genotyped
on the Affymetrix array (n = 163); A, imputed SNPs (n = 694). *Imputed SNP rs39075 was genotyped in the GoKinD samples to confirm the
imputation. B: Genome-wide association scan and imputed data for the chromosome 9q locus. A total of 100 genotyped SNPs from the Affymetrix
array data and 450 imputed SNPs are shown. rs10868025 (solid red triangle) is located at position —10829 relative to FRMD3’s transcription start
site. rs10868025 is in complete linkage disequilibrium (r* = 1.0) and only 253 bp from imputed SNP rs13289150 (A superimposed on rs10868025).
rs1888747, located at position —2204, is in partial linkage disequilibrium (r? = 0.81) with rs10868025. *Imputed SNP rs1888747 was genotyped
in the GoKinD samples to confirm the imputation. C: Genome-wide association scan and imputed data for the chromosome 11p locus. A total of
33 genotyped SNPs from the Affymetrix array data and 190 imputed SNPs are shown. rs739401 and rs451041 (solid red triangles) are in strong
linkage disequilibrium (7% = 0.97). rs739401 is located in intron 16 (isoforms a and c)/17 (isoforms b and d) of the CARS gene (position IVS16 +
687/IVS17 + 687). rs451041 is located in intron 4 (isoforms a and c¢)/5 (isoforms b and d), position IVS4 — 203/IVS5 — 203). D: Genome-wide
association scan and imputed data for the chromosome 13q locus. A total of 68 genotyped SNPs from the Affymetrix array data and 268 imputed
SNPs are shown. Seven lead SNPs (rs1041466, rs1411766, rs17412858, rs6492208, rs2391777, rs7989848, and rs9521445) from this region are
indicated in red. rs1411766 and rs17412858 are in complete linkage disequilibrium (r* = 1.0). Similarly, rs6492208 and rs2391777 are in complete
linkage disequilibrium (> = 1.0). rs7989848 and rs9521445 are in strong linkage disequilibrium (r> = 0.87), whereas only modest linkage
disequilibrium exists between all other SNP pairs (r?> = 0.30-0.65). The two nearest genes are MY016 and IRS2, located ~384 kb centromeric

and 120 kb telomeric of this region, respectively.

Additionally, if a locus influences mortality risk, the high
mortality experienced by patients with ESRD would alter
its association with diabetic nephropathy according to the
duration of survival with ESRD and may mask the effect of
a diabetic nephropathy risk allele or produce a false
association. For this reason, we also analyzed the lead
SNPs in Table 2 according to duration of ESRD. For each
of these SNPs, the ORs were consistent across tertiles of
ESRD duration (supplementary Table 4), a pattern consis-
tent with the absence of survival bias. However, the
current study is underpowered to formally exclude the
presence of such effects.

Confirmation of associated type 1 diabetic nephrop-
athy SNPs in the DCCT/EDIC study. Data from a
genome-wide association scan of the DCCT/EDIC study
were used to assess whether genome regions identified in
the GoKinD collection were associated with advanced
diabetic nephropathy in an independent collection. Among
the 11 SNPs identified in GoKinD, eight were included on
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the Illumina array used in the DCCT/EDIC study (Table 3).
The three SNPs not included on this platform, rs39059,
rs739401, and rs9521445, were in strong linkage dlsequl—
librium (r = (.87) with r53907 5, rs451041, and rs7989848,
respectively. Analysis of time to onset of severe nephrop-
athy confirmed the significant associations with diabetic
nephropathy in GoKinD for rs1888746 (FRMDS3, P = 0.02),
rs13289150 (FRMD3, P = 0.05), and rs451041 (CARS,
P = 0.01).

Analysis of candidate diabetic nephropathy gene
expression. Previous studies, as well as publicly available
gene expression data (www.ncbi.nlm.nih.gov/geo), have
shown that genes closest to the lead SNPs identified in
GoKinD are expressed in a variety of human tissues,
including kidney (24-26). To further test whether these
candidate genes may be involved in the development of
diabetic nephropathy, we examined their expression in
cell lines relevant to this disease. The expression of CHNZ2,
CPVL, FRMD3, and CARS was examined in four primary
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TABLE 3
HRs for the development of severe nephropathy during 16-22 years of follow-up in the DCCT/EDIC study for SNPs associated with
diabetic nephropathy in GoKinD

P values and HRs in
DCCT/EDIC collection

Locus severe nephropathy
Position Nearest Risk Frequency of P
SNP Chromosome (Mb) gene(s) allele* risk allele (one-sided)T HR
rs39075 P 29.2 CPVL/CHN2 G 0.60 NS 0.85
rs1888746% 9q 85.3 FRMD3 C 0.70 0.02 1.33
rs132891508 9q 85.4 FRMD3 A 0.62 0.05 1.23
rs451041 11p 3.0 CARS A 0.51 0.01 1.32
rs1041466 13q 109.0 No gene G 0.47 0.11 1.22
rs1411766 13q 109.1 No gene A 0.36 0.11 1.17
rs6492208 13q 109.1 No gene T 0.61 NS 0.90
rs7989848 13q 109.1 No gene A 0.53 NS 0.93

