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Abstract
Phages are promising alternatives to antibodies as the biorecognition element in a variety of
biosensing applications. In this study, a monolayer of bacteriophage P22 whose tailspike proteins
specifically recognize Salmonella serotypes was covalently bound to glass substrates through a
bifunctional cross linker 3-aminopropyltrimethoxysilane. The specific binding of Salmonella
typhimurium to the phage monolayer was studied by enzyme-linked immunosorbent assay and atomic
force microscopy. Escherichia coli and a Gram-positive bacterium Listeria monocytogenes were also
studied as control bacteria. The P22 particles show strong binding affinity to Salmonella
typhimurium. In addition, the dried P22 monolayer maintained 50% binding capacity to Salmonella
typhimurium after a one-week storage time. This is a promising method to prepare phage monolayer
coatings on surface plasmon resonance and acoustic biosensor substrates in order to utilize the nascent
phage display technology.
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Introduction
The development of accurate and rapid detection methods of microorganisms, particularly
those infectious pathogens in soil, food, and water, remains a technical challenge. It becomes
more urgent due to the growing threat of bioterrorism. Different types of chemicals, toxins,
and biological molecules are either being used or have the potential to be used as warfare agents
[1–3]. Biorecognition strategies are being developed to utilize biomolecules such as enzymes,
DNA, bacteriophages (or phages), and antibodies to detect complementary molecules through
bio-specific interactions. Phages are virus particles that carry their genetic information in the
form of DNA or RNA and can attach to specific receptors that are present on a limited range
of host bacterial cells [4–7]. Since their discovery a century ago, phages have found new
applications including phage therapy [8,9], water treatment [10], high-throughput screening
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[11,12], and biosensing [4,5,13–15]. The specific targeting phage probes can be directly
attached to the sensor surface in surface plasmon resonance (SPR) and acoustic biosensors
[16]. This paper presents a method to chemically immobilize phage particles on glass substrates
while maintaining their binding affinity and specificity to bacterial surface receptors. The
selectivity and durability of phage are key attributes to its ultimate use as a biosensing element.

Currently, antibodies are the most prevalent biosensing element for bacteria in immunosensors
[17–20]. Phage display for bio-detection is a nascent technology suitable for real-time and
inexpensive field detection [5]. Antibodies can be immobilized on solid substrates via their
Fc fraction leaving the Fab portion free for detection using physical adsorption [21], Langmuir-
Blodgett (LB) technique [22,23], and covalent coupling [24,25]. Immunosensors have serious
limitations including the non-antigenic nature of the analyte, incompatibility with the sample
matrix or extraction process, and the time- and labor-intensive process of making the
antibodies. In addition to the high cost, antibodies are highly fragile and sensitive to
environmental conditions.

Compared to antibodies, phages are less fragile and less sensitive to environmental stress such
as pH and temperature fluctuation [26–28], which give them longer field life for detecting
toxins, bacteria, and spores. In addition, the new phage display technology offers billion clone
libraries of recombinant phages for high-throughput detection. This paper explores the
possibility of using a covalently linked phage monolayer for specific bacterial detection by
combining the traditional enzyme-linked immunosorbent assay (ELISA) and molecular-level
atomic force microscopy (AFM) characterization techniques. The well-documented P22 phage
and its interactions with Salmonella enterica serovar typhimurium (S. typhimurium) [29–34]
was chosen as a model system. P22 is known to bind to the repetitive O-antigen part present
in the lipopolysaccharides (LPS) of Salmonella outer membrane. P22 consists of double-
stranded DNA packaged in an icosahedral capsid head and the O-antigen recognizing tailspike
protein (TSP). A total of 6 TSP gp9 (6 × 215.4 kDa) copies are non-covalently attached to the
capsid head by the N-terminal domain of the gp9 while the C-terminal domain binds to their
cellular LPS receptor. Gp9 exhibits endoglycosidase activity by hydrolyzing the repeating
sections of the O-antigen portion of LPS specifically at the Rha–Gal α (1→po 3)-glycosidic
linkage.

