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Abstract
Determining the location of phonemes is important to a number of speech applications, including
training of automatic speech recognition systems, building text-to-speech systems, and research on
human speech processing. Agreement of humans on the location of phonemes is, on average, 93.78%
within 20 msec on a variety of corpora, and 93.49% within 20 msec on the TIMIT corpus. We describe
a baseline forced-alignment system and a proposed system with several modifications to this baseline.
Modifications include the addition of energy-based features to the standard cepstral feature set, the
use of probabilities of a state transition given an observation, and the computation of probabilities
of distinctive phonetic features instead of phoneme-level probabilities. Performance of the baseline
system on the test partition of the TIMIT corpus is 91.48% within 20 msec, and performance of the
proposed system on this corpus is 93.36% within 20 msec. The results of the proposed system are a
22% relative reduction in error over the baseline system, and a 14% reduction in error over results
from a non-HMM alignment system. This result of 93.36% agreement is the best known reported
result on the TIMIT corpus.
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1. Introduction
1.1 Definition of Automatic Phoneme Alignment

The phoneme is a unit of speech that, by definition, differentiates one word from another
(Ladefoged, 1993, p. 26). One phoneme may contain a number of distinct acoustic events. For
example, a stop phoneme may consist of a sequence of closure, burst, and aspiration events;
or, a diphthong may transition from a back vowel to a front vowel. However, not all acoustic
events are phonemically relevant. In American English, there is no phonemic difference
between stops that are aspirated and unaspirated, because the meaning of a word does not
change with the degree of stop aspiration. Phonemes, therefore, provide a description of the
speech signal at a level of abstraction that is especially useful for word-level speech processing.
A speech signal may be described not only by what phonemes it contains, but also where its
phonemes are located. The issue addressed in this paper is determination of the location of
phonemes in a speech signal, given the sequence of phonemes contained in that signal. This
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task of time-aligning phonemes in a waveform is referred to as “phoneme alignment,” and in
the case of computer-based phoneme alignment, is called “automatic phoneme alignment.” In
this article, we focus on the task of speaker-independent phoneme alignment, in which speaker
characteristics and identity may change from utterance to utterance.

1.2 Applications of Automatic Phoneme Alignment
Determining the location of known phonemes is important to a number of speech applications.
Most current automatic speech recognition (ASR) systems use context-dependent phonemes
as their basic unit of recognition. When developing an ASR system, “good initial estimates …
are essential” when training Gaussian Mixture Model (GMM) parameters (Rabiner and Juang,
1993, p. 370). Because states are associated with phonemes, the mean vectors and covariance
matrices of each state’s GMM should be initialized with values that reflect characteristics of
the phoneme associated with that state, as opposed to using initial values that are obtained
without reference to phoneme identities (e.g. a “flat start” initialization). This, in turn, implies
the need for reasonable estimates of the location of each phoneme when setting initial ASR
system parameters, prior to locally-optimizing training techniques such as expectation-
maximization. Phoneme location information is also critical when building concatenative text-
to-speech systems. Even if a unit boundary is placed at the approximate center of a phoneme,
so that concatenation cost is not as sensitive to boundary placement, errors in boundary
placement will still negatively affect the duration and intersegmental timing of the synthesized
speech.

Knowledge of phoneme boundaries is also necessary in some cases of health-related research
on human speech processing. Studies that measure or modify speech intelligibility, such as
investigations of age-related changes in the temporal processing of speech, or automatic
improvement of the intelligibility of dysarthric speech, may require accurate determination of
phoneme boundaries in order to modify speech stimuli in the correct regions of the signal (e.g.
Gordon-Salant et al., 2006; Kain et al., 2007). One proposed diagnostic marker for Childhood
Apraxia of Speech (CAS) (Shriberg et al., 2003a) requires accurate measurement of phoneme
durations of known words. Another diagnostic marker for CAS and a proposed diagnostic
marker for Alzheimer’s Disease both require estimation of which regions of the signal contain
speech events and which regions contain pause events (Shriberg et al., 2003b; Singh et al.,
2001). The location of speech and pause events can be determined, given an orthographic
transcription of the speech signal, using a slight relaxation in the definition of automatic
phoneme alignment, in which the phoneme sequence is determined from a pronunciation
dictionary but the presence or absence of pauses (and their durations) is automatically
determined.

In addition to these uses of phoneme alignment, there is a direct relationship between the most
common method of automatic phoneme alignment, called “forced alignment,” and the Hidden
Markov Model (HMM) framework used in most ASR systems. (This relationship is described
in more detail in Section 2.2.) Therefore, improvements in the accuracy of forced alignment
have the potential to translate into improvements in ASR word-recognition accuracy.

1.3 Measuring Phoneme Alignment
A primary difficulty in the task of phoneme alignment is that the boundary between two
phonemes can be inherently subjective. Many types of boundaries are readily located by a
human expert, based on identification of acoustic changes that are related to changes in the
manner of articulation. As examples, the onset of voicing is characterized by the appearance
of periodic glottal pulses in both the waveform and the spectrogram, and raising of the velum
shunts airflow from the nasal tract to the oral tract and causes a sudden increase in energy,
especially above 400 Hz. Other boundaries, such as the boundary between a /w/ and vowel, or
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between a vowel and an /l/, do not have clear transition points. (Phonemes are written here in
TIMIT notation (Garofolo et al., 1990)). In these cases, because of coarticulation, the transition
between phonemes may be a gradual change from one acoustic pattern to the next, with no
precise boundary. Because of the lack of distinct physiological or acoustic events that signal
a phoneme boundary in these cases, the location of the boundary is subjective (Svendsen and
Kvale, 1990; Torkkola, 1988; Brugnara et al., 1993; Pellom, 1998; Ljolje et al, 1997). A
convenient metric may be defined, such as the point of maximum slope in the second formant,
but other criteria are just as valid. In continuous speech, boundaries may be difficult to reliably
locate due to glottalization, extremely reduced vowels, or gradual decrease in energy before a
pause. As a result, there is no “correct” answer to the phoneme alignment problem, because
phoneme boundary placement is an inherently subjective task. Instead, we can measure the
agreement between two alignments, such as the agreement between two humans, or the
agreement between human and machine. Although precise evaluation of the quality of phonetic
alignment is difficult, there is a general consensus that manual alignment is more accurate than
automatic alignment (Ljolje et al., 1997; Cosi et al., 1991; Cox et al., 1998). Therefore, the
goal of automatic phoneme alignment is not to achieve 100% accuracy, but to achieve
agreement in boundary placement that is always as good as the best human-human agreement.

The agreement of automatic alignment with manual alignment is most often reported in terms
of what percentage of the automatic-alignment boundaries are within a given time threshold
of the manually-aligned boundaries. For example, Brugnara et al. (1993) report that for their
system, 88.9% of the automatic boundaries are within 20 msec of the manual boundaries. This
type of result will be reported here as a percent “agreement” within the given threshold; in this
example, Brugnara’s system has 88.9% agreement within 20 msec. Results with a threshold
of 20 msec will be reported when possible, as this threshold is commonly reported in other
studies and allows a direct comparison between systems using a single value. Relative
differences in the agreement between two systems will be reported using the terminology
“reduction in error,” even though alternate terminology such as “increase in agreement” may
be technically more correct. Manual alignment agreement is usually reported as inter-labeler
agreement, with one set of manual alignments chosen as nominally “correct,” and the other set
of alignments measured in relation to the first set.

The possibility arises that, because of human variability and machine consistency, automatic
phoneme alignments have the potential to be better for some applications than manual phonetic
alignments. However, due to a lack of evaluation methodology for this goal and current
difficulties in accurate machine processing of speech, the focus of this paper is on achieving
human-human levels of agreement using automatic phoneme alignment.

Although manual alignment is considered more accurate than automatic methods, manual
alignment is too time consuming and expensive to be commonly employed for aligning large
corpora. Manual alignment has been reported to take between 11 and 30 seconds per phoneme
(Kvale, 1994; Leung and Zue, 1984), whereas automatic segmentation can be accomplished
in real-time or faster. Because of the time requirements and inherent subjectivity of manual
phoneme alignment, “there is a need for a fast, inexpensive, and accurate means of obtaining
time-aligned phonetic labeling of arbitrary speech” (Wightman and Talkin, 1997).

