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ABSTRACT A Lagrangian system on T2 that has been
studied earlier under a geometrical condition and found to
possess a pair of solutions, H*, homoclinic to periodic solu-
tions, v*, of a given homotopy type, is considered further. It
is shown with the aid of H* and variational arguments that,
in fact, there is a much richer structure of homoclinics and
heteroclinics to v*. Indeed, the system admits chaotic solu-
tions.

This paper studies the Lagrangian system on R2:

d
(LS) g Li=Le=0
where the Lagrangian L is given by
2
L@ = 2 ay@)dd; ~ V(q)-

ij=1
Assume

(V1) V € C*(R? R) and is 1-periodic in q;, ¢>,
(V) V(0) = 0> V(x), x € RA\Z?,

(A) (a;(q)) is positive definite for all ¢ € R2,

and a;; also satisfies (V7).

Because of the periodicity of (LS) in g1, g», it can be viewed
as a system in R? or on R?/7?> = T2 For V = 0, (LS) was
considered by Morse (1) and Hedlund (2). They established
the existence of a pair of geodesics (for the Riemannean metric
associated with L) lying between adjacent periodic geodesics
in a given homotopy class on T2 and heteroclinic to these
periodic geodesics. When the potential /' is present, the
situation becomes more complicated due to the equilibrium
solutions at Z? given via (7). Under further geometrical
conditions, there has been some work on the existence of zero
energy periodic, heteroclinic, and homoclinic solutions of (LS)
in refs. 3-6. In particular in ref. 6, it was shown that a
geometrical condition led to a pair of periodic solutions v*, v~
of (LS), and to homoclinics to v*, v~ lying in the region
between vt and v~. The goal of this paper is to show that, in
the setting of ref. 6, there is a much richer set of homoclinic and
heteroclinic solutions of (LS). Indeed there, is a full symbolic
dynamics of these and other solutions. Thus, (LS) admits
chaotic solutions. This will be made precise and carried out in
the next section.
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A Symbolic Dynamics of Solutions

To describe our results, the framework of ref. 6 must be
recalled. For k € Z2{0}, let

Fe={g € W2 (R, R?| thereisa T = T(q) >0
=q(t) + k}.

Viewed on T2, Fy is the class of W' curves of homotopy type
k. Let

such that g(r + T)

Gy =1{g € Wig(R, RY)|g(—=) =0, q() = k}

The elements of G are candidates for heteroclinic solutions of
(LS) (or homoclinics to 0 of homotopy type k viewed on T?).
For g € Gy and Fy respectively, let

e T(q)
I(q) = f L(q)dt, Ii(q) = f L(g)dt
— 0

and define

inf 1(q)

qEFk

¢, = inf I(q); ¢, =

qEGk
It was shown in refs. 3 and 4 that, if
[1]

there is av € Fy such that Ix(v) = ¢, and v is a solution of (LS)
(of period T(v) on T?). Moreover, there is a u € Gy such that
I(u) = ¢ and u is a solution of (LS) heteroclinic to 0 and k.
Let

Ek > Cks

P,={q € Fk|1k(q) = cy).

The elements of P, are only determined up to a phase shift
because, if 0 € R and 79q(¢) = q(t — 0), then I;(q) = Ir(70q)
for all 6 € R. Moreover, if p € Fy, soisp + j for allj € Z2.
It was shown in ref. 4 that 0 ¢ p(R) for any p € Py. Therefore,
0 belongs to some component of RA\{p(R)|p € Fi}. This
component is bounded by a pair of functions v*, v~ € P and
will be denoted by %R.

The region R will be subdivided as follows. For i € N, set
ui =u + (i — 1)k and, for —i € N, set u; = u + ik. Then,
U = Uienoui(R) divides R into ®* and R~ with v*(R)
forming a boundary component of R*. Minimizing [ L(¢)dt
over the class of W};2 curves, ¢, with ¢(0) € v*([R{) and <p(00)
= 0 yields a C? solution, zg of (LS) in this class, Jomlng vt and
U. Similarly, there is a C2 solution, z , of (LS) joining v~ and
U with z, (0) € v (R) and z, (00) =0.Fork € Z, setz; =
zy + ik. The curves U, v*, and z;” divide ® in a natural way
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FiG. 1.

into “subrectangles,” ®;", i € Z\{0}. See Fig. 1. Set ®; = R;"
U R .

