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Abstract
To identify novel genetic loci associated with fasting glucose concentrations, we examined the
leading association signals in 10 genome-wide association scans involving a total of 36,610
individuals of European descent. Variants in the gene encoding the melatonin receptor 1B
(MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest
signal was observed at rs10830963, where each G-allele (frequency 0.30 in HapMap CEU) was
associated with an increase of 0.07 (95%CI 0.06–0.08) mmol/L in fasting glucose levels
(P=3.2×10−50) and reduced beta-cell function as measured by homeostasis model assessment
(HOMA-B, P=1.1×10−15). The same allele was associated with an increased risk of type 2 diabetes
(odds ratio = 1.09 (1.05–1.12), per G allele P=3.3×10−7) in a meta-analysis of thirteen case-control
studies totalling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations
of fasting glucose with variants at the G6PC2 (rs560887, P=1.1×10−57) and GCK (rs4607517,
P=1.0×10−25) loci.

Blood and plasma fasting glucose (FG) levels are usually tightly regulated within a narrow
physiologic range by a feedback mechanism that targets a particular FG set point for each
individual1,2. Disruption of normal glucose homeostasis and substantial elevations of FG are
hallmarks of type 2 diabetes (T2D) and typically result from sustained reduction in pancreatic
beta-cell function and insulin secretion.

However, even within healthy, non-diabetic populations there is substantial variation in FG
levels. Approximately one-third of this variation is genetic3, but little of this heritability has
been explained. There is growing evidence to suggest that common variants contributing to
variation in FG are largely distinct from those associated with major disruptions of beta-cell
function that predispose to T2D. Common sequence variants in the glucokinase (GCK)
promoter4–6, and around genes encoding the islet specific glucose-6-phosphatase (G6PC2)
5,6 and the glucokinase regulatory protein (GCKR)7–9 have each been associated with
individual variation in FG levels, but have, at best, weak effects on T2D risk8,10. Furthermore,
though there are now over 15 genetic loci strongly associated with the risk of T2D7,10–14,
none shows compelling evidence for association with FG in the two genome-wide association
scans (GWAS) so far reported5,6.

MAGIC (the Meta-Analyses of Glucose and Insulin-related traits Consortium) represents a
collaborative effort to combine data from multiple GWAS to identify additional loci that impact
on glycaemic and metabolic traits. Our genetic studies of FG levels originally coalesced into
four distinct consortia: (i) European Network for Genetic and Genomic Epidemiology
(ENGAGE), combining data from deCODE, Northern Finland Birth Cohort 1966
(NFBC1966), Netherlands Twins Register/Netherlands Study of Depression and Anxiety
(NTR/NESDA), and the Rotterdam Study; (ii) Genetics of Energy Metabolism (GEM), a meta-
analysis of the Lausanne (CoLaus) and TwinsUK scans; (iii) DFS, involving the Diabetes
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Genetics Initiative (DGI), Finland-United States Investigation of NIDDM Genetics (FUSION)
and SardiNIA scans; and (iv) the Framingham Heart Study (FHS). Details of the ten component
studies (n=1,233–6,479) are provided in Supplementary Table 1.

As a prelude to more extensive data-sharing, the four consortia initially exchanged the identities
of between 10 and 20 SNPs prominently associated with FG in their individual, interim, meta-
analyses (n=6,479–12,389: Supplementary Table 2). Comparison of these signals revealed
three loci with consistent effects on FG detected in multiple studies. Two of these represented
the previously reported signals in G6PC2 and GCK. In addition, all four groups independently
generated evidence for an association between FG and SNPs around the MTNR1B (melatonin
receptor 1B) locus (ENGAGE [rs1387153] P=2.2 × 10−17; GEM [rs10830963] P=7.4 ×
10−11; DFS [rs10830963] P=2.5 × 10−7; FHS [rs11020107] P=5.8 × 10−4, for the most strongly
associated SNP exchanged from each analysis). The association signals at all three loci were
confirmed on formal meta-analysis including results from all 10 studies, after exclusion of
individuals with known diabetes (rs560887 [G6PC2], P=1.1 × 10−57; rs4607517 [GCK], P=1.0
× 10−25; rs10830963 [MTNR1B], P=3.2 × 10−50) (Table 1, Supplementary table 3). Subsequent
efforts to harmonize additional aspects of data analysis strategies (including the additional
exclusion, where necessary, of individuals with FG measures >7mmol/l) had only a marginal
impact on estimates of significance and effect size (Supplementary Table 4).