1.4 Organization of Article
The remainder of this article is organized as follows: First, in the Background (Section 2), prior
work on both manual and automatic phoneme alignment is discussed. Then, Section 3 describes
the baseline alignment system, which uses a Hidden Markov Model/Artificial Neural Network
hybrid (HMM/ANN) system (e.g. Bourlard et al., 1992; Hosom et al, 1998) for forced
alignment. The proposed method, which incorporates energy-based features and transition-
dependent states into the HMM/ANN framework, is then presented in Section 4. Sections 5
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and 6 discuss the methods used in evaluation and the results from both the baseline and
proposed technique. Finally, in the Conclusion (Section 7), results are summarized, public
access to the baseline and proposed systems is described, and future work is discussed.

2. Background
2.1 Manual Phoneme Alignment

As noted above, the most accurate method of creating time-aligned phonetic labels is to employ
an expert human labeler. This person typically generates phonetic alignments using a software
tool that displays the speech waveform, spectrogram, phonetic labels, and possibly other
acoustic information. The labeler aligns phonetic labels with the speech signal by listening to
segments of the waveform and by using knowledge of the relationship between the waveform,
its spectrogram, and its phonetic content. As a result, training in phonetics and spectrogram
reading is required to produce acceptable label alignments, and manual alignment is a resource-
intensive method.

Cosi et al. (1991) reported on the manual alignment of 10 continuous-speech Italian sentences
recorded at 16 kHz and aligned by three people. They found a mean deviation of 6 msec, about
55% agreement within 5 msec, and 93.5% agreement within 20 msec. Ljolje et al. (1997)
reported on the manual alignment for Italian utterances from two human transcribers, and found
80.0% agreement within 10 msec, 92.9% agreement within 20 msec, and 96.8% agreement
within 30 msec. These results correspond well with those reported by Cosi. Wesenick and Kipp
(1996) evaluated the manual alignment of German sentences by three transcribers. They found
average agreement levels of 63% within 0 msec (perfect correspondence), 73% within 5 msec,
87% within 10 msec, and 96% within 20 msec. The transcribers in this study were all graduate
students in phonetics, and all had received an intensive training session. As part of this training,
a number of conventions were established to ensure consistent labeling . One such rule was to
always set a segmentation boundary where the values of the speech signal changed from
negative to positive (personal communication, Sep. 16, 1999). Not surprisingly, these results
represent the best reported performance of human agreement on the task of phonetic alignment.
Leung and Zue (1984) evaluated 5 American English sentences from the Harvard list of
phonetically-balanced sentences, aligned by two people. Manual alignment required about 30
seconds per phoneme, and they reported approximately 80% agreement within 10 msec, 87%
agreement within 15 msec, and 93% agreement within 20 msec. Cole et al. (1994) reported on
inter-labeler agreement on telephone-channel speech for four languages, as labeled by both
native and non-native speakers. For American English aligned by two transcribers (native
speakers), they reported 79% agreement within 10 msec, which is marginally lower than the
value reported by Leung. For German speech, they found 63% agreement within 5 msec and
79% within 10 msec when comparing two native-speaker labelers, and 69% agreement within
5 msec and 81% agreement within 10 msec when comparing a native-speaker labeler and a
non-native-speaker labeler. One point of interest is that although Cosi, Ljolje, and Leung
performed their evaluations on 16-kHz microphone speech and Cole et al. performed their
evaluation on 8-kHz telephone-band speech, the results are quite comparable. In addition, the
results from Leung on English speech and the results from Ljolje on Italian speech are nearly
identical.

As none of the above evaluations were performed on the commonly-used TIMIT corpus of
American English speech (Garofolo et al., 1990), we manually aligned 50 sentences from the
test partition of TIMIT (1812 phoneme boundaries). Alignment was performed by the author,
who had several years experience with reading spectrograms and performing phonetic
alignment. We took the phoneme sequence as specified in the TIMIT phoneme-label files, but
removed all timing information prior to manual labeling. For evaluation, we (a) removed the
glottalization symbol /q/ by merging this symbol with surrounding voiced sounds and (b) did
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not evaluate boundaries between stop closures and silence (as any such boundary is placed
arbitrarily). We found 81.73% agreement with the standard TIMIT alignments with a threshold
of 10 msec, 93.49% agreement within 20 msec, and 96.91% agreement within 30 msec. These
results correspond well with the results reported by Cosi, Ljolje, Leung, and Cole.

In summary, there is fairly consistent agreement among humans labelers for continuous speech,
even across language and channel conditions. Including the results from Wesenick and Kipp,
there is an average agreement of 93.78% within 20 msec (standard deviation 1.27%). Excluding
the result of 96% from Wesenick and Kipp as an outlier due to a more precise set of labeling
conventions, there is an average agreement of 93.22% within 20 msec (standard deviation
0.32%).

2.2 Prior Work on Automatic Phoneme Alignment
2.2.1 Overview of Alignment Systems—The most common method for automatic
phoneme alignment is called “forced alignment.” In this method, recognition of the speech
signal is performed using an HMM, with the search path constrained to be the known sequence
of phonemes. Because the Viterbi search can yield the locations of phoneme-based states as
well as the state identities, phonetic alignment can be obtained by constraining the search to
the known phoneme sequence. (These systems are called “forced alignment” systems because
the alignment is obtained by forcing the recognition result to be the proposed phonetic
sequence.) In general, there is a strong link between automatic speech recognition and forced-
alignment techniques, in that many of the same general processes can often be used for both
tasks. Dynamic Time Warping (DTW) is also used for automatic phoneme alignment (e.g.
Wagner, 1981; Sevendsen and Soong, 1987; Gong and Haton, 1993; Campbell, 1996; Malfrère,
Deroo, and Dutoit, 1998), but DTW tends to be applied to the task of speaker-dependent
alignment.

Of 33 automatic alignment systems reported in the literature, 42% (14 systems) used HMM or
HMM/ANN systems to obtain the alignments using forced alignment, and another 24% (8
systems) used DTW for speaker-dependent alignment. The remaining third (11 systems)
employed a wide variety of approaches.

The most notable of the non-HMM and non-DTW systems was a system based on
discriminative learning, in which phoneme boundaries were ranked “according to their
quality” (Keshet et al., 2005). In particular, this system learned a set of functions that mapped
from both observations and phoneme identities to phoneme start times. (In contrast, in the
HMM framework, there is a mapping is from observations to phoneme (state) sequences, and
the alignment is deduced from the phoneme assignments at each frame.) The learning procedure
was similar to a Support Vector Machine, but instead of a binary classification, the learning
process used a cost function for “assessing the quality of alignments.” This system had results
on the TIMIT test set of 92.3% within 20 msec.

2.2.2 Review of Forced Alignment Systems—Forced alignment is the dominant
technique in automatic phoneme alignment. Rapp (1995) noted that because “the task of
phoneme alignment can be considered as simplified speech recognition, it is natural to adopt
a successful paradigm of ASR, namely HMMs, for alignment.” In addition, forced-alignment
results are generally superior to results from other methods. Here we review a few speaker-
independent forced-alignment systems.

Wightman and Talkin (1997) developed a forced-alignment system called “the Aligner,” with
the acoustic model training and Viterbi search implemented using the HTK Toolkit (Woodland
et al., 1995). The Aligner used a 10-msec frame rate, context-independent monophones, and a
mixture of five Gaussians to estimate the state observation probabilities. Non-speech sounds,
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such as breath noise and lip smacks, were collapsed into a single “silence” model. The system
was trained on stop closures separately from stop bursts, whereas other HMM systems often
train the stop closure and the stop burst as one three-state phonetic unit. The Aligner was trained
using the TIMIT labels for an initial segmentation. In evaluation of their system, they did not
use the TIMIT phoneme sequence directly, but they first mapped the words to canonical
dictionary pronunciations, then performed forced alignment, and finally mapped the forced-
alignment phonemes to the TIMIT phoneme sequence. This indirect measurement allowed
them to evaluate phonetic boundary alignments while performing forced alignment from only
word-level information. Performance on the TIMIT test set using this metric was
approximately 80% agreement within 20 msec.

Brugnara et al. (1993) developed an HMM-based forced-alignment system that used spectral
variation features in addition to the standard cepstral-domain features for computing state
occupation probabilities. The incorporation of these additional features resulted in a 2% relative
reduction in error. They also adjusted the phonetic alignments after the Viterbi search, based
on the values of the spectral variation features, but found no improvement in performance.
They evaluated this system on the entire test partition of the TIMIT database, and reported
74.6% agreement within 10 msec, 88.8% agreement within 20 msec, and 94.1% agreement
within 30 msec.

