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Abstract

Theoretical and in vitro experiments suggest that protein folding cores form early in the process of
folding, and that proteins may have evolved to optimize both folding speed and native-state stability.
In our previous work, we developed a set of empirical potential functions and used them to analyze
interaction energies among secondary-structure elements in two B-sandwich proteins. Our work on
this group of proteins demonstrated that the predicted folding core also harbors residues that form
native-like interactions early in the folding reaction. In the current work, we have tested our empirical
potential functions on structurally-different proteins for which the folding cores have been revealed
by protein hydrogen-deuterium exchange experiments. Using a set of 29 unrelated proteins, which
have been extensively studied in the literature, we demonstrate that the average prediction result from
our method is significantly better than predictions based on other computational methods. Our study
is an important step towards the ultimate goal of understanding the correlation between folding cores
and native structures.
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Introduction

Understanding the mechanisms by which proteins fold is one of the grand challenges of
molecular biology. Theoretical studies suggest a funnel-like free energy landscape for protein
folding, which helps to explain how an extended polypeptide chain consistently folds into its
stable native three-dimensional conformation in a speedy fashion [1-4].
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Appendix A. Supplementary data

The SSE-based definition of protein folding cores is derived from the works of Li and Woodward [13] and Rader and Bahar [15]. From
the perspective of prediction, this definition may restrict the number of possible combinations of folding cores, leaving little room for
prediction. To address this concern, we plotted the prediction performance (i.e., correlation measures of overlap s and z) versus the number
of secondary-structure elements in Fig. S1. We found little correlation between performance and number of SSEs for all 27 proteins in
the test set. In fact, for measure s, the performance actually seems to decrease for proteins with fewer SSEs.

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.abb.2008.12.011.
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Theoretical and in vitro experiments suggest that protein folding nuclei, or cores, form early
in the folding process [5-13]. This finding, in turn, supports Hammond’s postulate [14] that
thermodynamics and kinetics are closely correlated in proteins and that proteins may have
evolved to optimize both folding rate and native-state stability [15]. Our earlier combined
experimental-theoretical study on Pseudomonas aeruginosa apo-azurin and another 3-
sandwich protein demonstrated this correlation, in which the stable folding cores predicted by
our energetic method also harbored the key residues involved in the folding-transition [5].

Among the experimental methods to probe the protein folding process, protein hydrogen-
deuterium exchange (HX)? helps identify protein regions that are shielded from solvent and
thus “protected” from deuterium exchange (i.e., resulting in a slower rate of exchange). Based
on HX experiments, the hydrogen-bonded amide protons (NHs) that are most protected from
deuterium exchange in the protein native-state are often found in the same protein regions as
the NHs protected earliest during the protein folding reaction, as well as those NHs that are
most protected in partially-folded intermediate states of the protein [13,16,17]. In contrast,
NHs in turns and loops are rarely among the very slowest protons to exchange. Therefore, HX
is useful in identifying the slow-exchanging NHs that make up the protein folding core.

Several computational models have been developed that try to connect folding theory with
experimental data on protein unfolding/folding kinetics. Examples are graph-theoretical
approaches based on effective contact order [18,19], several variants of a motion planning
method [20-23], molecular dynamics simulations of unfolding fluctuations around the native-
state [24,25], an unfolding approach using a secondary-structure contact network and minimum
cuts [26], a simplified lattice-protein model of native-state HX [27], and a method that exploits
a correlation between slowest exchanging cores and low conformational entropy [28]. The two
most relevant examples of computational models, with respect to this study, are the Floppy
Inclusions and Rigid Substructure Topography (FIRST) method [29] and the Gaussian
Network Model (GNM) [15,30]. In the FIRST method, inter-atomic covalent and hydrogen
bonds and hydrophobic interactions are replaced by rigid bars whose lengths and bond angles
are constrained—only bond rotations are allowed. FIRST then identifies the rigid and flexible
parts of the all-atomic protein model by selectively breaking hydrogen bonds in order of
weakest to strongest. The GNM method coarse-grains a protein into an elastic network of
residues, whereby pairs of residues within a cut-off distance are connected by virtual elastic
springs, and it predicts the stable folding cores by studying the collective motions of the elastic
network. In GNM, slow mode minima imply hinge sites, whereas high frequency mode peaks
indicate stable “kinetically hot” residues.

Despite some success with these computational methods, there remains room for improvement.
Empirical potential functions have been used previously to study changes in protein stability
[31-33]. In our former work [5], we developed an empirically-weighted set of statistical

2ppbreviations used:

HX

NHs

FIRST

GNM

SSEs

hydrogen-deuterium exchange

hydrogen-bonded amide protons

floppy inclusions and rigid substructure topography

Gaussian network model

secondary structure elements
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potential functions and used them to analyze interaction energies among secondary-structure
elements in two B-sandwich proteins. In the current study, we test the power of our empirical
potential functions by applying them to the prediction of protein folding cores as revealed by
HX experiments, using a large set of proteins with different structures.