We attempted to refine the location of the MTNR1B association signal by extending the meta-
analysis to all SNPs (genotyped and imputed from the HapMap) within the 1Mb region flanking
the gene (n=35,812; 981 SNPs). In all, 30 genotyped and imputed SNPs showed compelling
evidence for association with FG (P<10−8). The strongest signal was detected at rs10830963:
the minor (G) allele (frequency 0.30 in HapMap CEU15) at this SNP was associated with a
per-allele increase of 0.07 (95%CI 0.06–0.08) mmol/L in FG (P=3.2 × 10−50). Consistent
evidence for association at rs10830963 was observed in all 10 component GWAS, irrespective
of whether this SNP was genotyped or imputed, and the genotyping platform (Table 1,
Supplementary Table 1). Repeat meta-analysis within the region after conditioning on
rs10830963 revealed no additional independent signals of association (Supplementary Note).

The strength of the association between rs10830963 and FG was unchanged after adjustment
for body mass index (Supplementary Table 4). Analyses of fasting insulin levels as well as
indices of beta-cell function (HOMA-B) and insulin sensitivity (HOMA-IR) estimated by the
homeostasis model assessment16 were possible in ~24,000 participants from the 10 studies.
These established that the glucose-raising allele at rs10830963 was associated with reduced
beta-cell function (P=1.1 × 10−15), with no appreciable effect on fasting insulin or insulin
sensitivity (Supplementary Table 5, Supplementary Note).

To determine the impact of variants within MTNR1B on T2D risk, we performed a large-scale
meta-analysis of thirteen T2D case-control samples (18,236 T2D cases, 64,453 controls;
corresponding to an effective sample size of 21,179 unrelated cases and 21,179 unrelated
controls). We combined data from the deCODE13, Rotterdam17, KORA18, FUSION Stage
211 and METSIM10 studies and from several case-control samples from the UK10 with
publicly-available data from the DIAGRAM consortium (which itself aggregates GWA data
from the WTCCC, DGI and FUSION scans)10 (Supplementary Note). We found strong
evidence that the minor G-allele of rs10830963 was associated with increased risk of T2D
(odds ratio=1.09 [1.05–1.12], P=3.3 × 10−7) (Supplementary Table 6 and Figure 2). The
possibility that the FG association might reflect the inclusion within the cross-sectional study
samples of subjects with undiagnosed T2D can be discounted given that exclusion of those
with either known diabetes, or a FG exceeding 7mmol/l had little impact on the strength of the
association signal (Table 1, Supplementary Table 4). Although the association with T2D does
not, despite large-scale replication efforts, reach the 5×10−8 threshold consistent with
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“genome-wide significance”15, it seems highly probable, given the strong impact of this
variant on beta-cell function (Supplementary Table 5), that this is a genuine effect.

The analyses we performed interrogate only a minority of common sequence variants in a given
region – it is likely that the causal variant for this locus is yet to be identified. The SNP with
the strongest statistical evidence so far, rs10830963, maps within the single 11.5 kb intron of
MTNR1B but does not appear to disrupt consensus transcription factor binding or cryptic
alternative splice sites. The association signal is bounded by recombination hotspots defining
a ~60kb interval within which all our strongly associated SNPs lie and the causal variant is
likely to reside. This interval contains the entire coding region of MTNR1B. The only other
nearby genes (the coding regions of which lie well outside this 60kb region) are SLC36A4 and
FAT3, neither of which are compelling candidates. SLC36A4 encodes a proton/amino acid
transmembrane transporter moderately similar to Rattus norvegicus lysosomal amino acid
transporter 1, while FAT3 encodes a cadherin family member which is the human homolog of
the Drosophila melanogaster FAT tumour suppressor gene. Ultimately, detailed fine-mapping
and functional analyses will be required to define the causal allele(s) and to confirm that this
effect is mediated through altered function or expression of MTNR1B.

As well as exploring this novel signal, the size of the MAGIC data-set allowed us to examine
the G6PC2 and GCK regions in greater detail than has previously been possible. In the
G6PC2 region, rs560887, within intron 3 of the gene, remained the strongest signal whether
or not imputed data were included (P=1.1 × 10−57 across all 10 studies: Supplementary Figure
1). This is the same SNP reported in one recent paper,5 and in substantial LD (r2=0.72 in
HapMap CEU) with the lead SNP (rs563694) identified in a second6. In the GCK region,
rs4607517, which lies 6.6 kb upstream of the gene, was the most strongly-associated SNP
(P=1.0 × 10−25) (Supplementary Figure 1, Table 1). This SNP is also in strong LD (r2 = 1 in
HapMap CEU) with the GCK promoter SNP (rs1799884) that was featured in previous
reports4. Repeat meta-analysis after conditioning on the respective lead SNPs revealed no
additional independent association signals at either locus (Supplementary Note).