Pellom (1998) developed an HMM for forced alignment with a variety of speech-enhancement
algorithms. This system used a 5-msec frame rate, 5-state HMMs, gender-dependent models,
and a 16-component Gaussian Mixture Model at each state. When phoneme-level
transcriptions were not available, the system generated pronunciations using the CMU
dictionary and word-juncture modeling. The system was trained and evaluated on TIMIT data
that had been downsampled to 8 kHz, which resulted in 86.2% agreement within 20 msec.

Ljolje and Riley (1991) built an HMM system, with three states per phoneme, that used different
types of phonetic models depending on the availability of training data. If enough data were
available for a given phoneme in its left and right contexts, then a complete triphone model
was used, although the left and right contexts were clusters of similar phonemes instead of
individual phonemes. If sufficient data were not available for a full triphone model, then a
“quasi-triphone” model was attempted; this quasi-triphone model had the left state dependent
on the left context, the middle state context independent, and the right state dependent on the
right context. If sufficient data were not available for the “quasi-triphone” model, then left-
context dependent and right-context dependent models were both attempted. If sufficient data
were still not available, then context-independent phoneme models were used. The HMM used
full-covariance Gaussian probability density functions to estimate the observation
probabilities, a Gamma-distribution duration model, and a 10-msec frame rate. The models
were trained and evaluated on the TIMIT database. Two types of models were trained: those
based on the manual alignments in the TIMIT database, and those based on a mixture of manual
alignments and Viterbi re-estimation of the alignments. In either case, they found 80%
agreement within 15 msec.

In summary, reported forced-alignment systems employ numerous modifications to the
standard HMM training procedure, but in all cases the basic HMM process remains the same.
Direct comparison of the results from these systems is not possible, because even in four cases
where the systems were evaluated on the same corpus (TIMIT), there were minor
implementation differences that prevent a one-to-one benchmark comparison. In the case of
Pellom’s system, the TIMIT corpus was down-sampled to 8 kHz for training and evaluation,
the frame rate was 5 msec, stop closures were merged with their succeeding plosives, and there
was a total of 46 phonemes; in Brugnara’s system, training used 16 kHz data, the frame rate
was 5 msec, stop closures were not merged with their succeeding plosives, and there was a
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total of 48 phonemes. Ljolje and Riley trained at 16 kHz with a 10-msec frame rate, merged
stop closures with their bursts, and used a set of 47 phonemes. Wightman and Talkin trained
at 16 kHz, used a 10-msec frame rate, did not merge stop closures, and used a set of 35
phonemes. If, however, we assume that the performance differences due to these variations are
minimal (e.g., Wightman and Talkin claim “very similar” results for systems trained on 16
kHz and 8 kHz speech), we can generally conclude that performance of forced-alignment
systems on the TIMIT database ranges from 80% to 88.9% agreement within 20 msec.
Performance on other databases and languages tends to be similar but slightly lower, with
agreement levels from 77% to 84% within 20 msec. Only Pellom (1998) and Wheatley et al.
(1992) evaluated systems on telephone-band speech, and severe performance degradation was
reported; even systems with the best possible noise compensation had no more than 76.8%
agreement within 20 msec for landline telephone speech and 66.7% agreement within 20 msec
for cellular-telephone speech.

2.3 Summary of Prior Work on Phoneme Alignment
Manual alignment is reported to have inter-labeler agreement between 92.9% (Ljolje et al.,
1997) and 96% (Wesenick and Kipp, 1996) within 20 msec, with an average of 93.78% within
20 msec. Manual-alignment agreement on the TIMIT corpus is 93.49% within 20 msec. The
inter-labeler agreement on TIMIT is consistently higher than automatic-alignment agreement
across all thresholds and for all systems. Previously-reported HMM-based automatic alignment
systems have maximum agreement of 88.9% within 20 msec (Brugnara et al., 1993). The best
reported agreement for a non-HMM alignment system is 92.3% within 20 msec using a
discriminative learning system (Keshet et al, 2005).

3. Baseline System
In order to evaluate the proposed technique, a baseline forced-alignment system was developed
on the same data and using the same phoneme set as the proposed system (Section 4). This
baseline system was an HMM/ANN hybrid (e.g. Bourlard et al., 1992; Hosom et al, 1998),
which computes probability estimates of observations using an artificial neural network (ANN)
instead of a Gaussian Mixture Model (GMM). The general framework presented here has been
used previously on a variety of tasks including digit recognition (Hosom et al., 1998), children’s
speech recognition (Shobaki et al., 2000), and recognition of Italian (Cosi and Hosom, 2000)
and Vietnamese (Duc et al., 2003). The parameters used in the baseline forced-alignment
system are summarized in Table 1.

3.1 Training Data and Features
The baseline system was trained on 3696 files (3.145 hours of speech) from the training
partition of the TIMIT corpus (excluding “sa” files). The feature set consisted of features
similar to Mel-Frequency Cepstral Coefficients, except that the Bark frequency scale was used
instead of the mel scale. (While there isn’t much practical difference between the two frequency
scales, “the traditional mel scale has in many technical fields been replaced by the Bark
scale” (Huopaniemi and Karjalainen, 1997).) The steps of feature extraction were (a) pre-
emphasis (with a factor of 0.97), (b) application of a 24-msec Hamming window, (c)
computation of the power spectrum, (d) non-linear frequency warping of the power spectrum
along the Bark scale using 40 filters, (e) conversion of power-spectrum values to the logarithm
domain, (f) conversion to cepstral features using the inverse discrete cosine transformation of
these frequency-warped log power spectrum values, and (g) exponential weighting by a factor
of 0.6 to increase the weight of higher cepstral coefficients. Only the lowest 13 cepstral
coefficients were selected in the final feature set. Features were computed with a 16-kHz
sampling frequency and a 5-msec frame rate. The lowest cepstral coefficient was replaced with
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the log energy of the signal, computed with a 100-msec Hamming window, and normalized
by the maximum and minimum energy values to be within the range -1.0 to 1.0.

A variant of cepstral mean subtraction (CMS) was used, in which the cepstral values subtracted
from the feature set were not the mean cepstral values over the entire utterance, but the mean
cepstral values over the 100-msec region of the signal with lowest energy. This technique,
“Low-Energy Cepstral Mean Subtraction,” may be more effective on very short utterances than
on the TIMIT corpus, but was used here as a feature-processing method that is independent of
utterance length.

The delta values of the 13 cepstral coefficients were included in the feature set, but acceleration
coefficients were not included, as their impact tends to be minimal on the type of HMM/ANN
system described here.

3.2 Phoneme Set and Context-Dependent Categories
The complete set of 61 TIMIT phoneme symbols was mapped to a set of 54 phonemes as
follows. First, the sentence-beginning and sentence-ending pause symbols /h#/ were mapped
to pause (/pau/). Epenthetic silence (/epi/) was also mapped to pause. The syllabic phonemes /
em/, /en/, /eng/, and /el/ were mapped to their non-syllabic counterparts /m/, /n/, /ng/, and /l/,
respectively. The glottal closure symbol /q/ was removed, as it is used in TIMIT sometimes to
annotate a glottal stop consonant (e.g. dr1/fcjf0/sa1), sometimes to indicate glottalization (e.g.
dr1/fcjf0/sx127), and other times to indicate an unusual acoustic event (e.g. dr1/fcjf0/si1027).
If the glottal closure neighbored a voiced phoneme on one side and an unvoiced phoneme on
the other side, the glottal closure was merged with the voiced phoneme. If the glottal closure
was surrounded by two voiced phonemes, then the boundary of the two neighboring phonemes
was placed at the mid-point of where the glottal closure occurred. If the glottal closure was
surrounded by two unvoiced phonemes, it was mapped to a short neutral vowel, /ax/. Finally,
short pauses with duration less than 20 msec were removed. If the short pause neighbored a
voiced phoneme on one side and an unvoiced phoneme on the other side, the short pause was
merged with the unvoiced phoneme. Otherwise, the boundary of the two neighboring phonemes
was placed at the mid-point of where the short pause occurred.