Data are from multivariate Cox proportional hazard analysis of time to onset of severe nephropathy. As of 2005, the number of severe
nephropathy cases was 132 (vs. 1,172 censored). Chromosomal locations, SNP positions, and gene annotations are in reference to NCBI
Build 36.1. *The risk alleles that are presented are in reference to those identified in the GoKinD collection; fone-sided P values
(consistent with the current “best practices” for replication in GWA scans) (20-22) are used to test for the same direction of effect as
in the GoKinD collection; rs1888746 was genotyped on an Illumina array in DCCT/EDIC and is in complete linkage disequilibrium (2 =
1.0) with rs1888747 (genotyped using a Tagman assay in GoKinD); §rs13289150 was genotyped on an Illumina array in DCCT/EDIC and

is in complete linkage disequilibrium (% = 1.0) with rs10868025 (genotyped on an Affymetrix array in GoKinD).

human cell lines: iliac artery endothelial cells, adult dermal
fibroblasts, mesangial cells, and renal proximal tubule
cells. Our data show that CARS expression was high in all
four of the cell lines that we examined (Table 4). FRMD3
expression was also detected in each cell type, with its
highest expression being observed in renal proximal tu-
bule cells. Of the two candidate diabetic nephropathy
genes located in chromosome 7p region, neither was
detected in mesangial cells, whereas CPVL expression was
greatest in proximal tubule cells.

DISCUSSION

In this report, we describe the results of a genome-wide
association scan in the GoKinD collection to identify loci
associated with risk of diabetic nephropathy in type 1
diabetes. The most significant associations were identified
with variants located within four distinct chromosomal
regions. Although the biology underlying these associa-
tions remains to be elucidated, they implicate CHNZ2/
CPVL, FRMD3, CARS, and an intergenic region on
chromosome 13q as novel genes/genetic regions involved
in the pathogenesis of diabetic nephropathy. None of these

TABLE 4
Relative gene expression of novel candidate diabetic nephropa-
thy susceptibility genes in primary human cell lines

loci overlap with previously reported associations be-
tween candidate genes and the development of any stage
of diabetic nephropathy (10,11). Importantly, replication
in a Cox proportional hazard analysis of the associations
at the FRMD3 and CARS loci with time to the onset of
severe nephropathy in the DCCT/EDIC study bolsters the
significance of these two findings; that two studies having
such different designs (one a case-control study and the
other a prospective cohort study) yielded similar ORs
strengthens confidence in this conclusion.

FRMDS3 encodes the 4.10 protein, a structural protein
with unknown function and a member of the 4.1 family of
proteins (26). Members of the 4.1 protein family have
well-characterized roles as cytoskeletal proteins, main-
taining both cellular shape and form, in a variety of cell
types, including mouse nephron (27,28). Although mem-
bership of the 4.10 protein in this family has recently been
questioned, it does contain a FERM domain, which is a
module that is integral in maintaining cell integrity through
its interactions with transmembrane proteins and actin
filaments (29,30). FRMDS3 is detectable in adult ovaries as
well as in fetal skeletal muscle, brain, and thymus (26).
Our data extend the expression profile of FRMD3 to
specifically include mesangial and proximal tubular cells.
Interestingly, among 18 genes that contain FERM domains,
including several members of the 4.1 protein family, we

CPVL C, CHN2 C, FRMD3 C, CARSC, identified nominally significant associations with diabetic
Cell line values values values values nephropathy for SNPs located in eight of these genes
: (supplementary Table 5), including FARP2 (FERM, Rho-
Endothelial cells, N . N . GEF and pleckstrin domain protein 2; P = 3.0 X 10~ *) and
Fitl)halcjl }g? o 8I 125 =0.1 }?g N 8? gg N 83 EPB41L2 (erythrocyte membrane protein band 4.1-like 2;
roblasts e n.€. DD 20~ P =23 X 10*). Although these findings require further
Mesangial cells e n.e. 12905 7.2+ 0.1 study, including replication in additional collections, it is
Proximal tubules 8.6+ 0.1 13.1=0.1 102+02 80+0.1 Y, 8 Iep )

The relative gene expression of CPVL, CHN2, FRMD3, and CARS
was determined in four primary human cell lines using real-time
PCR. Relative gene expression of each gene was calculated in
reference to a normalization control (B-actin) and is presented as
the mean AC, (C, value from each gene minus C, value from the
normalization control) and SD from three separate experiments.
Mean AC, = 0 equals high relative gene expression (i.e., expression
similar to B-actin). n.e., not expressed (mean AC, >40.0).
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interesting to speculate that these data may point to the
involvement of new, previously unsuspected pathways in
the pathogenesis of diabetic nephropathy.