As with MTNR1B, the magnitudes of the FG associations for both these signals were unchanged
after adjustment for BMI (Supplementary Table 4). Glucose-raising alleles at GCK and
G6PC2 were associated with reduced beta-cell function (rs4607517A, P=9.8 × 10−6;
rs560887C, P=1.2 × 10−26) (Supplementary Table 5, Supplementary Note). However, in line
with previous reports4,9, neither signal was strongly associated with T2D in the large-scale
meta-analysis: in fact, the glucose-raising allele at G6PC2 was weakly associated with reduced
T2D risk (rs4607517A, per-allele OR 1.05 [1.00–1.10], P=0.031; rs560887C, 0.93 [0.89–0.97],
P=0.0017) (Supplementary Table 6).

We found no influence of the non-coding lead SNPs rs10830963, rs560887 or rs4607517 on
gene expression of MTNR1B, SLC36A4, FAT3, G6PC2 or GCK in genome-wide expression
QTL datasets from lymphocyte derived cell lines19,20, cerebral cortex21, or liver22, and no
evidence for epistatic effects among the three lead SNPs was observed (P-2 way interactions
> 0.19 in each of the 7 studies including only unrelated individuals; interactions were not
examined in the other 3 studies).

MTNR1B encodes one of two known human melatonin receptors23. Although this is the first
study to implicate genetic variation in MTNR1B in the regulation of FG levels and
predisposition to T2D, this relationship is biologically credible. As well as being highly-
expressed in the brain, retina and elsewhere24, MTNR1B is transcribed in human islets and
rodent insulinoma cell lines25 and the translated receptor is thought to mediate the inhibitory
effect of melatonin on insulin secretion26. Melatonin release is characterized by marked
circadian variability and these inhibitory effects on insulin secretion may contribute to the

Prokopenko et al. Page 5

Nat Genet. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



entrainment of circadian patterns of insulin release27. There is substantial evidence in human
and rodent studies linking disturbances of circadian rhythmicity to metabolic conditions
including diabetes28,29 and over-expression of melatonin receptors has been observed in islets
from patients with T2D as compared to non-diabetic controls30. Taken together, these findings
suggest that the association with raised FG and T2D may be driven by variants which augment
expression and/or activity of islet melatonin receptors.

Our findings bring the number of common variant loci influencing FG levels to four, three of
which were detected in the present study. Variants in GCKR have a smaller effect size than the
others7,9 and the present study design (based on exchange of a limited number of prominent
signals between component groups) was not well-powered to detect these. However,
subsequent meta-analysis of GCKR variant data across all 10 study samples confirms the
association with FG (rs780094, P=8.5 × 10−9) (Supplementary Table 4). The total variance in
FG presently attributable to these four signals is 1.5%, indicating that additional loci remain
to be found3. In comparison with GCK and G6PC2, variants in MTNR1B appear to have a
more marked effect on risk of T2D, the effect size being comparable in magnitude (OR=1.09
[1.05–1.12]) to several other T2D-susceptibility genes recently identified in GWAS10. Thus,
whilst the physiological regulation of FG set point and the pathological decline in beta-cell
function which characterizes common forms of T2D generally appear to involve different
processes, the MTNR1B finding suggests that this is not always the case. Not only can the study
of diabetes-related quantitative traits provide an important path to the identification of
additional T2D susceptibility loci, but there may also be opportunities for useful therapeutic
overlap.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Regional plot of fasting glucose association results for the MTNR1B locus across 10
MAGIC GWAS
Meta-analysis -log10 P-values are plotted as a function of genomic position (NCBI Build 35).
The SNP with the strongest signal (rs10830963) is denoted by a blue diamond. Estimated
recombination rates (from HapMap) are plotted to reflect the local linkage disequilibrium
structure around associated SNPs and proxies (according to a white-to-red scale from r2=0 to
r2=1; based on pair-wise r2 values from HapMap CEU). Gene annotations were taken from the
University of California-Santa Cruz genome browser.
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Figure 2. Association of rs10830963 with type 2 diabetes (T2D) in thirteen case-control studies
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