In addition to this mapping, phonemes with significant acoustic variation were split into sub-
phonetic units in order to better model the acoustic dynamics of these phonemes. The
diphthongs /ay/, /oy/, /aw/, /ey/, and /ow/ were split into two parts, one for the first two-thirds
of the phoneme and the other for the final third. The affricates /ch/ and /jh/ were also split into
two parts, with the first 10-msec part corresponding to the burst and the second, remaining,
part corresponding to the frication. These split diphthongs and affricates were mapped back to
their corresponding whole diphthongs or affricates after alignment but before evaluation. These
splits resulted in 61 phonetic and sub-phonetic units for classification.

The baseline alignment system used 451 states to represent these 61 phonetic and sub-phonetic
units. Those phonemes that are heavily influenced by coarticulation (vowels, semivowels, and /
h/) were modeled using three states per phoneme, the first and last of which were context-
dependent. Liquids and glides were modeled using two context-dependent states per phoneme,
because they tend to be influenced by coarticulation but are shorter in duration than vowels.
Nasals, stops, flaps, fricatives, affricates, and pauses were modeled using one context-
independent state per phoneme. To provide sufficient data per state for training, a context-
dependent phoneme’s initial state was clustered according to its left context, and a context-
dependent phoneme’s final state was clustered according to its right context. The middle state
of a three-state phoneme was always modeled independently of its left or right context. (This
method of defining context-dependent states is equivalent to the “quasi-triphone” model of
Ljolje and Riley (1991).) The left or right contexts consisted of ten broad-phonetic classes,
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namely silence, front vowel, mid vowel, back vowel, retroflex, lateral, labial, dental, alveolar,
and dorsal. For example, the phoneme /iy/ in the context /s iy p/ was represented using three
states, /iy/ in the context of a preceding alveolar, the context-independent central region of the /
iy/, and /iy/ in the context of a subsequent bilabial. This clustering resulted in 680 states. States
with less than 32 training examples were then tied to states with a greater number of examples,
resulting in the final set of 451 states.

3.3 Training of ANN for HMM/ANN Hybrid
The probability of an observation given a state was estimated using an 3-layer ANN trained
on up to 32,000 examples per state. The ANN had as input features a context window of five
frames, with frames at -60, -30, 0, 30, and 60 msec relative to the center frame. The network
thus had an input layer of 130 nodes (13 features per frame and 5 frames), a hidden layer of
300 nodes, and an output layer of 451 nodes. Training was performed for 45 iterations, and the
weights from the 45th iteration were used for the final system parameters. The learning rate at
each iteration was 0.05/((0.2i)+1.0) where i is the iteration number (from 1 to 45), thus
decreasing from 0.0417 at the first iteration to 0.0066 at the final iteration.

Given assumptions about the quantity of training data, correct number of hidden nodes, and
other factors, the output of an ANN can be considered to approximate the probability of each
class given the input observation, p(j | ot), where j is the class (or state of the HMM) and ot is
the observation (or set of features) at time t (e.g. Richard and Lippmann, 1991). For a Hidden
Markov Model, the probability of the observation given the state is required, p(ot | j). Using
Bayes’ rule, it is possible to convert p(j | ot) to a scaled representation of p(ot | j) by dividing
by the a priori probability of the state, p(j); the scaling factor p(ot) does not need to be computed
because it is constant for all states and thus does not impact the maximization operation during
the Viterbi search. However, p(j) can be quite small, and division by a small number can yield
large errors if that small number is not accurate. One solution is to train each category using
the same number of examples, thereby removing the effect of p(j) during training. This is not
always possible in practice, as some phonetic categories have many more examples than other
categories. Therefore, we apply a “negative penalty” modification to the training procedure
(Wei and van Vuuren, 1998) in order to remove the effect of p(j) during training while still
using a different number of examples per class. This negative penalty modification is
accomplished by weighting the neural network cost function for infrequently-occurring
categories, based on the statistics of the training data. The outputs of the ANN are therefore
considered scaled estimates of p(ot | j), and are used directly by the Viterbi search during
decoding.

3.4 Duration Modeling
The standard HMM has, because of its transition probabilities, an implicit duration model that
models the probability of staying in any state for exactly t frames decaying exponentially as a
function of t (Rabiner and Juang, 1993, p. 358). It has been noted that this duration model does
not fit well with observed durations of phonemes, which have durations that are better modeled
using a Gamma probability density function (Levinson, 1986). Semi-Markov models (SMMs)
have been proposed to address this issue (e.g. Levinson, 1986), but SMMs are computationally
much more expensive than standard HMMs. The duration model of the baseline system
provides an approximation to a Gamma distribution with the same computational cost as a
standard HMM. In this duration model, state durations less than Dmin(j) frames have an
exponentially decreasing probability as the duration of state j decreases, and state durations
greater than Dmax(j) frames have an exponentially decreasing probability as the duration of
state j increases, where Dmin(j) and Dmax(j) are state-dependent duration parameters that
represent target minimum and maximum durations, respectively. The (non-normalized)
probability of being in state j for d frames, when d is less than Dmin(j), is computed as
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x1
(Dmin(j)-d), where (for simplicity) x1 is a state-independent value of 0.0015. The (non-

normalized) probability of being in a state j for d frames, when d is greater than Dmax(j), is
computed as x2

(d-Dmax(j)), where x2 is a state-independent value of 0.368. These probability
functions and values of x1 (0.0015) and x2 (0.368) have been empirically determined on other
datasets to provide reasonable results. The Dmin value for state j is set to the duration of the
2nd percentile of all durations for this state in the labeled training data. The Dmax value for state
j is set to the maximum duration for this state in the labeled training data. These state-duration
probabilities can be applied during the Viterbi search and used in lieu of standard state-
transition probabilities.

4. Proposed System
The proposed system implements three modifications to the baseline system: (1) The feature
set includes, in addition to the baseline system’s cepstral features and normalized log energy
(computed with a 100-msec window), four additional energy-based feature streams; (2) The
system uses, in addition to probabilities of each phoneme-based state given an observation,
probabilities of a state transition given that observation; and (3) Instead of computing context-
dependent phoneme probabilities directly, the system computes the probabilities of distinctive
phonetic features. The probabilities of these features are then combined to obtain phoneme
probabilities. Each of these three modifications is described in more detail below.

4.1 Additional Features
The additional features in the proposed system were designed to be robust and provide some
degree of information complementary to the cepstral feature set. These four feature streams,
described in more detail in the following paragraphs, included: (1) an intensity-discrimination
feature for the entire signal and for seven frequency bands, (2) the time derivatives of these
intensity-discrimination features, (3) a relative-energy based burst-detection feature (Hosom
and Cole, 2000), and (4) normalized log-scale energy computed with a 40-msec Hamming
window, to focus on energy changes that are more rapid than can be measured with the 100-
msec energy window used in Section 3.1.

4.1.1. Intensity Discrimination—The intensity-discrimination feature is motivated by
perceptual studies of the smallest change in acoustic intensity that is detectable by humans;
these studies have been summarized by Moore (1997, pp. 63-65) and can be generally modeled
using the following equation:

(1)

where ΔLt is the measurement of intensity discrimination at time t, ΔEt is the change in intensity
of the signal at time t, and Et is the reference intensity of the signal at time t. Moore defines
intensity as the sound power transmitted through a given area of the sound field, although it
can be used to described “any quantity relating to the amount of sound, such as power or
energy.” (Moore, 1997, p. 361). We compute ΔEt and Et using Hamming-windowed energy,
with different window lengths to identify certain types of energy changes and reference
intensities. For identifying phoneme-level intensity changes, a window length of 40 msec is
used for computing ΔEt, and a window length of 250 msec is used for computing Et. The value
of 40 msec was chosen to correspond to the minimum duration of a speech segment required
for assigning phonetic quality (Greenberg, 1996). The value of 250 msec was chosen to
correspond to the approximate duration of a syllable. To obtain smooth delta values, ΔEt is
computed using Furui’s equation for dynamic features (Furui, 1986),
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(2)

with a Θ value corresponding to 20 msec (4 frames). The function ΔLt is maximum when the
relative change in energy is greatest, and the most negative when the relative change in energy
is most negative. When the energy of the 40-msec signal does not change relative to the
surrounding 4 frames, ΔLt is zero. In addition to computing ΔLt for the entire signal, we compute
ΔLt values for seven frequency bands spanning 210 Hz to 4000 Hz, each one bark in width:
210–430 Hz, 430–710 Hz, 710–1060 Hz, 1060–1530 Hz, 1530–2180 Hz, 2180–3060 Hz, and
3060 Hz–4000 Hz. Intensity discrimination in these frequency bands targets phoneme-related
energy changes at relevant regions of the spectrum. While this intensity discrimination is
conceptually similar to RASTA processing (Hermansky and Morgan, 1994), (a) intensity
discrimination is easier to implement, given that the RASTA filter coefficients must be properly
initialized, and (b) it operates on spectral energies instead of cepstral coefficients.