Here we report a method to chemically immobilize P22 in a monolayer and the study of the
interactions of P22 with various bacteria including Gram-negative S. typhimurium (Figure 1)
and Escherichia coli, and the Gram-positive Listeria monocytogenes. Previous reports on
phage immobilization include physical adsorption [13–15] and Langmuir-Blodgett deposition
[5]. Chemical adsorption based immobilization utilizing the versatile silane chemistry may
improve the durability of the phage coating. We employed a chemical vapor deposition (CVD)
method developed in our group to make a smooth aminosilane monolayer on silicon oxide
surface of the glass substrate [35]. The phage P22 was bound to the aminosilane monolayer
using the well-established sulfo-NHS and EDC chemistry [36–41]. To the best of our
knowledge, our results are among the first to demonstrate successful immobilization of phage
by EDC/NHS activation. Other covalent attachment schemes are also available in literature for
phage immobilization [42,43]. Through ELISA and AFM characterization, we showed that the
phage-coated substrates are capable of differentiating among different bacterial types in an
aqueous environment. Such phage coatings promise to achieve the same degree of sensitivity
and selectivity as current immunosensors but with a fraction of the cost and significantly
improved durability.
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Experimental section
Materials

3-Aminopropyltrimethoxysilane (APTMS) and o-phenylenediamine dihydrochloride (OPD)
were purchased from Sigma-Aldrich. N-hydroxysulfosuccinimide (Sulfo-NHS) and 1-ethyl-3-
[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) were purchased from Pierce.
HRP-labeled anti Salmonella IgG and anti E coli IgG were purchased from U.S. biological
(s0060-20) and HRP-labeled anti Listeria IgG was purchased from Abcam (ab20357). Phage
P22 (Salmonella enterica subsp. Enterica serovar typhimurium bacteriophage) ATCC (19585-
B1), S. typhimurium ATCC (19585), and E coli strain ATCC (33780) were used. 0.22-μm
cellulose acetate filters were purchased from Corning.

Bacteria culture
Three-ml Luria-Bertani (LB Broth) was added to a 15-ml centrifuge tube. The media was
inoculated with S. typhimurium. The tube was shaken in water bath at 37 °C overnight. Cells
were removed from the bath in log phase at a titer of approximately 1 × 106 – 1 × 107 cfu/ml.

Propagation of phage
One hundred μl P22 (titer approximately 108 pfu/ml) and one hundred μl S. typhimurium (titer
approximately 106 cfu/ml) were stirred with 50 ml of LB media overnight in water bath at 37
°C. Uninfected cells and other debris were removed the following day by centrifugation for 20
min at 10,000 rpm (Sorvall GSA rotor). The solution was filtered using 0.22-μm cellulose
acetate filters. The filtrate containing P22 was tittered and stored at 4 °C.

Silane monolayer deposition
Chemical vapor deposition (CVD) was used to form the aminosilane layer instead of the usual
solution-based dip coating method. We found that CVD provides more consistent and smoother
coating [35]. Prior to CVD, glass substrates were immersed in Piranha solution
(H2SO4:H2O2 = 3:1) for 10 min followed by 5 rinses in deionized water (Nanopure System,
Barnstead) and 1 rinse in ethanol (200 proof, manufactured by Aaper). The CVD deposition
was conducted in a clean desiccator. The glass desiccator was silanized before the deposition
on glass substrates in order to passivate the desiccator surface. Finally the glass substrates were
silanized with APTMS in the desiccator with an active vacuum pumping time of 15 min at 0.67
kPa followed by a standing time of 16 hr under vacuum. The treated substrates were
subsequently rinsed with deionized water and ethanol and dried.

Immobilization of P22
Twelve-ml P22 stock solution (ca. 108 pfu/ml) was placed in a 13-ml ultracentrifuge tube. The
solution was spun at 35,000 rpm in a Beckman SW41-Ti rotor for 2 hr. After centrifugation a
small transparent pellet could be faintly observed on the bottom of the tube. The pellet was
then resuspended in 1-ml distilled deionized water with an added 2-mM CaCl2 to stabilize the
phage heads. The concentration of the final solution is approximately between 1010 to 1012

pfu/ml for optimal crosslinking to the surface. For crosslinking P22 to the APTMS layer, 2.2
mg of Sulfo-NHS and 0.8 mg of EDC were added to each 1-ml aliquot of concentrated phage
solution. The samples were mixed briefly and allowed to react for 30 min at room temperature.
100 μl of phage was then pipetted onto the silanized surface and incubated overnight at 4 °C
in microtiter plates.