To continue, a stronger version of [1] is needed. Consider
the class of W2 curves joining v* ([0, T(v*)) tov=([0, T(v™)).
Minimizing [ L(-)dt over this class produces an infimum, b, of
the functional. Suppose

Ek_Ck>2b, [2]

the strengthened geometrical condition. Then, there is a
corresponding minimizer, s, of the functional that avoids Z>.
By using [2], it was shown in ref. 6 that (LS) possesses a pair
of solutions, H* with H* homoclinic to v*. Moreover, H*
crosses z; for all i # 0 and also crosses z; . In fact, H*(0) €
2o (R), and the curves lie in ®= except for an interval in which
they cross 1 and z5 and reenter %, through u; (see Fig. 2).
The functions H* are also minimal solutions of (LS) in the
homotopy class of curves that cross the curves z;” in the above
fashion. “Minimal” means that, for all x < y, H* minimizes
J L(w)drt over the class of W'? curves w having the same
endpoints and the same crossing (of z;") properties as H*[.

Observe that this minimality property implies that, for any
i#jeZ nH (R) N nH (R)=¢.

With the aid of these preliminaries, H* will be used to help
construct new homotopy classes of curves and a symbolic
dynamics of solutions of (LS). Let

> ={o=(0)icslo; € {+, -1}

A curve g : R — R will be said to have homotopy type o €
2 if g crosses the curves z;”, i € Z, in the order given by o.
Define o* € X by ;" = +,i # 0, and o, = . Then, H™ the
homotopy type o™.

Our main result is that, for each o € ¥, (LS) has a minimal
solution of homotopy type o. To be more precise, let o € X and
i € Z. Consider 1;Ho;. It divides R into two subregions. Excise
the region between 7;Ho; and vo; from @R, calling the resulting
region R(7;Ho;). Associate with o the region N;ezR(1:.Ho;) =
X, See Fig. 3, where 0; = —,i = 0; = +,i > 0 and X, is the
shaded region.

Now we have

FiG. 2.
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Theorem 3 If (V1) — (V2), (A), and [2] are satisfied, then, for
each o € 3, there exists a minimal solution Q. of (LS) of
homotopy type o lying in X,.

Theorem 3 is a consequence of a related result for a subclass
of 2. Forp, r € {+, =}, let

Epr—{ae E‘wzp for all large € € —N

and o, = r for all large € € N}

Theorem 4 If (V1) — (V2), (A), and [2] are satisfied, then, for
each o € 3" and p, r € {+, =}, there is a minimal solution Q,
of (LS) of homotopy type o lying in X,. Moreover, Q, is
heteroclinic from vP to V' if p # 1 and is homoclinic to VP if
p=r

Theorem 4 will be proved first and then Theorem 3 follows
from it by an approximation argument. As in refs. 4-6, the
proof of Theorem 4 involves finding O, as the minimizer of an
appropriately renormalized functional over a class of curves
lying in X,,. Renormalization is necessary because the natural
functional is infinite on the class of curves in X,,. The first step
in the proof is to introduce an appropriate class of curves. Let
o € 2P and

I, = {g € Wia(R, R)]q satisfies (y;) — (vs)}
where

(v1) g lies in X,
(v2) q(0) € uy(R),
(7v3) There is a monotone sequence ¢; = t;(q), i € Z,

such that g(#,(q)) € z/(R™"),

( ) q(t) S gti+| fort € [th ti+1]> i=0
4 q(t) ER; fort €[t;, tiq], i = —1

Because o € 277, there is a smallest €, {* &€ N such that o;
=pforalli = —¢ and o; = rfor alli = €*. Define s; = 5,(q)
via q(t;) = zj(si(q)), i = €* and q(t;) = 2{(si(q)), i = —€".
Then we require that

(ys) sivi(q) =siq), i=€"
¥s si1(q) =siq),i=—€

_Remark 5 The sequence (ti(q)) need not be unique. If (ti) and
(ti) are two such sequences, by (vs), q(t) € 7 (RY) for t € [t,
ti].
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The renormalized functional on I', will be defined as
follows. Let g € I',,. Set

ti(q)
aiq) = f L(g)dt — ajcy
1

i-1(q)

fori = 1 and

ti+1(q)
alq) = f L(g)dt — ajcy
ti(q)

fori= —1wherea; =0if —€¢~ =i =€ and o; = 1 otherwise.
Now define

@)= 2 alg

ieZ\0}

Because there may be more than one possible choice of (¢;(q)),
it must be shown that J(q) is independent of the choice of
(t:(q))- Thus, suppose that J(q) < . Then a;(q) — 0 as [i| —
%, SO

ti(q)
J L(g)dt=c,+1 [6]
1

i-1(q)

for large |i|. By a simpler version of the proof of Proposition
3.12 of ref. 4,

tivi(g) — t{q) > T(OWV), i — —= [7]
tivi(q) —tlq) > TG, i —>
and
lg = vPllLeq, 0 —> 0,1 — — (8]
”q - Vr”L’c[t[,tHl] - 0? i—>o