4.1.2. Time Derivatives of Intensity Discrimination—The time derivatives of these
intensity-discrimination signals were considered to be potentially useful, especially with
maximum and minimum values of ΔLt identifying the instants of maximum and minimum
energy change in the signal, and thus the time derivative ΔLt

′ identifying maximum and
minimum energy change with values of zero. The time derivatives were also computed using
Furui’s equation for dynamic features (Furui, 1986), again with a Θ value of 20 msec (4 frames).

4.1.3. Burst-Detection Feature—Stop bursts were identified using another relative-energy
based feature (Hosom and Cole, 2000). Burst-related impulses (bursts) occur at the instant of
release of stop phonemes, and can be described as a sudden impulse-like increase in energy
due to release of air from the mouth. Each burst is produced by a closure of the oral cavity in
order to create an increase in internal air pressure, followed by a sudden release of the
constriction, which causes an abrupt increase in energy of the signal. Because of this process,
bursts are characterized by at least 15 msec of low energy (during the closure), which is
followed by a sudden increase in energy (at the instant of release), which is followed by a
gradual decline in energy (during the release). Furthermore, the radiation characteristic of
sound emanating from the mouth causes the burst at the instant of release to take on the qualities
of an impulse, with a relatively flat spectrum and short duration. The spectral envelope of the
burst is shaped to some degree according to the place of constriction. Therefore, (a) there must
be a relative increase in energy at the instant of release, (b) the increase in energy must occur
over most frequency bands, and (c) the burst must have certain spectral properties that
distinguish it from environmental noise (such as clicks). The first two criteria can be detected
by using Moore’s measure of intensity discrimination on several frequency bands to estimate
relative changes in energy (Equation 1), and then combining this frequency-band information
(scaled to the range 0 to 1 and treated as the probability of a sudden increase in energy) into a
single burst-detection feature using Bayes’ rule. In later processing, this burst-detection feature
can be used with other (e.g. cepstral) features as input to a classifier to incorporate spectral
properties into the burst detection process. In this application, the window size of Et was 22
msec, the window size of ΔEt was 24 msec, the value of Θ was 10 msec (2 frames), and relative-
energy information from seven frequency bands was computed and then combined (with
frequency bands 210–430 Hz, 430–710 Hz, 710–1060 Hz, 1060–1530 Hz, 1530–2180 Hz,
2180–3060 Hz, and 3060–4000 Hz) using Bayes’ Rule.
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4.2 Observation-Dependent Transition Probabilities
In a standard Hidden Markov Model, the probability of an observation vector sequence, O,
and state sequence, Q, is given by

(3)

which, with the assumptions of a first-order Markov process and independence of individual
observations at each time t, ot, can be expanded as follows:

(4)

where T is the maximum time value and q0 is the initial state. We can use Bayes’ Rule, e.g. P
(A|B) = P(B|A) · P(A) / P(B), to re-write the first term of this equation, yielding:

(5)

In the proposed system, each state qt is linked with an additional state xt. This state xt indicates
whether or not there is a phoneme transition at time t. If there is no phoneme transition at time
t, then xt is a state labeled “same,” without regard to the identity of the phoneme. If there is a
phoneme transition at time t, then xt is labeled with both the phoneme at t-1 and the phoneme
at time t. The association between states qt and xt is illustrated in Figure 1.

As an example using context-dependent states, the phoneme /iy/ in the context /s iy p/ would
be represented using three states, /s<iy/, /iy/, and /iy>p/. At the transition between /s<iy/ and /
iy/, the x state is “same”, because there is no phoneme transition. At the transition between
the /s/ phoneme’s /s>iy/ state and the /iy/ phoneme’s /iy<s/ state, however, the x state is the
transition /s→iy/. Therefore, for the majority of states and state transitions, x is “same”. The
value of x is only phoneme-specific when there is a phoneme transition.

In the proposed system, we model the probability of an observation sequence and both state
sequences as the combination of two HMMs:

(6)

As the transition probabilities are generally considered to have a minimal impact on system
performance, and because of the increased complexity of keeping track of two state sequences
in the Viterbi search, we have simplified the model by assuming that p(x0) and p(xt | xt-1) have
negligible impact on final results and can be factored out. (As Huang, Acero, and Hon
(2001) state, “In practice, duration models offer only modest improvement for speaker-
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independent continuous speech recognition. Many systems even eliminate the transition
probability completely because the output probabilities are so dominant.” (p. 408).)

We can then separately model p(qt | ot), the probability of a standard HMM state qt given an
observation ot, and p(xt | ot), the probability of a phoneme transition at time t given the
observation ot. The method of obtaining estimates of p(qt | ot) and p(xt | ot) will be described
in Section 4.3. With those estimates, standard forced alignment can be performed using a
Viterbi search. The Viterbi search is simply modified to incorporate the observation-dependent
probability of a phoneme transition at time t when making state transitions. If the states at t
and t-1 belong to the same phoneme, then the phoneme transition is “same,” and if the states
belong to different phonemes, then the phoneme transition is specified from the state identities.
Note that either p(qt | ot) or p(xt | ot) can be used individually to perform recognition or
alignment, but that states qt and xt have been defined in such a way as to provide the most
information where the probability estimate of the other state is least informative.

4.3 Use of Distinctive Phonetic Features
In typical HMMs, the basic unit of classification is the phoneme, which is usually divided into
a number of sequential context-dependent states. In the proposed system, we split each context-
dependent state into three (time-synchronous) parts that measure aspects of that phoneme’s
speech production properties. Specifically, the aspects that we considered are the distinctive
phonetic features Manner (manner of articulation), Place (tongue position), and Height (height
of tongue body). The probabilities of these aspects were estimated separately and then
combined to arrive at a (context-dependent) phoneme-level probability. The context
dependency was limited to the place of articulation, because this aspect has the greatest impact
on non-local characteristics of the speech signal. As an example of the use of distinctive
phonetic features, a /d/ in the context of a following /aa/ was modeled by (1) a voiced stop, (2)
an alveolar tongue position in the context of a following back tongue position, and (3) a
maximum tongue height. The use of distinctive features in the current work was primarily
motivated by a desire to maximize the amount of training data per output node of the classifier,
especially for the phoneme-transition categories, although other motivations (such as
potentially modeling asynchrony between articulatory gestures) are still important factors.

For estimation of context-dependent phoneme probabilities p(qt | ot), we employed three
parallel ANN classifiers, each trained to estimate the probability of a different distinctive
phonetic feature, namely Manner, Place, or Height. Assuming conditional independence
between the probabilities of these categories, we combined the distinctive-feature classification
outputs for a single observation, using Bayes’ rule, to arrive at phoneme-level probabilities.
The three distinctive features and their values are specified in Table 2. (The exception to the
use of Bayes’ rule was for the “closure” category, which was common to all three features, and
so we assumed complete dependence of the three closure probabilities and combined the
probability values by averaging.) The features and their values were selected so that the
maximum number of American English phonemes could be specified using the minimum
number of feature values. There are two sets of phonemes not distinguished by the values
specified in Table 2: the pair of vowels /aa/ and /ao/, and the pair of retroflex phonemes /er/
and /r/.

The probability of a distinctive phonetic feature f at time t, given an observation ot, e.g. p(ft |
ot), was estimated using an ANN, with 158 input features (corresponding to the 130 cepstral
features and 28 additional energy-based features) and 300 hidden nodes. The number of output
categories of the ANN depended on the distinctive phonetic feature. Because coarticulation
does not greatly affect the observed manner of articulation, the Manner classifier used context-
independent categories. The Place classifier used context-dependent categories in order to
better model the effects of coarticulation. The Height classifier used context-independent

Hosom Page 13

Speech Commun. Author manuscript; available in PMC 2010 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



categories in order to simplify implementation details. For the Manner classifier, there were
10 categories (ANN outputs); for the Place classifier, there were 108 (context-dependent)
categories; and for the Height classifier, there were 6 categories. Training was performed for
45 iterations, and the weights from the last iteration were used as the final classifier parameters.
As in the baseline system, we applied a “negative penalty” modification to the training
procedure (Wei and van Vuuren, 1998) in order to remove the effect of p(ft) during training,
in effect estimating p(ft | ot)/p(ft) or a scaled version of p(ot | ft).