Here, and in earlier studies [13,15], the experimental folding cores are defined as those that
make up the folding core elements, which are the secondary-structure elements (SSEs)
containing the slowest exchanging residues (those with the greatest protection factors)
identified in HX experiments. Using a set of 29 unrelated proteins that were extensively studied
in the literature, we show that, on average, our predictions correlate better with the
experimentally-identified folding cores than those of two GNM methods and a third method
using the FIRST software. We believe that our prediction method may be useful to facilitate a
better understanding of the factors that dictate protein folding and native-state stability.

Materials and methods

Choice of experimental data and protein folding core prediction targets

HX experiments are typically subdivided into three types based on their detection purposes
and experimental settings [13]: slow exchange core experiments (for NHs most protected in
the native-state), pulsed exchange experiments (for NHs first protected during folding), and
folding competition experiments (for NHs most protected in partially-folded species). The
folding core secondary-structure elements (SSEs) revealed by these three methods are often
identical or very similar. Thus, we follow Rader and Bahar [15] in using experimental data
from slow exchange core experiments, the most abundant experimental folding core data in
the literature, as our prediction targets. In addition, the secondary-structure definitions are
based on the Protein Data Bank SHEET and HELIX records.

To train our empirical potential function and then compare our computational predictions with
experimental results, we used a set of 29 proteins (listed in Table 1) that were extensively
studied in the literature [13,15,34-40].

Prediction of folding cores based on an empirical potential function

The computational prediction method using our all-atom empirical potential function is

described in detail in our previous work [5]. The stability cores are ranked by the interaction

energy between multiple SSEs (groups of two, three or four) using a scoring function:
Score:3-455 +5'OEAS+1’9E[IB' (1)

Packing

Here, the three terms in the scoring function represent the effects of side-chain packing
(Epacking), solvent accessible surface area (£as), and hydrogen bonding interactions (Eyg),
respectively. The parameters for these three terms are statistically derived from a non-
redundant structure database of 2701 non-homologous soluble proteins [41], and the weight
for each term is chosen by fitting to the folding core results of two proteins with the most
consistent HX data [13], listed in Table 1b. These two proteins, staphylococcal nuclease [42,
43] and ribonuclease H [44,45], both have a-helix and B-sheet SSEs, and they are excluded
from the set of 27 proteins used for cross-validation.

For comparison with the experimental HX results by Li and Woodward [13], we define the
folding core as the group of SSEs with the lowest interaction energy. The interaction energies
are calculated for groups of two, three and four SSEs, and each grouping type is considered a
separate but related method for predicting the folding core.

Arch Biochem Biophys. Author manuscript; available in PMC 2009 May 15.
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Evaluation of overlap between predictions and experiments

To compare our approach to previous methods and experimental results, we adopted the method
for evaluating overlap employed by Rader and Bahar [15]. There are two related measures for
the overlap between methods A and B (A and B may be experimental or computational
prediction methods):

0(A,B)
N, -Ng ’
N (2)

s(A,B)=

(AB) =0 (A,B) — Yo
zA,b)=0(A, = .
¢ N ®)

Here, N is the total number of residues in the target protein, Np and Ng are the numbers of
folding core residues revealed by methods A and B, respectively, and o(A, B) is the overlap in
the number of residues revealed by methods A and B. These two quantities s(A, B) and z(A,
B) measure the extent of difference between the observed overlap, o(A, B), and the expected
overlap for random matches, N - Ng/N. Thus, s = 1 and z = 0 correspond to random matches
and larger values of s and z indicate greater correlation between methods A and B.

Results and discussion

Fig. 1 illustrates the folding cores predicted by HX experiments and the empirical potential
function for a few examples within the 27-protein test set. Folding core elements are mapped
as dark ribbons on the light gray 3D cartoon backbone of the protein structure. Each column
represents one of the four methods (HX experiments; two-, three- and four-SSE interaction
groups). Fig. 2 summarizes the comparisons of the four methods for all 27 test proteins using
the reduced representation from Rader and Bahar [15]. The x-axis corresponds to the residue
index, and the stacked bars represent the experimentally-determined or predicted folding core
elements. With the exceptions of ha-LA, CTX-3, and Eqlzm, the predictions yielded by the
empirical potential function have substantial overlap with the experimental results. Fig. 3
overlaps experimental phi values with the folding core elements determined by the four
methods for 10 of the 27 test proteins.