Hence, s:(q) — 0 as |i| — . As in ref. 6, set

€ €

Tiq) = X alq); T lq) = 2 aiq),

—€ -

where J corresponds to ;(¢)) and J to (:(q)), with both (1:(¢))
and (t;(q)) satisfying (vy3). Then, [8] and s;(q) — 0 imply

tlq)
f L(q)dt
t

oq)

+ [9]

t(q)
Velq) = JTe(g) = U L(q)dt
t-e(q)

Because ¢[;‘ lies on 2 (R*), [7] and [8] show |t¢(q) — Ze(q)|
— 0 as £ — o0 and similarly for —€. Hence, [6], the right hand
side of [9] — 0 as ¢ — . Consequently, J(q) = J(g), and J is
well defined.

Now define

¢, = inf J(q). [10]

g€l

Theorem 4 will be proved by showing there is a Q, € I, such
that J(Q,) = ¢, Moreover, Q, is a minimal solution of (LS).
Note that, by [8], O, € I', and J(Q,) < o implies that Q, is
asymptotic to v as t — — and to V" as t — . The
minimization argument is related to that of ref. 6, and,
therefore, ref. 6 will be referred to for details when appropri-
ate.
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If, for example, i = ¢*, gling [\ ~k) to q[i"|,

produces an element of Fy. Hence, by the definition of ¢,

si-1(q)
alq) = — f L(zp)dt. [11]

silq)

Combining these estimates shows

Jg) =~ j (L(z0) + L(zp))dt = —M,, [12]
0

that is, J is bounded from below on I';. An upper bound for ¢,
is provided by gluing a curve in X, joining v/(—€¢~T(v?)) and
V(ErT(")) to |25 and V|7, ., yielding H € T'y with ¢,
=J(H) < .

Let (¢,,) be a minimizing sequence for [10]. Consider
Te+H'(t). Now, gm(te+(gm)) lies on zy(R*) between
Te+ 1 H (t¢+(H")) and 7¢+H " (¢t¢+(H™")) and a fortiori between
Te+(H"(te+(H")) and 7¢+—1H"(t¢+(H")). It can be assumed that
qm|:}(q,,,) lies between ¢+ 1 H'|7,.(H") and t+H'|;,.(H"). Indeed,

suppose g, ((x1, x2)) is outside of this region and g,,(x;) =
te-H'(y;), i = 1, 2. Replacing q,[;? by 7¢-H'f)? yields §,, € T'»
withJ(§m) < J(gm) via the minimality property of H=. If ¢,u|5,
lies outside the region, replace H'|;, by gy, calling the
resulting function H. Because 7¢+H" is the minimizer of J in an
associated class of curves (6) (containing ), J(H) > J(7¢.H’),
which implies

et 1(gm) o 1o+ +1(re+HY)
J Lig,)dt + 2, alq,) > f L(t¢H)dt

X1 €r+1 i

+ 2 aireH). [13]

€r+1

Therefore, by [13] gluing g,[*.. to T¢-H']}, yields §,, € Ty with
J(Gm) < J(qm). Similar reasoning shows that q,,,|_%~(q») lies
between 7_  (HP|ZC" and T - HP|ZW,

As in refs. 4-6, (¢,,) is bounded in W};% and therefore, along
a subsequence, converges weakly in W2 and strongly in L. to
Q = Q, € Wiz, with Q satisfying (y1) — (v2) as well as the
constraints on (g,,) of the previous paragraph. As in ref. 6,
there are numbers 4; > 0 such that

By [14], it can be assumed that t,(g,,) — t; for alli € Z. It
remains to show that (y3) — (ys) hold for Q. The convergence
already established shows for all i € Z, as m — o.

qm(ti(qm)) g Q(El) € Z;Tl- [15]
Therefore, by [15] and (73) for g,
Ot) €E Risy, t E 11 1111, i=0

Ot E Ry, t E[1;, f41],i = —1 [16]
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and (y3) — (v4) holds for Q with #,(Q) = f. Finally, as m —
oo

z{(5:4qm) = amtiqn)) = Q) =27'(5).  [17]
The latter equality defines §; and implies
5i(qm) =5 [18]
as m — . Now, (vys) for g, and [18] gives (ys) for O so O €
lWUI'\Iext, it must be shown that J(Q) < « and J(Q) = ¢,. There
is an M > 0 such that
J(q,,) =M. [19]
For g = g, write

Taq) =J"(q) + 7 (q), [20]

where J*(q) denotes the sum over those a;(g) such that a;(q)
= 0. Note that the definition of a;(g) implies a;(¢) < 0 is only
possible wheni = ¢* + 1 ori = —¢~ — 1. By [11] and [19],

Jq)=J(q) —J (@) =M+ M, [21]
and therefore
> ladq)| =M + 2My= M, [22]
i€z\0}

Hence, for any n € N with, e.g., n > €7 + £,

tn(qm)
f L(gn)dt =M+ (2n — €7 — €7)cy. [23]
t—n(gm)

This implies

f ” LQ)dt=M,+ 2n — €% — £ )c,

n

or equivalently

n

> a(Q) =M, [24]

—n

Hence, J(Q) < = via [24].