Binding of S. typhimurium on P22 monolayer
The P22 phage solution was removed from the substrate and 100-μl of freshly prepared
overnight-cultured bacteria with a titer value of 106–107 was added to each well of the 96-well
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plate. The bacteria culture was allowed to react for 15 min at room temperature followed by
thorough wash with Phosphate Buffered Saline (PBS, pH = 7.2). As a control, 100 μl of freshly
prepared overnight culture was added directly to the wells containing silanized glass without
any P22 phage. In addition, E coli strain 33780 and a Gram-positive bacterium L.
monocytogenes were used as control bacteria. One hundred μl of freshly prepared overnight
culture of E coli and L. monocytogenes (106–107 cfu/ml) were added on P22-coated glass for
15 min at 37 °C and subsequently washed with PBS before imaging.

Enzyme-linked immunosorbent assay
Enzyme-linked immunosorbent assay (ELISA) is based on the principle of antibody and
antigen interactions, and is used to provide the value of relative amount of bacteria attached to
P22. After the binding of S. typhimurium to P22 the chips were incubated with 100 μl of a
3w/w% bovine serum albumin (BSA) and 0.05v/v% tween-20 in PBS solution for 30 min at
37 °C. This solution acts as a blocking agent to reduce nonspecific binding of the labeled
antibody in the next step. After 30-min incubation the chips were washed 40 times with a 0.05%
tween-20 PBS solution in order to remove any excess blocking agent and non-phage bound
bacteria. Anti-Salmonella or anti-Listeria HRP-labeled antibodies were used depending on the
experiment. The antibodies were diluted 103 times with 3% BSA/0.05% Tween-20 solution
before use. The chips containing Salmonella or the control bacteria E. coli or Listeria attached
to P22 were incubated with 100-μl HRP-labeled antibody for 1 hr at 37 °C. The chips were
washed thoroughly with 0.05% Tween-20 and PBS respectively. OPD peroxidase was used as
the ELISA substrate. Tablets of the substrate were dissolved in 20-ml deionized water. Two
hundred μl of the substrate solution was allowed to react for 30 min at room temperature.
Finally, the absorbance was measured at 450 nm using a micro-titer plate spectrophotometer
(Bio-Tek instruments EL340).

Atomic force microscopy
Atomic force microscopy (AFM) images were obtained with either an E scanner (maximum
scan area = 14.2 × 14.2 μm2) or J scanner (maximum scan area = 125 × 125 μm2) (Nanoscope
IIIa, VEECO). Height, amplitude, and phase images were obtained in tapping mode in ambient
air with silicon tips (TESP, VEECO). All AFM height images are reported unless specified.
Height images have been plane-fit in the fast scan direction with no additional filtering
operation. The surface roughness was determined using the root-mean-square surface

roughness  where zi is the height value and n is n the number of pixels in the image.
The scan rate used was in the range of 0.2 to 1 Hz depending on the scan size. Integral and
proportional gains were approximately 0.4 and 0.7, respectively.

Contact angle goniometry
The surface hydrophobicity was measured with an NRL contact angle goniometer (Model 100,
Rame-Hart) in the laboratory atmosphere. A 20-μl water droplet was placed on the substrate
and the static contact angles were measured on both sides of the droplet. Three droplets were
placed at various spots on the substrate and the average readings are reported. The typical error
is ±3°.

Results and Discussion
In order to covalently bind phage to the solid substrate, we use bifunctional aminosilanes to
crosslink phage and the substrate. Surface silanization is a mild chemical reaction suitable for
silicon oxide and metal oxide substrates. The silanized surface not only maintains the
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smoothness and chemical homogeneity of the surface but also improves the immobilization of
bacteriophage by establishing strong covalent bonds with the phage molecules.

After piranha cleaning, the glass substrate exposes free hydroxyl groups, which can react with
the silane to form the siloxane bond as shown in Figure 2 (Warning: Piranha solution is a strong
oxidizing agent, so extreme care is necessary when using it). The surface roughness (Rq) of
the silanized glass was found to be 0.4–0.5 nm for 10 × 10 μm2 images as represented by Figure
3A, similar to previous observations [35].

The amine-terminated glass reacts with the carboxylic groups on P22 to form amide bonds.
EDC and Sulfo-NHS have commonly been used to immobilize proteins The covalent nature
of EDC/NHS activated bonding of peptides to amine-terminated surfaces, i.e. the amide bond,
has been established using X-ray photoelectron spectroscopy (XPS) [44,45] and Fourier
transform infrared spectroscopy (FTIR) [46].EDC reacts with the carboxylic group on P22 and
makes an unstable intermediate while Sulfo-NHS reacts further with the intermediate and
makes a reactive intermediate that is more vulnerable to attack by the amino groups on the
substrate (Figure 2).