The CARS gene encodes cysteinyl-tRNA synthetase, one
of several aminoacyl-tRNA synthetases (ARSs) that have
been identified in humans (31,32). ARSs are important
regulators of intracellular amino acid concentrations and
protein biosynthesis in both the cytoplasm and mitochon-
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dria (a process facilitated by specialized mitochondria-
specific and bifunctional ARSs). In the initial steps of
protein translation, the function of these enzymes is to
attach amino acids to their cognate tRNA molecules. To
date, both autosomal dominant and recessive mutations in
ARS-encoding genes have been identified only in neurode-
generative disease, including missense changes in glycyl-
tRNA synthetase (GARS) and both missense mutations
and in-frame deletions in tyrosyl-tRNA synthetase (YARS)
in Charcot-Marie-Tooth disease (32).

CARS has been implicated in cystinosis, an autosomal
recessive renal tubule disorder caused by the accumula-
tion of free cystine in cellular lysosomes (33,34). A recent
study identified defects in lysosomal cystine transport as
the primary cause of the disease (35). However, ESRD is
prominent in this disorder, and such an outcome may be
due to vulnerability of specific renal cells to damage by
excess cystine. Interesting, in this light, is the observation
that of all the associated SNPs, only those in the CARS
locus were associated primarily with ESRD (supplemen-
tary Table 4). CARS is expressed in mesangial and proxi-
mal tubule cells. Further work is needed to characterize
the role of CARS in the pathway that is involved in the
development of ESRD in diabetes. Similar to the set of
genes containing FERM domains, analysis of 21 ARS genes
identified nominally significant associations with diabetic
nephropathy for SNPs located in four members of this
class of genes (supplementary Table 6), with the most
significant association (P = 9.1 X 10™%) occurring at the
TARS (threonyl-tRNA synthetase) locus.

Two additional loci were strongly associated with dia-
betic nephropathy in both panels of the GoKinD collec-
tion. Of the two genes located on chromosome 7p, CPVL,
a carboxypeptidase that is highly expressed in the kidney
and, more specifically, in proximal tubules, is a particu-
larly interesting candidate gene. Other carboxypeptidases,
such as ACE and bradykinin, are important regulators of
renal hemodynamics and have previously been implicated
in the pathogenesis of diabetic nephropathy (36,37). The
last diabetic nephropathy—-associated locus involves mul-
tiple SNPs within a 33 kb haplotype block on chromosome
13q. Previously, genomic deletions of this locus have been
linked to congenital renal abnormalities (38). The two
genes closest to the associated SNPs, MYOI6 (myosin
heavy-chain Myr 8) and IRS2 (insulin receptor substrate
2), are located ~384 kb centromeric and 120 kb telomeric
of this region, respectively. Although there is little linkage
disequilibrium between the variants within this block and
those in the vicinity of either MYO16 or IRS2, the multiple
signals identified in this region give credence to the
association detected in our analysis. Additional experi-
ments are needed to characterize the nature of these
associations further.

The findings presented in our study contribute to under-
standing the genetic susceptibility of diabetic nephropathy
in type 1 diabetes. As has been reported for other complex
genetic disorders, no single major gene that contributes to
an increased risk of disease emerged (20,39). However,
given the incomplete coverage of the genome by the
genotyping platform and the suboptimal study design
(prevalent rather than incident cases of ESRD), detection
of any existing major gene effect was not guaranteed. For
example, because most of the case subjects with ESRD
had survived many years on dialysis or with a kidney
transplant, a disease allele that not only increased suscep-
tibility to diabetic nephropathy but also increased mortality
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in patients with ESRD could go undetected. Appreciably, the
SNPs that we identified in the GoKinD collection were
mortality neutral (supplementary Table 4). The optimal study
design for detecting all disease loci, regardless of their effect
on mortality, would be a large cohort of incident ESRD case
subjects. Such a data set is currently unavailable.

There are other limitations to this study as well. The
GoKinD collection is heavily weighted with case subjects
with ESRD; thus, the small number of case subjects with
proteinuria limited our ability to detect variants primarily
associated with the risk of proteinuria. Second, because of
the limited power of the DCCT/EDIC study and the need to
contain inflation of the a-error in seeking replication for
multiple SNPs in this dataset, our replication efforts re-
frained from considering SNPs less significant than P =
1 X 107°. It is certainly possible that additional variants
among those not meeting this threshold may truly be
associated with diabetic nephropathy; however, given
these limitations, these variants remain to be identified.
Similarly, despite replication in the DCCT/EDIC cohort,
we acknowledge that positive associations at both the
FRMD3 and CARS loci require additional study to be
certain of these findings. Third, although the locations of
the variants confirmed in this study implicate both
FRMD3 and CARS as novel genes involved in the
pathogenesis of diabetic nephropathy, the underlying
mechanisms of disease of these associations need to be
elucidated. And, finally, although confirmation in DCCT/
EDIC has been achieved for variations near FRMD3 and
CARS, additional cohorts, particularly non-Caucasian,
would be useful to further characterize the pathogenic
role of these, and other, candidate genes identified in
the GoKinD collection.
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