A variant of arguments from refs. 4—6 now shows J(Q)
¢o. Indeed, let € > 0. There is an my = my(e) such that m
mo,

v

J(gn) =c, t+ . [25]
Further, choose j = j(¢) so that

J

J(Q) = D, a(Q) + . [26]

=

It can also be assumed that, for m = my,

5(Q) tj(gm)
j L(Q)dt = J L(g,)dt + & 1271

-i(Q) t—j(gm)
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Therefore, by [25-27] and [11],

J

J(Q) = 2 alg,,) + 2

=i
=Co— E ai(qm) + 3e

[i[>]

sj(qm) s—j(qm)
<c, 436+ f L(Zdi + f L(p)dt
0 0

[28]

The constraints on g, established in the paragraph containing
[13] imply

${(qm) = si(te:H") = &55_j(q) =5 _j(T_-HP) = e [29]

for j sufficiently large. Now, [28-29] yield J(Q) = c,.

That Q is a solution of (LS) follows from simple local
minimization and comparison arguments as in Proposition 5.4
of ref. 4.

Remark 30 Fori= ¢, s;41(Q) <si(Q);fori= —€~,si-1(Q)
< 8i(Q). Indeed, if equality holds in the + case, excising Q|§:”
from Q and gluing Q| ., to (Q — k)|;,, vields Q* € I, with
J(Q*) < J(Q), a contradiction, unless Ql;*' coincides with v'.
But, because Q is a solution of (LS), this is impossible.

To complete the proof of Theorem 4, it must be shown that
Q is a minimal solution of (LS). Suppose x <y. We claim QF;
minimizes [ L(-)d¢ over the class of W2 curves with the same
end points as O, and that cross the z; in the order given by
o. Indeed, let w denote the minimizer of this variational
problem. It suffices to prove that Q*, the curve obtained by
replacing Q. by w, belongs to Ty, for then

J(Q*) =J(Q). [31]

Therefore, there must be equality in [31], and Q* is a
solution of (LS). But Q and Q* coincide on an open set, so
uniqueness of solutions of (LS) implies Q = Q*.

To verify that Q* satisfies (y1) — (s), note that the range
of w lies in X, via the minimality properties of the boundary
curves of X;.. Hence, (y1) holds. Parametrizing QO appro-
priately gives (). There is a finite set of z that QOf
intersects z. Because w is a solution of (LS), there is a
natural corresponding set of #;(w), namely #;(w) is the unique
(via the minimality of z;") value of 7 at which w intersects z;".
Thus, O* satisfies (y3), and minimality arguments imply (7).
Suppose (ys) fails, e.g., fori > 0. Then, s;+1(Q*) > s,(Q*) for
some smallest i. Because s;(Q*) — 0 as j — o, there is a
smallestj > i + 1 such that s,(Q*) = s,(Q*). If 5; = s;, excise
Q*[8-) from O* and glue Q*|., to (Q* — k)|7, obtaining Q
€ I'c with J(Q) < J(Q*) = J(Q), a contradiction. If s; < s;,
define P(t) = Q*(t) + k, t = t;(Q*). Suppose for convenience
that r = +. Because s;+1 > s;, P(t;) lies between Q*(R) and
v (R) while P(#;—1) lies between Q*(R) and the portion of
dX, given by appropriate segments of {7¢H }. Therefore,
there is a t* € (1, tj—1) such that P(t*) € Q*(R); i.e., Q*(¢*)
+ k = Q(1). Excising Q*[|- from Q* and arguing as for s; =
s; yields Q such that J(Q) < J(Q*). Possibly, (vys) still fails for
0, but, repeating the above argument a finite number of
times yields Q € T, such that J(Q) < J(Q), a contradiction.
This Q is a minimal solution of (LS), and Theorem 4 is
proved.

Proof of Theorem 3. Let o € 2. Define d,,, = (dn)icz € 2
as follows: d,,; = o, |i| = m; dpi = Oy i = m; dpi = -,
i = — m. Then, d,, € 27-»7-n, 50, by Theorem 4, there is a
minimal solution Q,, € I'y, of (LS). The form of d,, and X,
together with (LS) imply the functions Q,, are bounded in C3,.
and therefore converge in C Z.t00, € X, It readily follows
that Q, is a minimal solution of (LS) of homotopy type o, and
the proof is complete.
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