The probabilities of phoneme transitions were estimated in a similar way, with three separate
distinctive phonetic feature transitions combined using Bayes’ rule to arrive at phoneme-level
transition probabilities. In this case, the Manner-Transition classifier estimated the probability
of each Manner transition (100 categories) as well as the probability that the observation was
not at a phoneme boundary (1 category). The Place-Transition classifier estimated the
probability of each Place transition (100 categories) as well as the probability that the
observation was not at a phoneme boundary (1 category). The Height-Transition classifier had
36 categories for each Height transition, and 1 category for a non-boundary transition. The
same 158 input features were used, and each classifier used 300 hidden nodes. Training was
performed for 45 iterations, and the negative penalty modification was applied.

4.4 The Entire Proposed System
The entire system was constructed by (a) using the proposed energy-based features in addition
to standard cepstral features as input to each ANN classifier, (b) applying Bayes’ Rule to
combine probabilities of distinctive phonetic features generated by the ANNs into probabilities
of phonemes, and (c) modifying the Viterbi search to incorporate the probability p(xt | ot) with
the standard transition and observation probabilities. The use of the six different ANN
classifiers is illustrated in Figure 2 for the phoneme sequence /b aa t/, where both the /b/ and /
t/ occupy one frame, and the /aa/ occupies two frames. The output of the Viterbi search contains
the phoneme identities and boundaries.

5. Evaluation Method
Both the baseline and the proposed system were evaluated on the 1344 “si” and “sx” files in
the testing partition of the TIMIT corpus. The input to the systems consisted of waveforms and
their corresponding phoneme strings. A phoneme string was obtained by performing the
phonetic mapping described in Section 3.2 on the existing time-aligned phoneme file (reducing
the symbol set to 54 phonemes), and then removing the timing information. The output from
the systems were time-aligned phoneme files using the same set of 54 phonemes.

The performance of a system was measured by computing the agreement between the TIMIT
time-aligned phoneme files and the time-aligned phoneme files that were output by the system.
Agreement was measured at thresholds of 5 msec, 10 msec, 15 msec, … 100 msec. In order to
compare two systems using a single measurement, the commonly-used threshold of 20 msec
was chosen.

6. Results and Discussion
6.1. Main Results

Results were computed on a total of 49,261 phoneme boundaries in the 1344 sentences (files).
Results from the baseline system for each threshold are given in the second column of Table
3. In particular, the performance of this baseline system expressed as a single number is 91.48%
within 20 msec. From these results, we conclude that the baseline system has better
performance than any previously-published HMM-based speaker-independent alignment
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system that was evaluated on the TIMIT corpus. (Better performance on the TIMIT corpus
was reported for a non-HMM alignment system developed by Keshet et al. (2005), with 92.3%
agreement within 20 msec. The best previously-reported HMM-based results were from
Brugnara et al. (1993), with 88.8% agreement within 20 msec on TIMIT.)

Results from the proposed system are given in the third column of Table 3. For this system,
the agreement of 93.36% within 20 msec represents a 22.1% relative reduction in error over
the baseline system, assuming a maximum agreement of 100%. Because agreement of 100%
is impossible in practice, due to the inherently subjective nature of phonetic alignment, the
actual reduction in error is larger, although not easily quantified. Using the McNemar
significance test (Gillick and Cox, 1989), the difference between the two systems is significant
(p < 0.001) at the 20-msec threshold. (It is acknowledged, however, that in general statistical
significance is relatively easy to obtain with large datasets.) The proposed system demonstrates,
at the 20-msec threshold, a relative 13.77% reduction in error over previously reported results
on the TIMIT corpus (Keshet et al, 2005).

The agreement of manual alignments described in Section 2.1 are provided in column 4 of
Table 3. These values were obtained on a subset of only 50 test sentences, and so they are not
as precise as the results for the automatic systems, which were evaluated on 1344 sentences.
The proposed system’s agreement of 93.36% within 20 msec is within a relative 2.0% of the
manual agreement of 93.49% within 20 msec. At some thresholds, the automatic system has
higher agreement levels than the manual alignments. Rather than concluding that the automatic
system has better-than-human performance, we explain this result by considering two factors.
First, the results of manual alignment were obtained from analysis of a subset of only 50 TIMIT
sentences. Therefore, small differences between the automatic results and manual results may
reflect a difference in evaluation data, and may not be statistically significant. Second, the
automatic system has presumably learned specific characteristics of the canonical TIMIT
alignments. In other words, the canonical TIMIT alignments may have been consistently
labeled with slightly different (subjective) criteria than the current manual alignments.
Therefore, we can expect the results of the proposed system to be somewhat higher when
evaluated on test-set data containing canonical TIMIT alignments, as compared with evaluation
on test-set data with alignments from different sources. We note that the accuracy of the manual
alignment of TIMIT given here is comparable to other manual alignments at the 20-msec
threshold (Section 2.1); at larger thresholds, these results on TIMIT are equal to or better than
the results of Leung and Zue (on a corpus similar to TIMIT) (Leung & Zue, 1984). Therefore,
the higher accuracy of the automatic system does not seem to be due to low accuracy of the
manual alignments. The fifth column of Table 3 shows the results of evaluating the proposed
system with the 50 manually-aligned TIMIT test sentences assumed to contain the correct
boundary locations. It can be seen that the results are slightly better with the canonical
alignments. This bias toward the canonical TIMIT alignments may explain, at least in part,
why some of the automatic results (trained and evaluated on canonical TIMIT alignments) are
better than manual results. In summary, the comparison of automatic with manual results
should be noted with the conditions that (a) the comparison is not direct, but involves different
amounts of data, and (b) the system was trained on canonical TIMIT alignments and may have
learned specific, subjective characteristics of the canonical alignments.

It is also noted that the proposed system does not have better agreement than the baseline at
all thresholds; at 5 msec, the baseline system has slightly better performance. At higher
thresholds (e.g. 50 msec and higher), the difference between the two systems becomes
negligible, with the proposed system having greater agreement in some cases, and the baseline
system having greater agreement in other cases. Therefore, the proposed technique is most
effective at thresholds between 10 and 50 msec, and does not have any advantage in correcting
gross alignment errors. In general, in a speech-processing system in which large displacement
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of segments has a critical effect, the baseline system is about as effective as the proposed
system, and either one can be used with equal effect. In a system in which small displacements
are important, the proposed system provides an advantage.

6.2. Additional Tests and Results
Although it is difficult to separate the use of transition-dependent states from the use of
distinctive phonetic features due to the way in which the proposed system was implemented,
the energy-based feature set is independent of both distinctive phonetic features and transition-
dependent states. We therefore examined the impact of the proposed system’s additional
feature set on the baseline system. We re-trained the proposed system without the additional
energy features, and we also re-trained the baseline system as described in Section 3, but used
the feature set described in Section 4.1. Results are presented in column 4 of Table 4 and column
5 of Table 5. It can be seen that not using the energy features in the proposed system resulted
in a 3.8% relative increase in error at the 20-msec threshold, and that the new feature set resulted
in a 3.4% relative reduction in error over the baseline system at the 20-msec threshold. These
results indicate that the feature set provides a small relative improvement, but that the use of
transition-dependent states and distinctive phonetic features provides the majority of the
21.24% relative improvement of the proposed work over the baseline system.

To better understand the relative contribution of each of these energy-based feature streams,
we re-trained the baseline system an additional three times, with the feature set described in
Section 3.1 and each of the following energy-based features: (1) burst features, (2) intensity
discrimination features and their delta values, and (3) normalized energy with a 40-msec
window. Adding the burst feature to the baseline system resulted in a 1.2% relative
improvement over the baseline feature set at the 20-msec threshold, from 91.48% to 91.58%.
Adding only the intensity-discrimination feature to the baseline feature set resulted in a 0.1%
relative decrease in performance, from 91.48% to 91.40%. Adding only the normalized energy
feature resulted in a 1.1% relative improvement at the 20-msec threshold. Therefore, the burst
and normalized energy features provide small and roughly equal improvements in
performance, while the intensity discrimination feature may hurt performance a small amount.
We conjecture that the intensity discrimination features may not provide additional useful
information in a clean recording environment, and that learning the additional parameters
reduced the effectiveness of the system. The inclusion of all three features resulted in a 3.4%
relative improvement over the baseline at the 20-msec threshold (from 91.48% to 91.77%),
indicating that the combination of energy features contributed more than the sum of their parts.