Contact angle measurements provide a quick check of surface treatments. Contact angles were
measured for the untreated glass, piranha-cleaned glass, and glass after silanization. The
contact angle of glass was reduced from 15° to 5–7° after piranha clean. Silanization with
APTMS raised the contact angle to 65°, which is in the range of the published contact angle
values of amine-terminated surfaces [47–51].

The immobilized phage particles were stable against AFM scanning in tapping mode in air.
The surface coverage of P22 was found to vary with solution concentration. For example, when
the P22 concentration was 1010–1011 pfu/ml, approximately 67% surface coverage was
achieved as shown in Figure 3C. The surface coverage is estimated by the bearing area analysis
using Nanoscope software from VEECO (version 5.30). The bearing area gives the percentage
of the surface above the chosen reference plane. When the concentration was 108–109 pfu/ml,
the surface coverage was reduced to 12% (Figure 3D) while all other conditions were kept the
same. The height and diameter of individual P22 particles estimated from AFM height images
are 22 ± 7 nm and 130 ± 40 nm respectively. The diameter of P22 head capsid reported in the
literature is 70 nm [52]. Phage particles are expected to flatten significantly upon surface
adsorption and drying. In addition, the discrepancy may come from the AFM tip convolution.
The chemical reaction does not specifically control the orientation since carboxylic groups
exist both on the head and TSP domains of P22. However, our results will show that there must
be sufficient P22 particles with the TSP part oriented away from the substrate to bind
specifically and strongly to Salmonella. It is conceivable that the attachment of the large and
smooth capsid head to the glass substrate is favored over the pointy tail spikes of the gp9
proteins. Figure 3B is an AFM height image of one P22 particle. The spherical particle contains
one center core surrounded by smaller protrusions toward the periphery. The center core likely
corresponds to the portal closure of the capsid and the needle protein gp26 while the smaller
protrusions correspond to the collapsed TSPs upon drying. The image suggests the outward
orientation of the TSPs. It is possible to resolve more clearly the orientation and morphology
of surface-attached phage particles in the future via high-resolution in-situ AFM imaging
experiments.

The adsorption of bacteriophage P22 on amine-terminated monolayers without EDC/NHS was
studied. The adsorbed phage structure without NHS/EDC is represented by Figure 4, which
was prepared under the same conditions as the film in Figure 3C minus the EDC/NHS
procedure. It is clear that EDC/NHS provides a higher surface coverage and prevents aggregate
formation on the amine-terminated surface.
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Next the recognition of S. typhimurium by immobilized P22 was studied as a function of P22
monolayer coverage. The S. typhimurium concentration (1 × 106–1 × 107 cfu/ml) was kept
constant while the surface coverage of P22 was varied by its solution concentration. One
hundred μl of freshly prepared Salmonella culture was applied to each well containing silanized
chips. The chips have different monolayer coverage at different concentrations as shown in
Figure 5. The concentrations of P22 are 1010–1011 pfu/ml (Figure 5A), 109–1010 pfu/ml (Figure
5B), 2 × 108–109 pfu/ml (Figure 5C), and 108–109 pfu/ml (Figure 5D) respectively. S.
typhimurium has a distinctive rodlike shape with length = 2 ± 0.3 μm, width = 790 ± 70 nm,
and height = 185 ± 15 nm. Clearly, the bacterial coverage is directly correlated to phage
coverage. For example, the percentage of surface coverage of S. typhimurium was 64% when
67% surface contained P22. But when P22 only covered 12% of the amine-terminated
substrate, the S. typhimurium coverage was decreased to 11%. In the absence of immobilized
P22, few bacterial particles were deposited (Figure 5E) on the APTMS-coated glass substrate.
Figure 5F is a close-up image near the edge of a S. typhimurium particle where the smaller
phage particles can be clearly seen on the substrate surrounding bacterial particle. Figure 6
summarizes the average number of S. typhimurium particles per 40 × 40 μm2 area (left) and
the corresponding ELISA analysis (right). The average was assessed from 2–3 scans on 3
different samples prepared at the same conditions. The error bars correspond to multiple
separate experiments. Approximately 250/1600 μm2 S. typhimurium bacteria were captured
by the P22 monolayer with 67% P22 coverage. Approximately 60 were found in the case of
12% P22 coverage, and only 10 were found when no P22 was present. Spectral analysis by
ELISA showed the same trend. The absorbance related to the amount of S. typhimurium
decreased linearly with P22 amount. The results demonstrate that the bio-specific interactions
between P22 and Salmonella are necessary for the permanent attachment of Salmonella.