Table 2 lists the two measures of overlap (i.e., s and z in Egs. (2) and (3)) for each of the 27
proteins in the test set in Table 1a. The columns of Table 2 compare the overlap between HX
(X) and predictions based on the interaction energies (Eg. (1)) for groups of two, three and four
SSEs, as well as the prediction results of other computational methods. These other methods
are the fast mode peak residues (H) [30], FIRST (F) [29] and GNM global modes (G) [46]
methods. The results show that our method consistently out-performs the three previous studies
in terms of the mean values of s and z. The lowest mean value (s) = 2.254 by our method is
better than that of H, F and G. For z, the smallest mean value by our method is for the two-
SSE case ({z) = 5.718), which is better than the mean values by H, F and G.

For proteins HCA-1, CI-2 and cSH3, all versions of our method are better at matching the HX-
detected folding cores than the other methods. However, for ha-LA and Eglzm, the H, F and
G methods are generally better than our method in predicting the HX-detected folding cores.
For nearly half of the test proteins (13 of 27), all versions of our method match the HX results
with greater than 100% improvement over random agreement (s > 2.0), whereas G can claim
only 6 of 27, H can claim 10 of 27 and F can claim 11 of 27 with s > 2.0. In addition, for Bnase
and RnaseT1, all methods but G match the HX results with roughly 200% or better

Arch Biochem Biophys. Author manuscript; available in PMC 2009 May 15.
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improvement over random agreement (s > 3.0). The success of our method in predicting the
folding cores of Bnase and RnaseT1 may be due to the use of nucleases RnaseH and Snase in
our training set. Interestingly, all methods perform poorly for pAB, which is a small three-helix
protein. It is possible that for such a small and symmetrical protein, all elements have rather
similar contributions to overall stability.

In addition, we tested our method on a few proteins (Cytc, ha-LA, scFv and IL-1b) whose
secondary-structure definitions, namely the number of SSEs, were modified in the PDB header
within the past three years. For ha-LA and scFv, the folding core predictions changed with the
increase in the number of SSEs, whereas the predictions remained the same for IL-1b.
Furthermore, although the overlap measures s and z declined for ha-LA and scFv with the
increase in SSEs, we found no overall correlation between the number of SSEs and our
performance in terms of s and z. In fact, we found little correlation between the number of
SSEs and overlap performance for all the proteins in the test set (see Supplementary materials).

For ten of the proteins in our data set, the transient folding-transition states have been assessed
by the phi-value approach [18,47-54]. This is an experimental approach to indirectly obtain
residue-specific structural information about interactions in the transition state pioneered by
Fersht [55]. It is often assumed that the folding core found in HX experiments corresponds to
the region adopting native-like structure in the kinetic folding-transition state [13]. For some
of the proteins having polarized, highly-organized transition-state structures (e.g., cSH3,
Bnase, Ubiquitin and ha-LA), as identified by phi values, our method selects the same structural
elements as those harboring residues with high phi values (see Fig. 3). In contrast, for proteins
with diffuse folding-transition states (i.e., GB1, CI-2, RnaseA and T4 lysozyme), there is less
correlation between phi values and our predicted folding cores (or between HX data as well).
Taken together, we conclude that the stable folding cores, as identified by our empirical method
or by HX data, often match the kinetic folding-transition states although these sometimes differ;
for proteins folding via diffuse transition states involving many partially-formed interactions,
the stable folding cores must be assessed by methods other than phi values.

In summary, we have developed an empirical potential function that can detect protein stability
cores revealed by HX experiments. The average prediction results of our method are better

than those of previous computational attempts. Although there is still room for improvement
in the model, we believe the method reported here provides a more accurate way of estimating
stability cores of proteins that can be useful in elucidating the mechanisms of protein folding.
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two SSEs three SSEs four SSEs

Fig. 1.

Folding cores predicted by HX experiments and the empirical potential function for a few
examples (GB1, HEWL, Ubiquitin, CI-2 and cSH3) within the 27-protein test set. Folding core
elements are mapped as dark ribbons on the light gray 3D cartoon backbone of the protein
structure. Each column represents one of the four methods (HX experiments; two-, three- and
four-SSE interaction groups). The cartoons were generated using PyMOL (DeLano Scientific,
LLC).
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Fig. 2.

Comparison of folding cores predicted by HX experiments and the empirical potential function
(for four-, three- and two-SSE interaction groups) for all 27 test proteins using the reduced
representation from Rader and Bahar [15]. The x-axis corresponds to the residue index, and
the stacked bars represent the experimentally-determined or predicted folding core elements.
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Fig. 3.

Experimental phi values for ten of the 27 test proteins, plotted as functions of residue index.
The corresponding protein folding core elements determined by HX experiments and the
empirical potential function (from Fig. 2) are provided for reference. The phi values for GB1,
CheY, Bnase, CI-2, cSH3 and LB1 were sourced from Garbuzynskiy et al. [50]. The phi values
for RnaseA, Ubiquitin, ha-LA and T4 lysozyme were drawn from Font et al. [54], Went and
Jackson [52], Saeki et al. [49] and Kato et al. [51], respectively.
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