In order to evaluate the contribution of the transition-dependent states to the proposed system
performance, we tested the system without utilizing the probabilities p(qt | ot). In order to
evaluate the contribution of distinctive-phonetic features to the system performance, we tested
the system without utilizing the probabilities p(xt | ot). Results are given in columns 2 and 3 of
Table 4. It can be seen that the system that does not utilize p(qt | ot) performs nearly as well as
the complete system, with 93.11% agreement at 20 msec. Therefore, most of the system
performance can be attributed to the transition-dependent states. The system that does not
utilize p(xt | ot), however, performs notably worse than even the baseline system, at 88.63%
agreement within 20 msec. The only difference between this system and the baseline system
trained with the three energy features is the use of distinctive phonetic features instead of
standard phonemic categories. Therefore, while the use of distinctive phonetic features was
acceptable in the case of estimating probabilities of transition-dependent states, this aspect of
the system hurt performance when estimating standard context-dependent phonetic categories.
In the future, it would be interesting to combine the current transition-dependent states with
standard phonetic categories.
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Not all types of phoneme boundaries were improved equally using the proposed method.
Comparing the proposed system with the baseline system at the 20-msec threshold, and
evaluating the 20 most-frequent types of phoneme transitions, as shown in columns 3 and 5 of
Table 6, there are only four cases in which the baseline system performed better than the
proposed system. In three of these cases (vowel to approximant, voiced-stop to vowel, and
voiced-fricative to vowel transitions), the performance was within half a percentage point. In
the fourth case, for approximant to approximant transitions, the baseline system had agreement
of 68.81%, and the proposed system had agreement of 67.36%. In a number of cases, the
proposed system had a large relative increase in agreement. The best type of improvement was
in the transitions to closure (defined as either pause or stop closure). Performance on vowel to
closure transitions increased from 94.96% to 96.69%, unvoiced-fricative to closure transitions
increased from 91.18% to 96.72%, nasal to closure transitions increased from 82.82% to
86.36%, approximant to closure transitions increased from 91.21% to 95.18%, and voiced-
fricative to closure transitions increased from 86.90% to 94.41%. Other types of transitions
also showed large relative improvement, such as closure to voiced-stop transitions (97.59% to
98.75%), and unvoiced-fricative to vowel transitions (98.72% to 99.51%), although both
systems demonstrated relatively high performance. Because many of the large improvements
involve phonetic classes with a large difference in energy, we also evaluated the baseline
system with the additional energy features on the most frequent types of transitions. Results
are given in column 4 of Table 6. While the use of energy features did help in some cases, e.g.
in the transitions from vowels to closures (95.68%), in many cases the improvement due to the
additional energy features was not dramatic. For example, unvoiced fricatives to closures
improved only from 91.18% to 92.20%, and performance on nasal-to-closure transitions
declined, from 82.82% to 80.20%. Therefore, the energy-based features did not seem to provide
large benefit at transitions with especially dramatic energy changes, but they provide a smaller
benefit across most types of transitions.

In order to evaluate robustness of the proposed techniques to different noise and channel
conditions, we trained systems using both the baseline and the proposed techniques on the both
OGI Stories corpus (Cole et al., 1995) and the TIMIT corpus. The OGI Stories corpus contains
landline telephone speech of extemporaneous monologue. In order to make the data from both
channels more similar, the telephone-speech data was upsampled to 16 kHz, and both sets of
data were filtered with a 160-Hz high-pass filter. Each system (baseline and proposed), trained
on both datasets, was then evaluated on the testing partition of each dataset. Three-fifths of the
Stories corpus was used for training, and two-fifths was used for testing; training and testing
partitions were speaker-independent. Results for the baseline multi-channel system are
provided in columns 2 and 4 of Table 7, and results for the proposed multi-channel system are
in columns 3 and 5 of Table 7. It can be seen that the proposed multi-channel system has better
performance than the baseline multi-channel system on these test sets. It can also be seen that
agreement of the proposed system on the TIMIT corpus (92.25% within 20 msec) is somewhat
reduced compared to the system trained only on TIMIT data, and that agreement on the OGI
Stories corpus (88.69% within 20 msec) is even lower than that of the TIMIT corpus. These
results reflect the difficulty of processing telephone-channel speech, even though human
agreement of alignments on telephone speech is about the same as on microphone speech.

7. Conclusion and Future Work
The proposed system has demonstrated a 22.1% relative reduction in error over a baseline
HMM-based forced-alignment system. The result of 93.36% agreement within 20 msec is the
best known reported result on the TIMIT corpus. While the choice of features accounted for
some of the improvement over the baseline system, the use of transition-dependent states was
responsible for the majority of the obtained agreement level.
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Both the baseline system and the proposed system are available in 16-kHz and multi-channel
formats to the research community, as part of the CSLU Toolkit. The CSLU Toolkit can be
freely downloaded for research purposes from http://www.cslu.ogi.edu/toolkit. The systems
can be run as Tcl scripts from a command line, specifying the waveform, a text file containing
the list of phonemes, and the output file as command-line parameters. The scripts are in the
“CSLU/Toolkit/2.0/apps/fa” directory, and are called “fa_new_16k.tcl,”
“fa_new_multichan.tcl,” “fa_baseline_16k.tcl,” and “fa_baseline_multichan.tcl,” for the
proposed system trained on 16-kHz data, the proposed system trained on multi-channel data,
the baseline system trained on 16-kHz data, and the baseline system trained on multi-channel
data, respectively. (These systems utilize the Worldbet system of phonetic symbols
(Hieronymus, 1994) instead of the TIMIT phonetic symbols. For information on setting path
variables in the Toolkit, see http://cslu.cse.ogi.edu/tutordemos/nnet_training/tutorial.html.
Also, it should be noted that some parts of the Toolkit, e.g. the Rapid Application Developer,
use older forced alignment systems and are not as accurate.) The work presented here assumes
that the phoneme sequence is known, and that the only task is to determine the phoneme
locations. For tasks in which only the word sequence is known, the gen_pronun.tcl script can
be used to generate phoneme sequences from word sequences using a pronunciation dictionary
and letter-to-phoneme rules.

Despite levels of agreement that are within a relative 2.0% of manual agreement at 20 msec,
a number of research directions are still important. First, the error rate of 99.74% within 85
msec indicates a (small) number of gross errors that the system makes that a human may not
make. Also, agreement levels are negatively impacted by noise and channel conditions.
Speakers with dysarthria (a motor speech impairment) present special problems for a forced-
alignment system, as they may have poor coordination of the articulators that results in unusual
speech and timing patterns. We plan to adapt the proposed work to individual speakers,
resulting in a speaker-dependent alignment system that is expected to have greater accuracy.
One way in which the system performance might be improved is to model p(xt | xt-1) explicitly,
instead of assuming that these transition probabilities have negligible impact. Also,
performance may be improved by applying the probabilities of transition-dependent states to
standard context-dependent phonetic units, rather than to combinations of distinctive phonetic
features. Finally, the techniques developed here can be applied to the task of automatic speech
recognition instead of forced alignment.
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Figure 1.
Illustration of (a) a standard HMM sequence for the phonemes /iy p/ with states q1 through
q4, and (b) the proposed HMM sequence for the same phonemes, using q1 through q4 and also
x1 through x4, where the x states are linked with the q states and indicate phoneme transitions.
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Figure 2.
Illustration of the proposed method for the phoneme sequence /b aa t/, showing how Manner,
Place, and Height probabilities are combined to estimate phoneme probabilities (phoneme
classifier), Manner-Transition, Place-Transition, and Height-Transition probabilities are
combined to estimate phoneme-transition probabilities (phonetic transition classifier), and how
these two probability sequences are combined during the Viterbi search.
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Table 1

Parameters used in the baseline forced-alignment system.