We also conducted experiments with control bacteria in order to examine the selectivity of the
P22 coating. The deposited amount of S. typhimurium is compared to those of E coli (strain
33780), a Gram-negative bacterium with weaker affinity to P22, and L. monocytogenes, a
Gram-positive bacterium without the O-antigenic LPS outer layer while all other conditions
are the same. Figure 7 shows the ELISA results, which indicate the expected decrease in
adsorbed amount with deceasing P22 affinity. ELISA was repeated on three different samples
for each of the bacterium. The results show that the immobilized P22 layer is capable of
discriminating among different bacterial types according to TSP and bacterial membrane
receptor affinity.

We also conducted preliminary tests of the durability of our phage coatings. One of the main
advantages of phage over antibody sensors is that phage remains active in adverse
environmental conditions such as drying while antibodies are fragile [17]. A P22-coated
substrate was left drying in laboratory atmosphere for 7 days before introducing it to the S.
typhimurium solution. Figure 8 shows approximately 120 bacterial particles on a40 × 40
μm2 area. This is lower than the bacterial density on freshly prepared P22 samples. The number
suggests that approximately 40–60% of phage particles can still actively bind to S.
typhimurium after 7 days.

CONCLUSIONS
This paper reports a method to prepare monolayers of chemically bound phage P22 on glass
substrates. AFM and ELISA were used to characterize the phage monolayer as well as its
interactions with bacteria. The results show that the phage particles are permanently attached
to the substrate via a combination of bifunctional aminosilane linkers and the sulfo-NHS
enhanced surface reaction. The P22 coverage can be varied by solution concentration. The role
of bio-specific interactions between immobilized phage and bacteria in solution is
demonstrated both by the preference of P22 to S. typhimurium that contains the P22-binding
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O-antigenic receptors in its outer membrane and by the lack of S. typhimurium binding to areas
not covered by P22. The results imply the favorable orientation of the 6 tailspike gp9 proteins
toward the solution since they need to be accessible to recognize the O-antigenic repeating
units on the cell surface of S. typhimurium. The durability of the P22 coating in ambient air
was tested to show that 50% of immobilized phage particles are still capable of recognizing
S. typhimurium after left in the dry state for 7 days. It is hopeful that the same phage coatings
can be deposited on biosensor substrates such as piezoelectric aluminum nitride in order to test
their applicability in real-time field monitoring devices. We are also conducting single
molecule force spectroscopy studies to determine the bio-specific force magnitudes between
phages and bacteria.
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Figure 1.
Scheme of phage P22 immobilization for the detection of Salmonella typhimurium.
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Figure 2.
Reaction mechanism of phage P22 with silanized glass. (Note: For simplification only one
carboxylic acid group is shown, other carboxylic acid groups on the phage will be activated
too.)
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Figure 3.
AFM images of A) Silanized glass (z-range = 15 nm), B) Magnified image of one phage particle
on silanized glass (amplitude image, z-range = 135 mV C) P22 on silanized glass from a
concentrated solution (z-range = 60 nm), D) P22 on silanized glass from a diluted solution (z-
range = 45 nm), and C)).
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Figure 4.
AFM height image of physically adsorbed P22 on silanized surface (z range = 50 nm)
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Figure 5.
AFM images of S. typhimurium deposited on P22 monolayers of varying surface coverage.
The P22 monolayers were made from A) 1010–1011 pfu/ml (z-range = 1000 nm), B) 109–
1010 pfu/ml (z-range = 1000 nm), C) 2 × 108–109 pfu/ml (z-range = 1000 nm), D) 108–109

pfu/ml (z-range = 1000 nm), and E) Salmonella attached directly on silanized glass without
P22 (z-range = 500 nm). F) AFM amplitude image showing S. typhimurium attached on P22
(z-range = 225 mV).
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Figure 6.
The comparison between AFM and ELISA results of the correlation between phage
concentration and the number of surface-bound S. typhimurium.
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Figure 7.
ELISA results showing the difference in binding efficiency of S. typhimurium, E. coli, and L.
monocytogenes to P22 monolayer on silanized glass.
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Figure 8.
A durability test of the number of bound S. typhimurium on a one-week old P22 substrate kept
in air. The z-range of the AFM image is 500 nm.
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