Parameter Name Value

sampling frequency 16000 Hz

frame size 5 msec

window size, type 24.0 msec, Hamming

preemphasis factor 0.97

frequency warping Bark scale, 40 filters

cepstral weighting 0.6

feature vector first 13 cepstral coefficients and deltas

noise reduction low-energy cepstral mean subtraction

context window, relative to center frame -60, -30, 0, 30, and 60 msec

phoneme set 54 phonemes

phoneme set with diphthong/affricate split 61 phonemes

context-dependent model quasi-triphone

number of context-dependent units 451

neural network architecture feed-forward network with 130, 300, 451 nodes in input, hidden, and
output layers

number of training samples up to 32,000 samples per category

training parameters 45 iterations, learning rate 0.05/(0.2i+1.0)

duration penalty values 0.0015 (minimum), 0.368 (maximum)
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Table 2

Distinctive phonetic features (specified in the column headings) and feature values used by the proposed system.

Manner Place Height

vowel front maximum

approximant mid very high

nasal back high

aspiration retroflex low

unvoiced fricative lateral very low

voiced fricative labial closure

unvoiced plosive dental

voiced plosive alveolar

flap dorsal

closure closure
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Table 3

Percent agreement on the test partition of the TIMIT corpus within thresholds from 5 to 100 msec, for the baseline
system (column 2), the proposed system (column 3), and manual alignment (column 4). Results from manual
alignment (from Section 2.2) are evaluated on a subset of 50 sentences, whereas results from the baseline and
proposed system are evaluated on the entire set of 1344 test sentences. The results in columns 2 through 4 are
evaluated against the canonical TIMIT phoneme boundaries. Column 5 shows results of the proposed system
when evaluated against the manual alignments (50 sentences).

Threshold (msec) Baseline System,
Percent
Agreement (%)

Proposed System,
Percent
Agreement (%)

Manual
Alignment,
Percent
Agreement (%)

Proposed System,
Evaluated on
Manual
Alignments (%)

5 50.78 48.28 60.38 47.96

10 76.10 79.30 81.73 79.47

15 86.45 89.49 89.07 89.46

20 91.48 93.36 93.49 92.83

25 94.27 95.38 95.36 94.76

30 96.05 96.74 96.91 95.86

35 97.25 97.61 97.79 96.80

40 98.03 98.22 98.51 97.57

45 98.58 98.62 98.79 98.45

50 98.94 98.92 99.06 98.90

55 99.19 99.13 99.50 99.06

60 99.36 99.32 99.61 99.23

65 99.47 99.45 99.67 99.50

70 99.56 99.57 99.83 99.56

75 99.62 99.64 99.83 99.61

80 99.67 99.70 99.89 99.67

85 99.74 99.75 100.0 99.78

90 99.78 99.78 100.0 99.83

95 99.82 99.81 100.0 99.94

100 99.85 99.83 100.0 99.94
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Table 4

Percent agreement on the test partitions of the TIMIT corpus, within thresholds from 5 to 100 msec, for the
proposed system with various modifications. In the column 2, evaluation was performed using the proposed
system without p(qt|ot). In the column 3, evaluation was performed using the proposed system without p(xt|ot).
In the column 4, evaluation was performed using the proposed system but without the three energy features.

Threshold (msec) Proposed System without p
(qt|ot) (%)

Proposed System without p
(xt|ot) (%)

Proposed System, No
Energy Features (%)

5 45.96 45.46 49.03

10 78.29 71.10 79.48

15 89.16 83.34 89.28

20 93.11 88.63 93.10

25 95.30 91.59 95.24

30 96.65 93.42 96.58

35 97.58 94.84 97.47

40 98.20 95.84 98.09

45 98.62 96.59 98.58

50 98.89 97.18 98.89

55 99.14 97.59 99.11

60 99.32 97.94 99.31

65 99.44 98.23 99.43

70 99.57 98.49 99.53

75 99.65 98.68 99.61

80 99.70 98.85 99.69

85 99.74 98.97 99.75

90 99.78 99.07 99.78

95 99.81 99.20 99.80

100 99.83 99.29 99.82
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Table 5

Percent agreement on the test partitions of the TIMIT corpus, within thresholds from 5 to 100 msec, for the
baseline system with the addition of selected energy features.

Threshold (msec) Baseline System
Plus Burst
Features Only
(%)

Baseline System Plus
Intensity
Discrimination
Features Only (%)

Baseline System
Plus Normalized-
Energy Feature
Only (%)

Baseline System
Plus 3 Proposed
Features, Percent
Agreement (%)

5 51.02 49.86 49.90 51.52

10 75.75 75.57 75.59 76.11

15 86.47 86.36 86.42 86.64

20 91.58 91.40 91.57 91.77

25 94.38 94.33 94.34 94.58

30 96.07 96.16 96.09 96.25

35 97.21 97.28 97.25 97.38

40 98.03 98.07 98.04 98.08

45 98.54 98.56 98.54 98.61

50 98.96 98.96 98.95 98.98

55 99.23 99.23 99.22 99.24

60 99.44 99.40 99.38 99.42

65 99.53 99.51 99.49 99.51

70 99.63 99.61 99.59 99.62

75 99.70 99.67 99.65 99.69

80 99.75 99.73 99.72 99.74

85 99.79 99.78 99.78 99.78

90 99.84 99.81 99.82 99.82

95 99.86 99.84 99.85 99.86

100 99.88 99.86 99.86 99.88
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Table 6

Comparison of baseline system, baseline system plus three energy features, and proposed system, evaluated at
a 20 msec threshold on TIMIT test data, for the 20 most frequent types of phoneme transitions. The “closure”
category includes both pause and stop closures.

Type of Boundary Frequency in
TIMIT Test Set
(%)

Baseline System,
Percent
Agreement (%)

Baseline System
Plus Three
Energy
Features,
Percent
Agreement (%)

Proposed
System, Percent
Agreement (%)

approximant – vowel 8.29 81.88 82.08 82.82

vowel – closure 8.09 94.96 95.68 96.69

closure – unvoiced stop 7.65 97.80 98.25 98.41

vowel – nasal 6.79 94.89 95.07 96.32

vowel – approximant 5.13 76.51 77.38 76.20

closure – voiced stop 4.89 97.59 98.38 98.75

unvoiced stop – vowel 4.11 97.93 98.27 98.57

vowel – unvoiced fricative 4.06 98.95 98.55 99.15

nasal – vowel 3.64 95.21 95.54 96.04

unvoiced fricative – vowel 3.33 98.72 98.90 99.51

voiced stop – vowel 3.19 99.49 99.36 99.17

vowel – voiced fricative 3.16 96.98 96.79 97.11

voiced fricative – vowel 3.06 98.07 97.94 97.81

unvoiced fricative – closure 2.79 91.18 92.20 96.72

nasal – closure 2.63 82.82 80.20 86.36

unvoiced stop – approximant 2.29 97.61 97.88 98.94

approximant – closure 2.15 91.21 90.83 95.18

vowel – vowel 1.61 70.15 72.54 74.18

voiced fricative – closure 1.27 86.90 89.78 94.41

approximant – approximant 1.26 68.81 70.90 67.36
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Table 7

Percent agreement on the test partitions of the TIMIT and OGI Stories corpora within thresholds from 5 to 100
msec, for the baseline multi-channel system and the proposed multi-channel system.

Threshold (msec) Baseline Multi-
Channel System
with TIMIT
evaluation, Percent
Agreement (%)

Proposed Multi-
Channel System
with TIMIT
evaluation, Percent
Agreement (%)

Baseline Multi-
Channel System
with OGI Stories
evaluation, Percent
Agreement (%)

Proposed Multi-
Channel System
with OGI Stories
evaluation, Percent
Agreement (%)

5 48.52 47.44 48.29 46.02

10 73.59 77.97 69.70 75.14

15 84.70 88.21 79.45 84.50

20 90.01 92.25 84.85 88.69

25 93.09 94.47 88.42 91.24

30 95.12 95.88 90.77 92.99

35 96.42 96.88 92.48 94.29

40 97.32 97.59 93.70 95.31

45 97.92 98.08 94.56 96.08

50 98.39 98.48 95.25 96.65

55 98.75 98.75 95.85 97.10

60 99.03 98.99 96.29 97.51

65 99.24 99.16 96.65 97.79

70 99.38 99.31 96.97 98.06

75 99.50 99.42 97.25 98.29

80 99.60 99.50 97.50 98.45

85 99.66 99.57 97.74 98.62

90 99.71 99.62 97.93 98.75

95 99.75 99.68 98.06 98.86

100 99.78 99.71 98.18 98.96
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